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SUMMARY 

Let S be the category of simplicial sets, let D be a small category and let SD denote the category of 
D-diagrams of simplicial sets. Then SD admits a closed simplicial model category structure and the 
aim of this note is to show that, for every cofibrant diagram XeSD and everyfibrant diagram 
YE SD, the homotopy type of the function complex hom(X, Y) can be computed as a homotopy 
inverse limit involving function complexes in S between the simplicial sets that appear in X and Y. 

1. INTRODUCTION 

1.1 THE MAIN RESULT. Let S denote the category of simplicial sets and let D 
be an arbitrary but fixed small category. The results of Quillen [8, Ch. II] then 
readily imply that the category SD of D-diagrams of simplicial sets (i.e. functors 
D-S) admits a closed simplicial model category structure, i.e. the category SD 
admits notions of weak equivalences, fibrations, cofibrations and function 
complexes which are related in the usual manner. In particular, if XE SD is a 
diagram which is cofibrant with respect to this model category structure and 
YE SD is fibrant, then the function complex hom(X, Y) has “homotopy 
meaning”, i.e. its homotopy type depends only on the weak equivalence classes 
of X and Y. 

The aim of this note now is to show that, for every cofibrant diagram XE SD 
and every fibrant diagram YE SD, the homotopy type of the function complex 
hom(X, Y) can be computed as a homotopy inverse limit involving function 
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complexes in S between the simplicial sets that appear in X and Y. The indexing 
category for this homotopy inverse limit is the twisted arrow category aD which 
has as objects the maps D,-,+Dt of D and has as maps the commutative 
diagrams of the form 

D -0; 1 

1.2 REMARK. Of course, diagrams are worth studying in their own right, but 
the motivation for our work is the fact that a good number of apparently un- 
related problems in topology can be directly reduced to questions about the 
homotopy theory of SD, for appropriate choice of D ([3], [4]). Our main result 
allows some of these questions about SD to be reduced in turn to questions 
about ordinary homotopy theory. 

1.3 ORGANIZATION OF THE PAPER. After a brief description of the closed 
simplicial model category structure on SD (in 6 2), we state our main result (in 
0 3) and (in 0 4) prove it under the assumption that D is a direct category (4.1). 
Next we discuss (in 0 5) the notion of subdivision of a small category and then 
(in 0 6) use this to prove our result in general. 

1.4 NOTATION, TERMINOLOGY, ETC. (i) Apart from some familiarity with 
simplicial sets, the paper requires some knowledge of model categories and 
homotopy limits as can be found in [8] and [2, Ch. XI and Ch. XII] respectively. 

(ii) If D is a small category, then we denote by the same symbol its nerve, 
i.e. [2, Ch. XI, 8 21 the simplicial set which has as n-simplices the sequence 
Do-‘... -0, of maps in D. 

(iii) A map in S will be called a weak equivalence if it is a weak homotopy 
equivalence, i.e. if its geometric realization is a homotopy equivalence. 
Similarly, two objects X, YES will be called weakly equivalent if they can be 
connected by a finite string of weak equivalences, i.e. if their geometric reali- 
zations have the same homotopy type. 

(iv) For any two objects X, YES, we denote by hom(X, Y) the usual 
function complex, i.e. the simplicial set which has as its n-simplices the maps 
Xxd[n]+YES. 

2.THEMODELCATECiORYSTRUCTURE 

We start with a brief discussion of the closed simplicial model category 
structure on the category SD. 

2.1 CATEGORIES OF DIAGRAMS OF SIMPLICIAL SETS. Let D be a small cate- 
gory and let S denote the category of simplicial sets. Then we denote by SD the 
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category of D-diagrams of simplicial sets, i.e. the category which has as objects 
the functors D-S and as maps the natural transformations between them, and 
note that ([8, Ch. II, 41 and [2, Ch. XI, 0 81) the category SD, with weak equi- 
valences, fibrations, cofibrations and function complexes as defined below, is a 
closed simplicial model category in the sense of Quillen [8, Ch. II]. 

