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Following tissue injury, a complex and coordinated wound healing response comprising coagulation, inflam-
mation, fibroproliferation and tissue remodelling has evolved to nullify the impact of the original insult and
reinstate the normal physiological function of the affected organ. Tissue fibrosis is thought to result from a
dysregulated wound healing response as a result of continual local injury or impaired control mechanisms.
Although the initial insult is highly variable for different organs, in most cases, uncontrolled or sustained
activation of mesenchymal cells into highly synthetic myofibroblasts leads to the excessive deposition of
extracellular matrix proteins and eventually loss of tissue function. Coagulation was originally thought to
be an acute and transient response to tissue injury, responsible primarily for promoting haemostasis by ini-
tiating the formation of fibrin plugs to enmesh activated platelets within the walls of damaged blood vessels.
However, the last 20 years has seen a major re-evaluation of the role of the coagulation cascade following
tissue injury and there is now mounting evidence that coagulation plays a critical role in orchestrating sub-
sequent inflammatory and fibroproliferative responses during normal wound healing, as well as in a range
of pathological contexts across all major organ systems. This review summarises our current understanding
of the role of coagulation and coagulation initiated signalling in the response to tissue injury, as well as the
contribution of uncontrolled coagulation to fibrosis of the lung, liver, kidney and heart. This article is part
of a Special Issue entitled: Fibrosis: Translation of basic research to human disease.

© 2013 Elsevier B.V. All rights reserved.
1. Introduction

Following tissue injury, a complex and coordinated wound healing
response comprising coagulation, inflammation, fibroproliferation
and tissue remodelling has evolved to nullify the impact of the origi-
nal insult and reinstate the normal physiological function of the af-
fected organ. Tissue fibrosis is thought to result from a dysregulated
wound healing response, through continual local injury or impaired
control mechanisms. Although the initial insult is highly variable for
different organs, in most cases, uncontrolled or sustained activation
of populations of mesenchymal cells leads to the excessive deposition
of extracellular matrix proteins and gross tissue distortion and even-
tually can lead to complete loss of organ function. In themost common
and fatal form of lung fibrosis, idiopathic pulmonary fibrosis (IPF),
epithelial injury of unknown aetiology is thought to progress through
dysregulated epithelial–mesenchymal interactions to a vicious cycle
of aberrant tissue repair and injury. This leads to the accumulation of
fibroblasts and myofibroblasts within organizing extracellular
matrix, which underlie areas of injured and reparative epithelium,
causing gross distension and remodelling of alveolar septae, which
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are described histologically as fibrotic foci [27]. In the liver parenchy-
ma, hepatocyte injury, resulting from a variety of insults ranging from
viral infection to aberrant lipidmetabolism resulting fromhigh fat diet
or prolonged alcohol exposure, leads to inflammation and activation
of hepatic stellate cells [51]; while prolonged damage to the bile
duct epithelium can induce the activation of peri-portal fibroblasts
[31,105]. Similarly, various insults to the kidney, ranging from diabe-
tes to autoimmune disease to drug and chemical toxicity, induce
inflammation and subsequent wound healing responses, activating
mesangial cells and fibroblasts to differentiate into myofibroblasts
and ultimately culminate in the deposition of excessive extracellular
matrix and compromised kidney function [73].

Coagulation was originally thought to be an acute and transient
response to tissue injury, responsible primarily for initiating the for-
mation of fibrin plugs to enmesh activated platelets within the walls
of damaged blood vessels in order to prevent further blood loss.
However, the last 20 years has seen a major re-evaluation of the
role of the coagulation cascade following tissue injury and there is
now mounting evidence that coagulation is critical in influencing
subsequent inflammatory and fibro-proliferative responses during
normal wound healing, in a range of pathological contexts across
all major organ systems [21].

This reviewwill summarise our current understanding of the role of
coagulation and coagulation initiated signalling in the tissue response to
injury and fibrosis.Wewill introduce the critical events andmajor com-
ponents involved in the initiation of coagulation, coagulation signalling

https://core.ac.uk/display/82652318?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1016/j.bbadis.2012.12.013
mailto:paul.mercer@ucl.ac.uk
mailto:r.chambers@ucl.ac.uk
http://dx.doi.org/10.1016/j.bbadis.2012.12.013
http://www.sciencedirect.com/science/journal/09254439
http://crossmark.crossref.org/dialog/?doi=10.1016/j.bbadis.2012.12.013&domain=pdf


1019P.F. Mercer, R.C. Chambers / Biochimica et Biophysica Acta 1832 (2013) 1018–1027
and fibrinolysis and then review the evidence for their involvement in
fibrosis of the lung, liver, kidney and heart.

2. Overview of the coagulation cascade and fibrinolysis

Extrinsic coagulation is initiated immediately upon tissue injury.
Extravascular tissue factor (TF) normally expressed in tissues and
concealed from plasma becomes exposed, initiating the formation of
the TF–factor VIIa (FVIIa) complex by binding small amounts of circu-
lating FVIIa. This then catalyses the activation of factor X (FX) to FXa.
The TF–FVIIa–FXa complex in association with activated factor V
(FVa), catalyses the conversion of pro-thrombin to thrombin, which
in turn converts fibrinogen to fibrin, initiating the formation of a
clot. Explosive amplification of coagulation is subsequently achieved
through a feed-forwardmechanism via the intrinsic coagulation path-
way. Here thrombin catalyses the activation of factors XI, IX, VII and X.

