
INFORMATION AND CONTROL 19, 439-475 (1971)

Translations on a C o n t e x t Free Grammar

A. V. AHO AND J. D. ULLMAN*

Bell Telephone Laboratories, Incorporated, Murray Hill, New Jersey 07974

Two schemes for the specification of translations on a context-free grammar
are proposed. The first scheme, called a generalized syntax directed translation
(GSDT), consists of a context free grammar with a set of semantic rules
associated with each production of the grammar. In a G S D T an input word
is parsed according to the underlying context free grammar, and at each node
of the tree, a finite number of translation strings are computed in terms of the
translation strings defined at the descendants of that node. The functional
relationship between the length of input and length of output for translations
defined by G S D T ' s is investigated.

The second method for the specification of translations is in terms of tree
automata--finite automata with output, walking on derivation trees of a context
free grammar. It is shown that tree automata provide an exact characterization
for those G S D T ' s with a linear relationship between input and output length.

I. SYNTAX DIRECTED TRANSLATION

A translation is a set of pairs of strings. One common technique for the
specification of translations is to use a context free grammar (CFG) to specify
the domain of the translation. An input string is parsed according to this
grammar, and the output string associated with this input is specified as a
function of the parse tree.

A large class of translations can be specified in this manner. Compilers
utilizing this principle are termed syntax directed, and several compilers
and compiler writing systems have been built around this concept. See
[1-6], for example.

Certain constraints on the source language, such as proper declaration
of identifiers or proper use of "go to" statements, cannot be included in
the context free specification of the language [7]. However, most of these
difficulties can be removed by allowing the use of symbol tables in the

* Current address, Dept. of Electrical Engineering, Princeton University, Princeton,

NJ.

439

440 AHO AND ULLMAN

implementation. This aspect of compiler writing can also be formalized.
(For example, see [8] for a formalism whereby context free grammars are
augmented by symbol tables.)

Once the structure of a source program has been "understood" by a
compiler, in terms of the context free grammar and symbol tables (i.e.,
the program has been parsed, and tables have been constructed), the object
program can be constructed. The specification for the object program is
often made in terms of the parse tree for the source program, and various
compiler writing schemes have formalisms for specifying the translation of
source code into object code [3-6].

One common formalism for describing translations on a context free
grammar is the syntax directed translation scheme (SDT) [2, %15]. Here,
associated with each production of the underlying CFG is a rule for
permuting the order of the nonterminals on the right side of the production
and introducing output symbols on the right side. Given a parse tree in
the CFG, with a certain production used at some node, the tree is altered
at that node by:

(1) deleting descendants with terminal labels,

(2) reordering the nonterminal descendants according to the fixed rule,

and

(3) introducing descendants labeled by output symbols.

The translation of a given input word is thus produced by parsing the
input, performing the above operation at each node of the parse tree and
taking the yield of the resulting tree as output. (The yield is the string
obtained by concatenating the labels of the leaves in order from the left.)
I f the underlying CFG is ambiguous, several outputs can be defined for
one input.

Various generalizations of the SDT have been suggested [11, 14-16].
Of particular interest is the rather general concept of semantics appearing
in [16]. Here, after producing a parse tree for the input, an attempt is made
to evaluate a set of semantic variables (whose values may be strings, real
numbers, list structures or anything else) at each node of the tree. The
value of a given variable may depend either on the values of certain variables
at its descendants, or on certain variables at its ancestor.

We will here define a class of formal translations that are a generalization
of the usual syntax directed translation. Our class can be thought of as
restricted semantics in the sense of [16]. The restrictions made are the
following:

TRANSLATIONS ON A CONTEXT FREE GRAMMAR 4 4 1

(1) Semantic variables must take strings as values.
(2) The value of a semantic variable at a given node depends only

on the production used at the node and the value of semantic variables
at its nonterminal descendants. It is formed from these variables and constant
strings by concatenation.

(3) One variable, defined at the root, represents the output.