2.2 WEAKEQUIVALENCES IN SD. A map f : X+ YE SD is a weak equivalence 
if, for every object DE D, the mapfD : XD+ YD E S is a weak equivalence (1.4 
(iii)). Similarly two objects X, YE SD will be called weakly equivalent if they can 
be connected by a finite string of weak equivalences. 

2.3 FIBRATIONS INSD. A map f: X-r YE SD is a fibration if, for every object 
DE D, the mapJ9 : XD+ YD E S is a fibration. In particular, an object XE SD 
is fibrant if, for every object D E D, the object XD E S is fibrant (i.e. satisfies the 
extension condition [7, $ 11). 

2.4 COFIBRATIONS IN SD. A map f: X+ YE SD is a cofibration if it has the 
left lifting property [8, Ch. I, Q 51 with respect to the class of trivial fibrations 
(i.e. fibrations which are weak equivalences). 

Call a map f: X+ YE SD free if, for every object DED, the map 
$0 : XD+ YD E S is a cofibration (i.e. injection) and if there exists a set B of 
simplices of Y such that 

(i) no simplex of B is in the image off, 
(ii) B is closed under degeneracy operators, and 

(iii) for every object DE D and every simplex y E YD which is not in the image 
of fo, there is a unique simplex b E B and a unique map de D, such that 
(Yd)b=y. 

Then it is not difficult to see that the cofibrations of SD are exactly the free 
maps and their retracts. 

2.5 FUNCTIONCOMPLEXES INSD. These are induced by the simplicial struc- 
ture of S, i.e. for every two diagrams X, YE SD, the function complex 
hom(X, Y) is the simplicial set which has as its n-simplices the maps Xx LI [n] + 
‘YESD. 

We end with considering 

2.6 NATURALITY WITH RESPECT TO D. A functor j : D’+D between two 
small categories clearly induces (by composition) a functor j * : SD-SD’ which is 
compatible with the function complexes and which preserves weak equivalences 
and fibrations. It should be noted however that j * need not preserve co- 
fibrations. 

3.THEMAINRESULT 

In order to formulate our main result (3.3) we need the notion of 
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3.1 THE TWISTED ARROW CATEGORY. Let D be a small category. Then its 
twisted arrow category aD is the category which has as objects the maps of D 
and as maps (DO-+Dr)+(D~-+Di) the commutative diagrams (note that the 
horizontal maps go in opposite directions). 

0 - Di 

Clearly aD comes with obvious functors uD+D and aD+DOP obtained by 
restriction to the range and domain respectively. 

Given two diagrams X, YE SD one can form an uD-diagram hom,(X, Y) E SaD 
by putting (1.3 (iv)) (Do+Dl)+hom(XDo, YD,) and note that 

3.2 PROPOSITION. For every two objects X, YE SD there is an obvious 
(natural) isomorphism 

hom(X, Y) = limaD hom,(X, Y) 

Our main result now is 

3.3 THEOREM. Let XE SD be cofibrunt and let YE SD be fibrunt. Then the 
obvious [2, Ch. XI] map 

hom(X, Y) = limaD homJX, Y)+ holimaD hom,,(X, Y) 

is u weak equivalence. 

4.PROOFOFTHEOREM3.3FORDIRECTCATEGORIES 

In this section we prove theorem 3.3 for 

4.1 DIRECT CATEGORIES. A small category D will be called direct if, for 
every object DE D, the (nerve of the) over category DlD [6, p. 471 is finite- 
dimensional (A simplicial set if finite-dimensional if all simplices of a suffi- 
ciently high dimension are degenerate. If X is a finite-dimensional simplicial 
set, dim X denotes the largest dimension in which a non-degenerate simplex of 
X occurs). For every integer n 10 we then denote 

(i) by D” ED the full subcategory spanned by the objects DE D such that 
(1.3 (ii)) dim (DlD)sn, 

(ii) by j, : D”+D the inclusion functor, and 
(iii) by D, CD the (discrete) subcategory consisting of the objects DE D 

such that dim (DlD) = n. 