Tight control of coagulation is required, and this is achieved via
negative feedback mechanisms involving several locally produced
anticoagulants. The extrinsic pathway is principally regulated by TF
pathway inhibitor (TFPI), which inactivates the TF–FVIIa–FXa com-
plex. Thrombin, the initiator of the intrinsic pathway, is controlled
by a variety of anticoagulants including anti-thrombin, which inhibits
thrombin – in addition to other coagulation proteinases – in the
presence of heparin, heparin cofactor II and protease nexin-1.
α2-Macroglobulin and α1-antitrypsin inhibit thrombin and factors
IXa, Xa, and XIa. Protein Z-dependent proteinase inhibitor inhibits
FXa in the presence of protein Z, pro-coagulant phospholipids, and
calcium. Finally, by binding to thrombomodulin on the endothelium,
thrombin is converted from a pro-coagulant into an anticoagulant
and activates protein C (PC) bound to the endothelial cell protein C
receptor (EPCR). Activated protein C (APC), in conjunction with pro-
tein S, inactivates factors Va and VIIIa and thereby suppresses further
thrombin generation.

Thrombin mediated cleavage of fibrinogen to fibrin is essential for
haemostasis. The provisional matrix of cross-linked fibrin generated
by this process is critical to re-establishing blood vessel integrity fol-
lowing injury. Moreover during wound repair, the fibrin matrix acts
as a reservoir of growth factors and pro inflammatory cytokines, pro-
moting leukocyte migration, and the accumulation, activation and
proliferation of mesenchymal cells. During normal wound healing,
the clearance of fibrin via the fibrinolytic system mitigates the risks
associated with excessive fibrin accumulation. Fibrinolysis is initiated
by the conversion of plasminogen to plasmin by the plasminogen ac-
tivators urokinase-type plasminogen activator (u-PA) and tissue-type
plasminogen activator (t-PA). The activity of these serine proteinases
is regulated by plasminogen activator inhibitor-1 (PAI-1), the expres-
sion of which is tightly regulated by a variety of growth factors, in-
cluding TGFβ, IL-1β and EGF [44].

3. Coagulation signalling: the proteinase activated receptors

Beyond haemostasis, coagulation plays a central role in influencing
the subsequent cellular events of inflammation and tissue repair.
The existence of thrombin mediated receptor signalling was first
hypothesised over 20 years ago, following the observation that throm-
bin was able tomediate vascular and platelet responses independent of
fibrin deposition [142]. Over the intervening years, four G-protein
coupled receptors, the proteinase activated receptors (PAR-1 to -4),
have been identified which convert extracellular pro-coagulant activity
into intracellular signalling events (reviewed in [109]). Though it is now
apparent that PARs are expressed on a variety of cells in all organs
throughout the body, the role of PARs has been most extensively
studied in the vasculature where these receptors are now known to
play key roles in influencing platelet aggregation and secretion; vascu-
lar contraction and permeability; leukocyte adhesion and the release of
nitric oxide [109]. In humans, current evidence suggests amajor role for
PAR-1 and PAR-2 in mediating signalling in the endothelium, whereas
PAR-1 and PAR-4 are central to promoting platelet responses.

Each member of the PAR family is activated by proteolytic cleavage
of the extracellular amino terminus, resulting in the cryptic unmasking
of a high-affinity tethered ligandwhich in turn interactswith the ligand
binding pocket of the receptor to initiate downstream signalling.
Thrombin is amajor activator of PAR-1, PAR-3, and PAR-4, but thrombin
is also capable of trans-activating PAR-2. Trans-activationoccurs follow-
ingN-terminal cleavage of the PAR-1 tethered ligand, which is then free
to interact with the binding pocket of an adjacent PAR-2 receptor [94].
The importance of this transactivation process has recently been
highlighted in a mouse model of sepsis. In this model, PAR-1 was
found to switch from playing a vascular-disruptive role to playing a
vascular-protective role via interaction with PAR-2 during the progres-
sion of sepsis [62]. Whereas thrombin interacts directly with PAR-1,
coagulation FXa-receptor interactions with the PARs are more complex
and the ability of FXa, either on its own, or as part of the more potent
TF–FVIIa–FXa ternary complex to activate either PAR-1 or PAR-2 is X
dependent on both cell type and cofactor expression [21].

Once activated, PARs couple to multiple heterotrimeric G-protein
subtypes including, in the case of PAR-1 and PAR-2, Gi, Gq and G12/13.
PAR-4 couples Gq and G12/13 whereas the signalling properties of
PAR-3 remain unclear [23,123]. In keeping with other GPGR systems,
the particular G-proteins recruited following PAR activation dictate
specific downstream responses. This phenomenon of functional selec-
tivity is exemplified by PAR-1, where at relatively high concentrations,
thrombin-induced vascular barrier permeability is mediated by cou-
pling to G12/13 and Rho kinase signalling. In contrast, thrombin induced
calcium mobilization is mediated by Gq recruitment. Moreover, activa-
tion of PAR-1 by synthetic hexapeptide agonists which mimic the
tethered ligand appear to induce signalling via Gq, whereas thrombin
triggered PAR-1 signalling is preferentially coupled to G12/13 [83].
Thrombin concentration also dictates subsequent cellular responses
following PAR-1 ligation. This is best exemplified in the endothelium
where low concentrations of thrombin (b40 pM) are barrier protective
and high concentrations are highly disruptive [35]. Similarly, activation
of PAR-1 by the anticoagulant activated protein C (APC) is also barrier
protective by mediating the cross-activation of the sphingosine
1-phosphate receptor (S1P1) [36].