This scheme, which we call a generalized syntax directed translation
(GSDT), is an extension of the T 1 semantics of [14]. The latter are GSDT ' s
with only one semantic variable defined at each node. I f we further restrict
the G S D T to require that the formula for the variable have exactly one
occurrence of the variable at each of its nonterminal descendants, then
we have the usual SDT.

The G S D T has features which are not found in the SDT, and which
appear useful in practical situations. Consider the context free production

(for statement) : : = for (assignment statement) step

(integer) until (integer) do (statement),

which might be used in the specification of some source language.
An example of a (for statement) is

for I +-- J + 1 step 1 until 20 do M ~- M + I.

The natural code to be produced from this for statement should do the
following:

Compute I (perform the assignment statement).
Test if I ~< 20 (compare the assigned variable with the second

(1)
(2)

integer).
(3)
(4)
(5)
(6)

I f not, transfer.
I f so, add I to M (execute the statement after do).
Increment I by 1 (add the first integer to I).
Return to step (2).

In step (1), we obviously need the code which executes the assignment
statement. However, in statements (2) and (5), we need to reference the
location reserved for the identifier (I in the example), which can only be
determined by examining the assignment statement. Thus, two "translations"
of the assignment statement are needed--one which performs the assignment
and another which is the location of the identifier whose value is computed.
Note that an arbitrarily long sequence of instructions may be required

643/i9/5-5

442 AH0 AND ULLMAN

to determine the location, if, for example, the identifier is part of a PL/I
structure.

It will not quite do to rewrite the production as

(for statement) : : = for (identifier) +-- (arith. expression)

step (integer) until (integer) do (s tatement) .

Then, the "translation" of the identifier will have to appear in three portions
of the translation, still removing this type of translation from the S D T class.

Let us comment that in a practical system it is useful to have not only
string valued variables, but "logical" variables which assume one of a finite
number of values and which would determine the rules whereby string
variables are computed. For example, consider the translation of arithmetic
expressions which are specified by the productions

(expression) : : = (t e rm) -}- (expression) I (t e rm)

(t e rm) : : = (factor) . (t e rm)] (factor)

(factor) : : = (identifier) I ((expression)).

I f identifiers can be integer, real or complex, it would be convenient to
assign a "semantic attribute", which could have one of these three values,
to each expression, factor and term. The attribute would be computed by
the expected rules: real + complex = complex, etc. The attributes defined
at the descendants of a node influence the interpretation of -t- and . (for
example, whether ~ should be integer add or floating add) and whether
operations such as converting a number from fixed point to floating point
should be performed.

While we shall not show it in this paper, we claim that such an extension
of the G S D T does not produce any new translations. The proof involves
modifying the underlying C F G to incorporate "guesses" as to the value
that the logical variables will assume at each node of the parse tree.

What we shall do in this paper is show a necessary condition that a transla-
tion be a G S D T . We shall give a restriction on the output length as a function
of the number of nodes of the parse tree for any G S D T . This function,
broadly speaking is either:

(1) bounded above by a constant,
(2) an integer power of the size of the tree, or
(3) an exponential function of the size of the tree.

I f the underlying C F G is unambiguous, "size of the tree" can be replaced

TRANSLATIONS ON A CONTEXT FREE GRAMMAR 443

by "length of the input." Thus, the translation which takes a string of i l ' s
to the binary integer i is, unfortunately, not a GSDT, because the output
length is the logarithm of the input length. The inverse of this translation
is a GSDT, however.

We shall also consider a method of executing translations defined by
G S D T ' s - - t h e tree walking automaton. We shall show that a translation is
defined by a tree walking automaton (on the parse trees of some grammar)
if and only if it is a G S D T whose output length is a linear function of the
input length.

In Section 2, CFG' s and parse trees are defined. In Section 3, the G S D T
is defined, and the translations generated by G S D T ' s are characterized in
Sections 4 and 5. In Section 6, the tree automaton is defined, and the two
concepts are related in Section 7.