4.2 SOMEPROPERTIESOFDIAGRAMSOVERDIRECTCATEGORIES. Let D bea 
direct category. Then it is not difficult to verify: 
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(i) An object XE SD is cofibrant iff, for every integer n r0 and every object 
DE D,, the induced map 

(where j denotes the obvious forgetful functors) is a cofibration. 
(ii) An object XE SD is cofibrant iff the induced objects j,*X, SD” are so for 

all nr0. 
(iii) IfXc SD is cofibrant, then the obvious [2, Ch. XII] map 

holimDX+limDX 

is a weak equivalence. 

Now we are ready for a 

4.3 PROOF OF THEOREM 3.3 FOR DIRECT CATEGORIES. Let D be a direct 
category. Then the desired result follows readily from the fact that 

(i) the restrictions 

hom(j,*, i X, j,*+ , Y) -* hom(j,*X, j; Y) n r 0 

are fibrations and 

hom(X, Y) = lim” hom(j,*X, j; Y) 

(ii) the restrictions 

holimuD” + ’ hom, ti,,*+ IX j,‘, 1 Y) * holimUD” horn&,*X, j,,* Y) n 10 + 

are fibrations, and 

holimuD hoQ(X, Y) = lim” holimaD” horn&,*X, j,*Y) + 

(iii) the obvious maps 

hom(j,*X, j”* Y) + holimUD” horn&*X, j,*Y) n 2 0 

are weak equivalences. 
Statements (i) and (ii) are easy to verify, as is statement (iii) for n =O. To 

prove (iii) in general note the existence of the pull back diagram 

homdi,*, , X j,‘, 1 Y) -, n hom(limDR+‘loj *X, YO) 

I 

DE%+I 

I 
hom(j,*X, j,* Y) + fl hom(limDnloj *X, YO) 

DE%+I 
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in which the vertical maps are fibrations, and the homotopy pull back diagram 

holimaD” + ’ hom,,u,+, 1X, j,*, 1 Y) + n holimcD” + “Wp hom(j *X, YD) 

I 

De”.+1 - 

I 
holimuD” hom,(j,*x,j,” Y) + n holim(D”lo)op hom(j *X, YD) 

DED.+l - 

Then use 4.2 and the natural isomorphism [2, p. 2341 

holim horn ( - , - ) = hom(holim - , - ) 

The fact that the second diagram above is a homotopy pull back diagram is 
not completely obvious. It can be proved by showing that there is a pull back 
diagram 

holim”“““” horn&;+, X, j,‘+ , Y)+ n holim”(D”+‘LD) hom,(j *X, m) 
t 

1 

DED.+I - 

I 
holimuD” horn&,*X, j$ Y) + lJ holimUcDnLD) horn& *X, m) 

DE%+I - 

in which the vertical maps are fibrations (m denotes the constant functor with 
value YD). The desired result then follows from the fact that the functors called 
horn& *X,m) above factor through the natural (3.1) left confinal [2, Ch. XI] 
functors 

5. THE SUBDIVISION OF A CATEGORY 

To complete the proof of theorem 3.3 (in 0 6) we need the “subdivision of a 
category” ([l], [5]) which will be discussed below. An easy way of describing it 
is by first considering the somewhat larger 

5.1 DIVISION OF A CATEGORY. For every n10, let n denote the category 
which has the integers 0, . . ., n as objects and which has exactly one map i+j 
whenever is j. The division dD of a small category D then is defined as the 
category which has as objects the functors n-+D (n 20) and which has as maps 

(J1 : II, +D)-(Jz : nz+D) 

the commutative diagrams of the form 

n2- 111 

J2 

\/ 

Jl 

D 

144 



5.2 SUBDIVISION OF A CATEGORY. The subdivision sdD of a small category D 
is the category obtained from the division dD by turning all the “degeneracy 
maps” (i.e. diagrams as in 5.1 in which the top map is onto) into identity maps. 
The subdivision comes with a functor p : sdD+D given by the formula 
(J : n-+D)+J(O). 

Actually we will need (see 5.4) the opposite category of the subdivision which 
we will denote by ZD and the corresponding functor q : aD+D given by the 
formula (J: n-D)+@). 