4. Coagulation and coagulation signalling in internal
organ fibrosis

As alluded to previously, coagulation, which is essential in the early
stages of the tissue injury response by promoting haemostasis, is now
known to influence several key inflammatory and fibroproliferative
responses. Uncontrolled or over-exuberant coagulation therefore re-
tains the potential to induce dysregulation of these tightly regulated
processes leading to inappropriate tissue repair and the development
of fibrosis (Fig. 1).

4.1. Coagulation and lung fibrosis

Of all the fibrotic conditions, the mechanistic link between coagu-
lation and fibrosis is perhaps strongest for fibroproliferative diseases
of the lung in the context of acute lung injury (ALI/ARDS) and in
chronic fibrotic conditions including idiopathic pulmonary fibrosis
(IPF) and pulmonary fibrosis associated with systemic sclerosis. TF
expression is increased by the alveolar epithelium of patients with
ALI/ARDS [7] and levels of TF-VIIa are increased in the bronchoalveo-
lar lavage fluid (BALF) of these patients. Critically, increased levels of
TF are not matched by a similar increase in the levels of endogenous
anti-coagulants such as anti-thrombin III and tissue factor pathway
inhibitor (TFPI) [8]. Moreover, recent studies have suggested that mi-
croparticles derived from injured alveolar epithelial cells represent an
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Fig. 1. Proteinase receptor signalling in organ fibrosis. Evidence from in vitro and in vivo studies places PAR-1 as a critical signal transducer for the extrinsic coagulation cascade,
influencing processes from endothelial barrier function, inflammation and expression of pro-fibrotic mediators in fibrotic disease in the liver, lung, heart and kidney. The role for
PAR-2 is less well defined, however evidence from a variety of studies underlines the importance of this receptor in modulating the inflammatory response.
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important source of extravascular pro-coagulant activity in the lungs
of patients with ALI/ARDS [6,42].

Likewise in idiopathic pulmonary fibrosis and systemic sclerosis,
coagulation is thought to be initiated in the intra-alveolar compart-
ment as a result of increased TF expression by type II alveolar epithe-
lial cells and alveolar macrophages [52,58]. More recently, we have
demonstrated that the bronchial and pulmonary alveolar epithelium
represent important local cellular sources of several coagulation
factors and a nidus for FX activation in patients with IPF and in the
bleomycin model of lung injury and fibrosis [117].

In terms of pro-coagulant signalling responses in the injured lung,
current evidence suggests a key role for PAR-1 in influencing a range
of cellular responses with the receptor being highly expressed on the
endothelium and on the injured epithelium and fibroblasts within fi-
brotic foci [84]. Activation of PAR-1 induces the synthesis and release
of a range of pro-inflammatory mediators, including chemokines such
as CXCL8 and CCL2 and cytokines such as TNFα, IL-1β, IL-2 and IL-6
[28,74,97,117]. Moreover thrombin has been reported to induce
the expression of a variety of adhesion molecules on endothelial
cells [107]. Activation of PAR-1 on human lung fibroblasts has been
shown to induce synthesis of the potent anti-fibrotic eicosanoid
PGE2, which in turn negatively regulates the expression of PAR-1.
COX-2 mediated PGE2 synthesis is disrupted in fibrosis [65], and fi-
brotic fibroblasts show a diminished capacity to synthesise PGE2 in
response to thrombin stimulation [124]. These observations may ex-
plain why PAR-1 is over expressed in the lungs of patients with IPF
[84]. Early in vitro studies on fibroblasts demonstrated that activation
of PAR-1 with either thrombin or FXa promotes their proliferation via
the autocrine induction of PDGF [13]. Activation of this receptor also
induces pro-collagen production by fibroblasts [19], and induces syn-
thesis of connective tissue growth factor (CTGF) [20], fibronectin [5]
and plasminogen activator inhibitor (PAI-1) [50]. Moreover, throm-
bin treatment of lung fibroblasts induces their differentiation into
myofibroblasts [14].

In terms of evidence for a role for coagulation signalling in driving
fibrosis in animal models, we and others have shown that anticoagu-
lant strategies (e.g. direct thrombin inhibition) and PAR-1 deficiency
are protective in the bleomycin model of lung injury and fibrosis,
with protection associated with reduced levels of several profibrotic
mediators, including CTGF and TGFβ and the pro-inflammatory and
pro-fibrotic chemokine CCL2/MCP-1/JE [55]. More recently, PAR-1
has also been shown to play a key role in mediating the integrin-
dependent activation of latent TGFβ, one of the most potent
pro-fibrotic mediators characterized to date. In epithelial cells, this
response was found to be mediated via the activation of the epithelial
restricted αvβ6 integrin, which is currently also a major drug target
for anti-fibrotic therapy [61]. In contrast, we and others have shown
that fibroblasts/myofibroblasts do not express αvβ6 but express
high levels of αvβ5 within fibrotic foci and ligation of PAR-1 similarly
leads to αvβ5 integrin dependent TGFβ activation [117].