II. CONTEXT FREE GRAMMARS AND PARSE TREES

A context free grammar (CFG) is a four-tuple G = (V, Z, P, S), where
V and 21 are disjoint finite sets of nonterminals and terminals, respectively.
S, in V, is the start symbol. P is a finite list of productions of the form A ~ a,
where A is in V and ~ in (V t J Z)*3 Each production will be assigned an
integer index, and the case in which two or more elements of P are identical

is defined on (V tj 21)* by: except for index is not ruled out. The relation c

*~ is the reflexive, aAfi ~ ~Tfi, whenever there is a production A --~ 7 in P. a

~ for all ~; a ~ fi and fi ~), implies c~ ~ 7.) transitive closure of ~-. (~ a a

The language defined by G, denoted L(G), is {w I w is in 21" and S ~ w}.

A tree is a connected directed ordered graph having the following
properties:

(1) There is a unique node, called the root, which no edge enters.

(2) With the exception of the root, exactly one edge enters each node.

I f there is an edge from node N~ to node N2, then N1 is the ancestor
of N2, and N 2 is a descendant of N1.

Given a C F G G = (V, Z', P, S), we can define the set of derivation trees
in G, which are trees with labeled nodes, as follows:

X* is the set of finite length strings of elements of the set X including e, the string
of length 0.

4 4 4 AI-iO AND ULLMAN

(1) The labels are chosen from V u ! u P u {@2

(2) A single node labeled S is a derivation tree.

(3) Let D be a derivation tree and N a node of D, whose label is A, in V,

and which has no descendants. If the i-th production is A --~ X I X 2 "" X n ,
n ~ 1, each X~ , 1 ~ j ~ n, in V ~3 27, we can construct a new derivation
tree D' by relabeling node N by i and introducing n descendants of N to
the tree D. These descendants are labeled Xx, Xe X n , from the left.

I f the i-th production is A --> e, node N can be given label i and will have
a single descendant with label e.

(4) No other trees are derivation trees.

The notion of "to the left of" naturally extends to relate certain nodes

which are not the descendants of the same node. Tha t is, if N 1 is to the left

of N~, then all Nl'S descendants are to the left of those of N2 •

We call a node a leaf if it has no descendants. Note that under our
definition of derivation tree, a node is a leaf if and only if its label is in
V t j 27 u {e}. A derivation tree all of whose leaves have terminal or E labels
is called a parse tree. Given any two leaves, one is to the left of the other.
The yield of a derivation tree is the string formed by concatenating the
labels of the leaves, in order from the left. I t is well known that there is a

parse tree in grammar G with yield c~ if and only if S ~ a.
A derivation subtree in grammar G is defined exactly as a derivation tree,

except that the label of the root may be any symbol in V u I u P u {e}.

A path in a tree is a sequence of nodes N1, N~ , N k , such that Ni+l

is a descendant of N i , for 1 ~< i < h. The length of this path is k - - 1.

The height of a node N is the maximum length of a path N1, N2 ,..., N~,
such that N1 = N and NI~ is a leaf. The height of a tree is the height of
its root.

Let G 1 = (V1,27, P~, $1) and G 2 = (V2,27, P2, S~) be two C F G ' s and
h a length preserving homomorphism 3 from V~ to V I . We can extend h

to V2 k) 27 by letting h(a) = a for all a in 27.
Suppose that we can extend h to P2 in such a manner that if the i-th

We assume the productions are indexed by the integers, and that the integers are
not themselves elements of V tj ~]. p may have two or more identical elements with
distinct indices. Informally, we shall often use the productions rather than the indices
as labels, although strictly speaking this could result in confusion if two productions
were identical. Most authors use labels from V ~ Y~ ~3 {~} only. However, we find it
convenient to identify the production used at each node.

A homomorphism h is a single valued map from X to Y*, for finite sets X and i/_.
We extend h to domain X* by letting h(E) = E and h(ua) ~ h(u)h(a) for u ~ X*,
a ~ X. We say h is length preserving if h(a) is a single symbol in Y for all a in X.