A straightforward calculation yields the following 

5.3 OTHER DESCRIPTION OF THE SUBDIVISION. One can also describe the 
subdivision sdD as the category which has as objects the “non-degenerate” 
functors n+D (n 20) (i.e. the functors which send none of the maps r+r+ 1 in 
(O<r< n) into an identity map of D) and which has the following maps. Given 
two “non-degenerate” functors 1, : n1 -+D and Iz : n2+D, consider all “iterated 
face maps” between them, i.e. all commutative diagrams of the form 

in which f is 1 - 1. The maps Ii +I2 E sdD then are the equivalence classes of 
such “iterated face maps”, where two such maps f and g are equivalent iff, for 
every integer r with O~rl n2, the image under Ii of the map 

mWW, g(rN+mMYWdW) E nl 

is an identity map in D. 
This second description of sdD immediately implies 

5.4 PROPOSITION. The category sdD is direct. 

We also need the following properties of the functor q : aD*D, of which 
the first two are readily verified. 

5.5 PROPOSITION. For every object D E D, the subcategory q- ID 6% has 
an initial object and hence (its nerve) is contractible. 

5.6 PROPOSITION. For every object D E D, the inclusion functor q-‘D+qlD 
has a left adjoint which is also a left inverse. 

5.7 PROPOSITION. The functor aq : aaD+aD is left cofinal [2, Ch. XI]. 

PROOFOF5.7. It is not difficult to see from the definition that aq is left cofinal 
iff, for every pair of objects Do, D1 E D, the natural map from (the nerve of) 
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a(DOlqlD1) to the discrete set homn(Dc,D,) is a weak equivalence, where 
DolqlD1 is the category which fits into the obvious pull back diagram 

D(JlqlQ - &A 

I I 
Ddq - aD 

As, for any small category C, the functor (3.1) aC-C is left cofinal and hence a 
weak equivalence, it suffices to show that DOlqlD1 is weakly equivalent to 
homn(Dc, Dl). But this in turn follows easily from propositions 5.5 and 5.6. 

6. COMPLETION OF THE PROOF OF THEOREM 3.3 

Let q* : SgD 
- 

+SD be the left adjoint of the functor q* : SD+SSdD [6, Ch. X, 
$ 31. The fact that (2.6) q* preserves fibrations and weak equivalences then 
readily implies that q* preserves cofibrations and the desired result now follows 
by standard model category arguments from the two propositions below. 

6.1 PROPOSITION. Let UE S saD be cofibrant and such that the adjunction 
map i : U+q *q,UE SSdD is a weak equivalence and let YE SD be fibrant. Then 
there is an obvious commutative diagram 

hom(q,U, Y) -, holimuD hom,(q,U, Y) 

4* = I I (w) * 
hom(q*q,U,q*Y)-+holim”‘D hom,(q*q,U, q*Y) 

hom(U,q*Y) + holimuzD hom,( U, q *Y) 

in which 
(i) the maps on the left are isomorphisms, 

(ii) the bottom map is a weak equivalence, and 
(iii) the maps on the right are weak equivalences. 

PROOF. Part (i) is easy and part (ii) follows from 5.4. The lower map on the 
right is a weak equivalence in view of the homotopy invariance of homotopy 
inverse limits [2, p. 304) and the upper map on the right is so in view of the 
cofinality theorem for homotopy inverse limits [2, p. 3171. 

6.2 PROPOSITION. Let U+q*VE S sdD be a weak equivalence such that U is 
cofibrant. Then its adjoint q,U+ VE SD is also a weak equivalence. 
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PROOF. For every object DE D, consider the commutative diagram 

q-‘Dx UO= holimq-‘D007holim4-1Dj *U 

UO = limq-‘nOO +limq-lDj *UZlimqlDj *U= (q,U)D * 
in which 

(i) j denotes the forgetful functors, 
(ii) CIO denotes the image under CJ of the initial object of q-ID. 
(iii) 0, denotes the “constant” q-‘LXdiagram which send all of q-ID to UO 

and its identity map and in which the maps are the obvious ones. As q- ‘D is 
contractible (5.5), the map on the left is a weak equivalence and, in view of the 
homotopy invariance of homotopy direct limits [2, p. 3251, so is the top map. 
As q-ID is direct and j*UESq-‘D is cofibrant (4.2 (ii)), the vertical map on the 
right is also a weak equivalence (4.2 (iii)) and the desired result is now 
immediate. 
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