In contrast to PAR-1, the role of PAR-2 in lung injury and fibrosis
seems less clear. Critically there is differential expression of PAR-2
in human and murine lungs, potentially confounding correlations
between murine models and disease. While PAR-2 is observed on
the pulmonary epithelium in both mice and humans, and has been
shown to mediate proliferation of primary human lung fibroblasts
in vitro, the receptor is not generally thought to be expressed by
mouse lung fibroblasts [150]. This is not a universal finding however.
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One study suggests that PAR-2 is expressed on myofibroblasts in
the murine lung, modulating tissue factor expression and driving
myofibroblast differentiation following bleomycin injury [15], while
others have found that deficiency in PAR-2 offers no protection
[129]. In other murine models of lung injury direct activation of
PAR-2 using specific hexapeptides induces increased airway tone,
acute lung inflammation, and extravascular leak via a neurogenic
mechanism however PAR-2 does not seem to be critical in models
of Escherichia coli induced pneumonia [8,128].

4.2. Coagulation and liver fibrosis

In comparison to IPF where the aetiology of the insult is unknown,
the nature of the injurious insults leading to hepatocyte damage and
liverfibrosis aremuchbetter defined and include hepatitis B or hepatitis
C viral (HBV or HCV) infection or aberrant lipid metabolism induced by
prolonged alcohol exposure or obesity. In chronic cholangiopathies, bile
duct epithelial cells are the primary site of injury, resulting from either
auto-immune mediated cellular damage, or build-up of bile resulting
from bile duct blockage. Injury to either hepatocytes or BDECs results
in the local upregulation of inflammation and activation of local resi-
dent mesenchymal cell populations, the hepatic stellate cells (HSCs)
and peri-portal fibroblasts respectively. Once activated both cell types
differentiate into contractile myofibroblasts, capable of maintaining
the expression of pro-inflammatory and pro-fibrotic mediators, and
the deposition of extracellular matrix.

Hepatocytes are critically important as the major cellular source of
vitamin K required for the gamma-carboxylation of vitamin K depen-
dent coagulation factors including factors II, V, VII, IX and XI. Hepato-
cyte loss due to injury, for example in severe cirrhosis, results in a
systemic deficit in these factors (reviewed in [16,138]) causing the
hypo-coagulation commonly described in liver disease. Additionally
there is also loss of critical vitamin K dependent anticoagulants, in-
cluding protein C and protein S [98,106]. In order to mitigate these ef-
fects, patients with liver disease and cirrhosis are often prescribed
vitamin K [114]. Intriguingly, it has recently been argued that, rather
than systemic hypo-coagulation, the concurrent loss of pro and anti-
coagulant factors resulting from liver injury actually results in a net
rebalancing of the coagulation cascade, offering the potential for a
hyper-coagulant state associated with liver disease [139].

Additional factors contributing to an enhanced pro-coagulant state
in the injured liver include decreased blood flow, endothelial dysfunc-
tion or chronic inflammation [17,154]. Underlining the involvement of
coagulation in liver injury and fibrotic progression, numerous studies
have observed microthrombus formation in the hepatic vasculature in
both rodent models of injury [70,71,76,77] and in cirrhotic patients
[9,144,145]. The functional role of increased coagulation activity
in the liver was highlighted in studies showing that carriage of the fac-
tor V Leiden (FvL) mutation, a common cause of hereditary hyper-
coagulopathy, was associated with increased risk of rapid fibrosis pro-
gression following hepatitis C (HCV) infection [106,149] in humans.
Moreover, mice carrying this mutation exhibited a more severe fibrosis
than littermate controls [2], a finding which echoes observations
reported in the bleomycin model of lung injury and fibrosis [152].
These observations lead to the proposition of the parenchymal extinc-
tion hypothesis of liver injury, whereby loss of blood flow induced by
hypercoagulation and thrombus formation, propagates hepatocyte apo-
ptosis, tissue damage, and ensuing fibrosis [144,145]. However, evi-
dence also exists for an alternative hypothesis involving coagulation
signalling actively driving a pro-fibrotic programme in the injured liver.

In support of this notion a recent genetic study based on Brazilian
and European patient cohorts, has highlighted that a polymorphism
in the 5′ regulatory domain of PAR-1 (1426 C/T) shows a strong asso-
ciation with the rate of fibrosis induced by HCV infection [81]. The
cellular localisation of PARs has also been assessed in the fibrotic
liver, where PAR-1 (referred to as the thrombin receptor), was found
to localise to hepatic stellate cells [80]. Subsequent studies in the rat,
have identified the expression of PAR-1, PAR-2 [38,41], and PAR-4
[38] on HSCs. PAR-1 activation on HSCs was found to promote
myofibroblast differentiation in vitro, with receptor expression in-
creasing during the differentiation programme [38,41].

Functional studies inmice have also provided evidence for a link be-
tween coagulation signalling and the development of non-alcoholic
fatty liver disease (NAFLD), the hepatic manifestation of obesity. Mice
fed aWestern chowdiet and expressing low levels of haematopoetically
expressed TF or PAR-1 deficiency demonstrated reduced inflamma-
tion (CCL2 expression and macrophage accumulation), and reduced
steatosis (hepatocyte lipid accumulation), compared to wild type con-
trols [63]. In a similar model, the direct thrombin inhibitor Argatroban,
dosed therapeutically (i.e. post development of steatosis), reduced the
expression of several inflammatory and fibro-proliferative biomarkers
in the liver, including TGFβ, TIMP-1, collagen and αSMA [64].