TRANSLATIONS ON A CONTEXT FREE GRAMMAR 4 4 5

production of Pz is A --> ~, and h(i) = j , then the j - th production of P1
is h(A) --+ h(@ Let D be a parse tree in G2. We can construct h(D), a parse
tree in G1 with the same yield, by replacing each symbol A in
V t9 27 U P u {~} by h(A). Under such conditions, we say that h is a tree
correspondence from G 2 to G 1 . If, in addition, for every parse tree D' in G 1
there is a unique parse tree D in G2 such that h(D) = D', then h is a 1-1
tree correspondence from G~ to G 1 .

EXAMPLE 2.1. Let

G z = ({S, A}, {a, b}, P1, S)

where P1 and P~ are given by

el
(1) s - ~ s s
(2) S --+ aA
(3) s - +
(4) A -+ Sb

Let h(A) = A

and G 2 = ({S, A, B}, {a, b}, Pz , S),

and h (S) = - h (B) = S .

(1) S --+ S B
(2) S --> aA
(3) S - + e
(4) B -+ S B
(5) B --,- aA
(6) B -+ E
(7) A --+ Sb

(Since there are no duplicate
productions, the extension of h to P2 is now determined.) h is a tree corre-
spondence from G~ to G z . Consider the tree of Fig. 1. I t is easy to verify

-,,. _ ~ (1) S "~ S B)

((51 B oA/. B--.-ss)

(I3) I6)

1
E

Fro. 1. Tree in grammar G~.

446 AHO AND ULLMAN

that if all B ' s are replaced by S ' s in Fig. 1, a parse tree in G 1 results. In
fact, one can show that h is a 1-1 tree correspondence.

A C F G G is unambiguous if for every w in L(G) there is a unique parse
tree in G with yield w. 4 The following lemma should be obvious.

LEMMA 2.1. I f there is a 1-1 tree correspondence from C F G G~ to Ga,
then G 1 is unambiguous, i f and only i f G2 is unambiguous.

A C F G G = (V, Z', P, S) is proper if

(1) For all d - - + c¢ in P, no nonterminal appears more than once in
the string a.

(2) S appears on the right of no production.

w~, for some terminal (3) For all A in V, S ~ w a d w 2 and d c
strings w 1 , w 2 and w 3 .

The following lemma is elementary, and the proof is omitted.

LEMMA 2.2. Given a C F G G 1 , one can find an equivalent 5 proper C F G
G 2 and a 1-1 tree correspondence from G 2 to G 1 .

From here on, we assume a C F G to be proper. All C F G ' s constructed
will have that property. The restriction of "properness" is made to simplify
the description of a G S D T , and using Lemma 2.2, one can easily show
the restriction to be without loss of generality as far as the defining power
of the G S D T or any other proper ty of G S D T ' s discussed here is concerned.

I l l . GENERALIZED SYNTAX DIRECTED TRANSLATIONS

A generalized syntax directed translation (G S D T) is a four-tuple
F ~ (G, A, F, R), where:

(1) G = (V, 27, P, S) is a proper context free grammar;
(2) A is a finite set of output symbols;
(3) _P is a finite set of distinct translation symbols of the form %(A),

where i is an integer and A is in V - - {S}, plus the symbol S 1 . Whenever
it is possible to do so without confusion, we will denote ~-i(A) by d i . We
call d i the i - th translation symbol associated with A.

(4) R is a function which associates with each production d --+ a in P,

4 Note tha t any g r am m a r wi th two ident ical product ions is ambiguous in our sense.
5 G1 is equivalent to G~ ifL(G1) = L(G2).

TRANSLATIONS ON A CONTEXT FREE GRAMMAR 447

a set of semantic rules {A 1 ~ -]~s, A s =]~2 , . . . , A,, = tim}, in which each fii
is a string in (F k)A)*, such that all translation symbols appearing in fli
are translation symbols associated with nonterminals appearing in ~.

For each x in 27* we define F(x) , the set of outputs of x as follows:

(1) I f x is not in L(G) , then F(x) ~ 9.
(2) I f x is in L(G) , then each parse tree with yield x defines an element

y in F(x) , which is the value of the translation symbol S s associated with
the root. The value of S s is computed bottom-up as follows:

(i) With each interior node N of the parse tree labeled A -~ ~ are
associated the translation symbols A s , A s ,..., Am, which are all the transla-
tion symbols associated with A. The values of these translation symbols
at N are computed using the semantic rules and the values of the translation
symbols at the descendants of N as follows.