Cholangiopathies in humans are also associated with increased
expression of TF by bile duct epithelial cells (BDECs), as well as with
increased thrombin generation and expression of PAR-1. These obser-
vations aremirrored in rodent models of bile duct epithelial injury, in-
duced by the BDEC selective toxicantα-napthylisothiocyanate (ANIT),
and bile duct ligation [12,119,130]. In the ANIT model of BDEC injury,
deficiency in either TF or PAR-1 is associated with reduced expression
of several pro-fibrotic genes and reduced pro-fibrotic signalling re-
sponses [75,130], while either anticoagulation or PAR-1 antagonism
attenuates subsequent collagen accumulation in the bile duct ligation
model [1,38]. Intriguingly, reduced TF or PAR-1 signalling was associ-
ated with the impaired ability of BDECs to induce αvβ6 gene expres-
sion in response to TGFβ stimulation [130]. As mentioned earlier,
this integrin has been previously shown to be critical in mediating
TGFβ activation in pulmonary epithelial cells following PAR-1 induced
cell contraction [61]. Collectively these data point to an important role
for coagulation in driving an over-exuberant response to injury, and
subsequent fibrosis in the liver.

4.3. Coagulation and renal fibrosis

Glomerulosclerosis and tubulointerstitial fibrosis represent the
fibrotic endpoint of a range of chronic insults to the kidney, grouped
together under the pathology of chronic kidney disease (CKD). Coag-
ulation has also been shown to be activated in CKD, with mounting
evidence suggesting imbalances in both the coagulation cascade and
the subsequent fibrinolytic system (reviewed in [59]). Plasma TF
levels, as well as FXIIa and FVIIa activity, have been reported to be in-
creased in patients with CKD [82,99]. Moreover, activated protein C
complex [132] and thrombin–anti-thrombin complex levels have
been shown to be increased whereas anti-thrombin activity is re-
duced [135]. In an animal model of hydronephrosis, TF expression
was shown to be increased in vascular endothelial cells, vessel wall,
tubular epithelial cells, and glomerular capsular cells [147].

Despite the observations implicating coagulation signalling in CKD, a
mechanistic link between the coagulation cascade to and underlying
pathology remains to be clearly demonstrated. Studies in mice and
humans support the notion that coagulation signalling, via proteinase
activated receptors, may play a role both in maintaining kidney func-
tion, and in controlling the early events of kidney injury leading tofibro-
sis. PAR-1 and PAR-2 expression has been reported in the kidney, with
both receptors co-localising to renal vascular and tubular interstitial
cells [11,26,46,111]. Intriguingly, activation of either PAR-1 or PAR-2
elicits divergent haemodynamic consequences. In an isolated perfused
model of kidney function, PAR-1 activation was reported to initiate
renal vasoconstriction and a marked reduction in the glomerular filtra-
tion rate (GFR), whereas PAR-2 activation contrastingly caused vasodi-
lation and partial reversal of the PAR-1 mediated effects [47].

It has long been recognized that ischaemia is also a major cause of
renal injury leading to fibrosis [85]. A role for PAR-1 in ischaemia
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reperfusion (I/R) injury has been suggested in various organ settings
including the intestine and the heart [126,140]. In the kidney, studies
using either low TF expressing or PAR-1−/− mice suggest that in-
creased TF activity after renal IR leads to increased CXC chemokine
expression and subsequent neutrophil-mediated injury via a PAR-1
dependent mechanism [120]. In agreement with these findings,
more recent studies have also reported that rats treated with the
PAR-1 antagonist, SCH7979, also exhibit reduced inflammation in a
model of ischaemia reperfusion [33]. Both studies suggest that, in ad-
dition to regulating kidney haemodynamics, activation of PAR-1 leads
to the up-regulation of several pro-inflammatory mediators including
TNFα, KC, MIP-2 and CINC-1, in addition to increasing the expression
of adhesion molecules such as P-selectin [33,120].

PAR-1 deficiency was also shown to be protective in a model of
glomerulonephritis, with PAR1−/− mice showing less severe renal
failure, macrophage infiltration and fibrin deposition than wild type
controls [25]. Infusion of a PAR-1 specific hexapeptide agonist into
wild type animals exacerbated the injury. Additionally a potential
role for factor Xa mediated ligation of PAR-2 has also been highlighted
by in vitro studies showing that factor Xa can induce mesangial cell
proliferation through PAR-2 mediated ERK activation [134].

Anticoagulants have proven efficacious in renal models of fibrosis,
suggesting a role for the coagulation cascade in mediating pathology,
however findings need to be interpreted with caution. Studies using ei-
ther low molecular weight heparin or the FXa inhibitor, fondaparinux,
reduced inflammation in renal ischaemia reperfusion [40], urethral ob-
struction [103], and in diabetic nephropathy models [131], with the
latter studies also showing attenuation of fibrotic markers in addition
to inflammation. However, both heparin [18] and fondaparinux [39]
exert anti-inflammatory effects which are independent of their antico-
agulant activities, so it is possible that protective effects were mediated
via the non-anticoagulant effects of these agents. Despite this caveat,
the fact that they have proved efficacious in renal injurymodels certain-
ly strengthens the case for their use as renal anti-fibrotics in CKD.

4.4. Coagulation and cardiac fibrosis

Similar to other organs, injury to themyocardium induces awound
healing response with the potential, if inappropriately controlled, to
develop into fibrosis. Despite occupying 75% of the tissue mass of the
heart, cardiac myocytes only account for 30% of the cell population,
with the remaining portion being made up of interstitial fibroblasts
[22]. Excessive extracellular matrix (ECM) deposition by activated
fibroblasts increases the stiffness of the myocardium; moreover,
aberrantly deposited ECM impairs the mechano-electric coupling
of cardiomyocytes increasing the risk of arrhythmias (reviewed in
[68]). Collectively these pathologies lead to the functional impairment
of the heart with a progressive decline to cardiac failure.

The role of the coagulation cascade in cardiac fibrosis as in other or-
gans is highly complex. While complete deficiencies in TF, FVII, FX, FV,
and pro-thrombin are fatal in utero or shortly after birth, mice express-
ing low-TF (≈1% of wild type levels) survive, but are prone to
spontaneous haemorrhage in organs such as the heart, lung, brain,
uterus and placenta [53,100,112]. In contrast to other organ settings,
deficiency in TF spontaneously induces cardiac fibrosis which is evident
in these animals from as early as three months after birth. TF deficiency
seems to influence fibrosis in a dose-dependent manner, with ECM de-
position completely reverted following rescue by TF overexpression
[100,102]. Critically, the myocardium of low-TF expressing mice
shows evidence of haemorrhage associated with areas of fibrosis,
suggesting that this could be the trigger for the fibrotic response in
these animals. It has been hypothesised that, due to the nature of the
continual mechanical stress to which it is subject, the myocardium is
prone to repetitive mechanical injury. High TF expression may act as a
secondary haemostatic barrier against intra-myocardial haemorrhage,
which is diminished when TF expression is compromised.
In contrast, in the context of an acute injury to the heart, excessive
activation of coagulation appears to be deleterious in line with other
organ systems. Myocardial infarction (MI) and subsequent breach of
the endothelial barrier allows leakage of coagulation factors into the
myocardium and subsequent activation by myocardial TF [34]. More-
over, in rabbit models of cardiac ischaemia reperfusion (I/R), inhibi-
tion of TF or thrombin has been shown to be protective [45]. With
regard to coagulation signalling, PAR-1 is expressed in the heart by
cardiomyocytes, fibroblasts, smooth muscle cells (SMCs) and endo-
thelial cells [3], with expression increased in patients with various
forms of heart failure [4,88]. A recent study suggests that PAR-1 is
the most highly expressed GPCR expressed on cardiac fibroblasts iso-
lated from rat hearts [122]. While it is still unclear from genetic and
pharmacological studies as to whether PAR-1 is involved in the insult
of the myocardial infarct [101,126], evidence suggests a role in the
wound healing response. PAR-1−/− mice exhibit reduced hypertro-
phy post-MI, while transgenic animals engineered to overexpress
PAR-1, specifically on cardiomyocytes, showed evidence of cardiac
remodelling and hypertrophy [101]. Moreover, PAR-1 signalling in
cardiac fibroblasts induces their proliferation [57,125].

PAR-2 expression is increased in the hearts of patients with
ischaemic heart failure and mice following cardiac I/R injury. More-
over, mice deficient in PAR-2 exhibit reduced cardiac I/R injury, asso-
ciated with reduced oxidative stress and inflammation [4]. These data
contrast with other studies where PAR-2 activating peptides in vivo
and in isolated perfused hearts, were shown to be protective in cardi-
ac I/R injury [90,91]. In accounting for these contradictory data, it has
been proposed that peptide mimetics induce ‘biased agonism’ at the
PAR-2 receptor, where differential signalling is induced by different
activators and peptide agonists [108]. It has been proposed that
PAR-2 activating peptides elicit a change in the 3-dimensional struc-
ture of PAR-2 distinct from that induced by proteolytic activation, ini-
tiating the recruitment of differential G-protein or β-arrestin
mediated signalling pathways [3].

Genetic and pharmacological investigations of the role of PAR-4 in
cardiac injury have also yielded divergent data. Studies using
PAR-4−/− mice suggest that this receptor is cardio protective in I/
R injury [3], however pharmacological studies with the pepducin an-
tagonist of PAR-4, P4pal 10, and the trans-cinnamyol-YPGKF-amide
have suggested that antagonism of this receptor is protective in I/R
injury [127]. The interpretation of data using these antagonists is
potentially confounded however by limitations of the bioavailability
of these agents in vivo as well as the observation that both behave
as agonists in some in vitro model systems [54]. Collectively, these
observations suggest a significant role for coagulation receptor
signalling in both the initiation of cardiac injury as well as the
subsequent development of fibrotic responses.