(ii) Suppose ~ is XoBlXlBaX ~ "" B~xk , where xj is in Z'* and Bj is
in V, 0 ~< j ~< k. Suppose A~ ~- yoCsy lC2y2 "" C~y~ is the semantic rule for
A , , where y is in A * and Cj is a translation symbol in/~ associated with Bh.
for some 1 ~< hj ~< k. Then v(Ai) , the value of Ai at node N, is the string
Yov(C1) YlV(C~)Y2 "'" v(C~)y~ in A*, where v(Cj) is the value of Cj at the
descendant of N which is labeled by a Bh, production. 6

T(F), the translation defined by F, is the set {(x, y)]y ~F(x)}.

EXAMPLE 3.1. Let F -~ (G, {a, b}, {Ss , A 1 , A s , B 1 , B2}, R), where the
productions of the grammar and the associated semantic rules are:

Productions Semantic rules

(1) S ~ A S 1 - - A s A 2
(2) A --+ a A b B A 1 = a A s B s

A s = bA2B 2
(3) A --',- b A a B A s = a A s B 1

A s = bA2B 2
(4) B -~ A B s = A 1

B~ - - A 2
(5) A - - ~ A s = c

A2 ~ ff

F defines the translation {(w, aib i) [i >~ 0 and w ~ {a, b}*, such that w has s
and s}. Intuitively, the translations A 1 and B 1 accumulate a's; A s and B 2

6 Note tha t the properness of G makes this descendant unique.

448 AHO AND ULLMAN

b(~)f~A _~ b A Cl BZ~4 ~ ~ 6

E
Fie . 2. Parse tree for bbaa.

E

S 1 = q o b b

A1 =oa
b

B 2 : E

E

AI=E

A2=E

B I :E
B 2 : E

AI=E

A2=E

E
FIG. 3. T ree wi th values of t ranslat ion symbols .

TRANSLATIONS ON A CONTEXT FREE GRAMMAR 449

accumulate b's. Note that A could not be substi tuted for B in productions
(2) and (3) without violating the properness condition. For example, consider
the input word bbaa. The parse tree for bbaa is shown in Fig. 2. We have
numbered the interior nodes for convenience. The translation symbols A t
and A S are associated with Nt, and v(Az) = v(A2) = • a t N t . Translat ion
symbols A 1 and A 2 are also associated with N2, and v(Aa) = v(A2) = •

at N 2 . Translat ion symbols B 1 and B 2 are associated with N z , and v(B1)
and v(B2) at N~ are equal to v(At) and v(A2), respectively, at N2. Thus
v(B1) ~ v (B 2) = • at N3. N4 has translation symbols A 1 and A 2 , and
v(Az) =- a and v(A2) ~ b at N 4 .

T h e values of the associated translation symbols at each node are shown
in Fig. 3. Since the value of S 1 at the root is aabb, aabb is in F(bbaa).

EXAMPLE 3.2.
associated semantic rules are:

Let F = (G, {b}, {S t , A1} , R) where the productions and

Productions Semantic rules

(1) S --+ aA S 1 = b A I A 1

(2) S - - ~ a A S z : A 1 A z

(3) A -+ aA A 1 = bA1A 1

(4) A ~ aA A1 ~- A1A1

(5) A ~ • A1 = •

This G S D T is an example of the use of identical productions. I t maps

S 1 = bbb ~ S 1 = b

A 1 = b ~ A 1 =

A 1 =£ A 1 =E

E

S 1 = bb ~ s 1 =~:

A 1 =b A 1 =E

A 1 =£ A 1 =E

FIG. 4. Parse trees of aa.

450 AHO AND ULLMAN

a i to all strings b~ such that 0 ~< j < 2 i. The input aa has four parse trees,
shown together with the values of the translation symbols computed at
each node, in Fig. 4.