4.5. The role of fibrinolysis in organ fibrosis

Numerous clinical studies have linked elevated levels of PAI-1, the
major serpin regulator of fibrinolysis, to fibrosis in each of the major
organ settings. PAI-1 levels are elevated in the lungs of patients
with ALI and IPF [66,116,146]. In the cirrhotic liver, levels are
down-regulated in a subset of patients [56], however conversely syn-
thesis of PAI-1 is induced by alcohol administration [30,79,89] with
increased levels acting as a measure of disease severity in the early
stages of liver disease [136]. In renal fibrosis, fibrin deposition in the
peritubular capillaries and the interstitial space is common and nu-
merous studies have found that PAI-1 is elevated during the progres-
sion of kidney fibrosis (extensively reviewed in [113]). In the main,
these clinical findings have been mirrored in animal models which
have shown that either PAI-1 deficiency or supplementation of u-PA
(both resulting in enhanced fibrinolysis) is associated with attenuat-
ed fibrosis following bleomycin-induced lung injury and fibrosis
[32,48] and renal fibrosis [67,96] and models of liver fibrosis which
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mimic the effects of alcohol induced steatosis [10] or bile duct obstruc-
tion [143]. However beyond these, review of the literature investigat-
ing the contribution of the components of fibrinolysis to organ fibrosis
yields conflicting outcomes which appear dependent on the animal
model used. For example PAI-1 deficiency is associatedwith exacerba-
tion of liver fibrosis in a severe carbon tetrachloride model targeting
hepatocytes [141], while paradoxically overexpression of u-PA is pro-
tective in this model [92,115]. It was noted that hepatocytes in
PAI-1−/− mice were unable to proliferate and replenish those lost
to injury, leading to the suggestion that this functional deficit exacer-
bated the fibrotic effects of a severe hepatocyte targeted injury [141].
Moreover, PAI-1 deficiency was shown to be either protective or dele-
terious depending on the model of glomerular nephritis employed. In
the bleomycin model of lung fibrosis, despite the fact that PAI-1−/−
mice were protected from fibrotic injury, fibrinogen knock-out mice
showed no protection suggesting, in this model at least, that fibrin de-
position is not required for the development of fibrosis [49].

Strikingly, in the setting of cardiac fibrosis, PAI-1 deficiency pro-
motes spontaneous age-related cardiac fibrosis with studies suggesting
that micro-vascular leak in PAI-1−/− mouse hearts may provoke in-
flammation, and predispose these mice to cardiac fibrosis [43,86,151].
PAI-1 induces the internalization of αvβ3, with increased expression
of this integrin associating with increased TGFβ-dependent SMAD2/3
signalling in fibroblasts derived from PAI-1 deficient mice [104]. It is
postulated that increased TGFβ signalling in the myocardium of these
animals, in addition to increased inflammation and MMP activity may
drive spontaneous cardiac fibrosis. It is striking that the heart is partic-
ularly sensitive to deficiency in both coagulation factors (e.g. TF) and
PAI-1. As previously argued, the haemostatic balance in the heart is par-
ticularly delicately balanced and sensitive to perturbation as a result of
the continual mechanical strain it operates under [151]. Paradoxically,
following an acute insult in the form of myocardial infarction, PAI-1 de-
ficient mice are protected from fibrosis induced by myocardial infarc-
tion [133].

In addition to promoting fibrin clearance, the tPA/uPA/plasmin
system is critically involved in the activation of a variety of MMPs
and growth factors. For example, plasmin is known to directly acti-
vate MMP-1, MMP-3, MMP-9, MMP-10 and MMP-13, and is indirectly
involved in the activation of MMP-2, which can also be activated by
u-PA [60,72]. MMPs play a pleotropic role in the wound healing re-
sponse, affecting not only matrix turnover and the subsequent release
of sequestered growth factors, but also regulating the activity of a
host of cytokines and chemokines [110]. MMP-2, MMP-9 and
MMP-13 have all been shown to be involved in activation of TGFβ,
which is also known to be activated directly by plasmin either by di-
rect cleavage of the latency associated peptide (LAP) factor or indi-
rectly via thrombospondin-1 (TSP-1) expressed on macrophages
[60]. The observation of plasminogen activators playing a fibrotic
role appears to be at odds with the observation of increased PAI-1 ex-
pression in fibrotic disease. However critically the plasminogen acti-
vators u-PA and t-PA activate the anti-fibrotic mediator hepatocyte
growth factor (HGF), and it has been argued that the ability of the
plasminogen activators u-PA and t-PA to activate anti-fibrotic growth
factors such as HGF [24,44] is critical for their anti-fibrotic function.

In summary, the fibrinolytic system mediates the dual roles of fi-
brin clearance and the activation of growth factors involved in tissue
repair. However interpreting the role of fibrinolysis in fibrosis is con-
fusing since it is difficult to tease out the relative importance of both
roles using current knock out approaches.

5. Therapeutic potential and challenges of blocking coagulation in
fibrosis

Current pre-clinical evidence suggests that targeting coagulation
signalling could be beneficial in the context of fibrosis of the lung,
liver, kidney and possibly heart. However, the development of
anticoagulants in the clinical context of fibrosis is challenging on a
number of fronts. Aside from the usual challenges to fibrotic drug de-
velopment, namely proving efficacy in a slowly evolving pathology,
the use of anticoagulants in the clinic may carry a significant safety
risk. As we have highlighted, coagulation exerts highly complex ef-
fects on haemostasis, inflammation and tissue repair so that the ben-
eficial and deleterious effects of anticoagulants are finely balanced.
Examination of efforts to target coagulation in lung fibrosis provides
a working case study in the difficulties in targeting coagulation in
organ fibrosis, with the early promise shown by anticoagulants in an-
imal models and small clinical studies of lung fibrosis proving chal-
lenging to translate in large scale clinical trials [69,118]. Recently, a
phase III multicentre trial “Anti-Coagulant Effectiveness in Idiopathic
Pulmonary Fibrosis (ACE-IPF)”, assessing orally dosed warfarin for
the treatment of IPF, was terminated early due to futility and in-
creased mortality in the treatment arm [93]. The study findings
suggested that excess mortality in the treatment group was attribut-
able to a worsening in respiratory symptoms, rather than being relat-
ed to side effects of anti-coagulation. The underlying reasons for this
unexpected result are not fully understood. The ACE-IPF investigators
suggested that causative factors could include alveolar haemorrhage,
which was not measured in the study, or the unexpected detrimental
effects of inhibiting all vitamin-K dependent coagulation factors (fac-
tors II, VII, IX and X) and critical anti-coagulants, such as protein-C
and protein-S [93]. The effects on the protein-C axis might be partic-
ularly important since activated protein-C (APC) has been shown to
exert endothelial barrier protective effects [37]. It is plausible to sug-
gest that loss of the beneficial effects of protein-C could be detrimen-
tal in the setting of IPF.

While the ACE-IPF trial strongly argues against systemic depletion
of vitamin-K dependent coagulation factors in IPF, the potential for
local anticoagulation strategies with agents differentiated from war-
farin remains to be explored. Heparin exhibits a different mechanism
of action to warfarin, with only partial overlap of coagulation factor
targets which are inhibited. Encouraging recent data has emerged
from safety and tolerability studies in IPF where patients were admin-
istered inhaled heparin, rather than being systemically exposed to the
anticoagulant. Patients in the inhaled heparin treatment group
showed significant inhibition of local intra-alveolar coagulation with-
out any heparin related side effects [78]. These studies offer the excit-
ing possibility of treatment with a topically targeted anticoagulant in
the treatment of IPF.

In contrast to a broad-spectrum anticoagulant therapy, an alterna-
tive strategy is potentially offered by selectively targeting the delete-
rious effects of coagulation signalling responses. To this end a variety
of inhibitors of the proteinase activated receptors (PARs), in particu-
lar PAR-1 are under development (comprehensively reviewed in
[109]). Of all the strategies yet employed for inhibition of PAR-1,
small molecule antagonists directed against the tethered ligand bind-
ing pocket of the receptor have been the most successful with two an-
tagonists (vorapaxar and atopaxar) entering large scale clinical trials
as novel antithrombotic agents in several cardiovascular indications
[87,95,137,148]. To the best of our knowledge, there are currently
no trials planned for PAR-1 antagonists in the clinical setting of fibro-
sis, however a recent trial in the setting of acute coronary syndrome
has been completed. Disappointingly, the primary end point of the
study was not met, while additionally the study was terminated due
to increased inter-cranial bleeding in patients with a history of stroke
[137]. Vorapaxar is a highly specific and virtually irreversible antago-
nist at PAR-1, and it may be that an antagonist with a more reversible
profile is preferable in this clinical setting [153]. Moreover the
findings of this study are potentially confounded by the fact that
vorapaxar was administered in addition to standard anti-platelet
agents (aspirin and clopidogrel) suggesting that PAR-1 antagonists
should not be used in patients in combination with other
anti-platelet agents. If these safety considerations were successfully
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overcome, it is tempting to speculate that this class of compoundmay
be worth investigating in the clinical settings of lung, liver and kidney
fibrosis.

In contrast to the lung, in the liver, no large scale clinical trials of
anticoagulants have been completed to date, however, promising
findings have been observed in small short duration anti-coagulant
studies. Low molecular weight heparin dosed over a three week peri-
od was shown to improve levels of serum markers of liver injury and
reduce serum type IV collagen and hyaluronic acid in patients with
chronic hepatitis B infection compared with patients on normal
liver support therapy [121]. In a second study, HCV infected patients
who were unresponsive to interferon based antiviral strategies were
dosed for 8-weeks with warfarin, resulting in reduced liver stiffness
and serum biomarkers of fibrosis [29]. These promising data have
triggered a further multicentre trial of warfarin in post-transplant pa-
tients infected with HCV [2]. The results of these studies are eagerly
awaited.

6. Concluding remarks

Coagulation has evolved to promote haemostasis with a view of
rapidly reinstating organ function following injury and as such it is
a central mechanism of survival. Over the past 20 years however ev-
idence for a more pleiotropic role for coagulation has emerged. As
well as influencing the formation of the provisional matrix, several
coagulation proteinases exert key cellular responses to injury via
the activation of PARs which show regulated expression in every tis-
sue compartment of the body. As a result, the coagulation cascade di-
rectly influences several key aspects of the wound healing response,
from platelet aggregation and vasoconstriction to inflammation
right through to scar formation. Though tightly regulated under nor-
mal conditions, an imbalance in favour of a procoagulant state as oc-
curs in many organ pathologies has the potential to dysregulate
inflammatory and tissue repair programmes and culminate in fibro-
sis. The multifaceted nature of coagulation means that the develop-
ment of therapeutics in this area is challenging, however the
development of compounds which target key cellular responses of
coagulation signalling continues to give hope for the development
of novel targeted therapies in this area.
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