A translation defined by a G S D T F = (G, A, F, R) is said to be unam-

biguous if the underlying C F G G is unambiguous. An unambiguous transla-
tion has the important proper ty that there exists exactly one translation
for each input word in L(G) . However, an ambiguous translation need not
have more than one output for each input word. As an example, the grammar
in the G S D T of Example 3.1 is ambiguous, but for each x in {a, b}*, F (x)

contains at most one element.

IV. PROLIFERATION OF TRANSLATIONS

Because of the manner in which the output of a parse tree is computed,
the value of a particular translation symbol .di at a given node of the parse
tree can appear many times in the value of S 1 at the root. The function
relating the maximum number of times any translation of A can appear
in the output, taken over all nonterminals A , as a function of the number
of nodes in the parse tree is termed the proliferation rate of S t .

In this section we shall show that the proliferation rate of any translation
symbol of a G S D T is either an integer power of n (possibly zero) or
exponential in n, where n is the number of nodes in the parse tree.

As an example, suppose that a G S D T contains the following productions

and associated semantic rules.

Production Semantic rules

A --+ B C A 1 = B1CaB 2

B --+ D E B a = D1E a

B 2 = D1D 2

D --~ a D1 = fil

D2 = f12

If the structure of Fig. 5 appears in a parse tree, then the value of -//1

at the node labeled N1 will involve the values of B 1 and B~ at the node
labeled N2 • Thus, the value of A 1 at N1 has two substrings, both of which
can be regarded as translations of the input string derived from the node
labeled N~. Similarly, the value of A t at Nt involves three translations
of the string derived from the node labeled N 3 ; two of these substrings
are the value of D t at N 3 and one is the value of D 2 at N~. For large parse

TRANSLATIONS ON A CONTEXT FREE GRAMMAR 451

trees, the value of the translation symbols at one node may be reproduced
many times at another node.

N3

/
NI (A/- Bck

N 2 (13 "~ D E ~

FIG. 5. Portion of a tree.

To investigate this matter, we define the notion of proliferation rate for
translation symbols of a G S D T F = (G, A, 1", R), where G = (V, Z, P, S) ,

as follows. Define ~ to be the set of homomorphisms h~B from 1" to 1"*,
where i is the number of a production, say A --+ ~, and B is a nonterminal
in V. I f R associates A~- = fi with production i, then h,9(Aj) is the string
obtained from fi by deleting those symbols which are not translation symbols
associated with B. We let h,B(C~) = ~ if C # A.

]SXAMPLE 4.1.
rules as shown.

Consider the following G S D T F with productions and

(1) S--+ 1A S 1 = A1A 2

(2) A - + 1A A 1 = A1A 2

A 2 = A2A 2
(3) A - ~ 0 A A I = A 1

A 2 = A.2A~
(4) A - + G A 1 = E

A2 = ¢ /

The reader can verify that T(F) = {(x, y) I x is the binary representation of n,
n ~ 1 and y = a~}. Here J'(F F is the set {hiB] 1 ~ i ~ 4, B is d or S}.
These homomorphisms are defined by:

(1) hlA(S1) = hzA(dl) = A1A ~
(2) h2~(A2) = hsA(A2) - - A2A 2

(3) h3~(A1) = A1
(4) hiB(X) = e otherwise.

We will use these homomorphisms to define the way in which the value
of a particular translation can depend on the values of translations at nodes

452 AHO AND ULLMAN

far removed from it. We can consider the composition of homomorphisms
in ~ F , and represent these by strings in ~F*, with the rightmost symbol
to be applied first. 7 I f C is in F, we define the proliferation rate of C, denoted

fc(n) , to be max~i n { ~) ~ I o~(C)I. 8
Observe that a string of homomorphisms o~ = hi,,B~ "'" hi~s~hq81 9 repre-

sents a path of length m in a derivation tree, provided that for 1 <~ j < m,
i~.+1 is a Bi-production and, for all j, production ij has an instance of B~- on
the right. The labels of the first m nodes in this path are i t , i2 ,..., i,~, and
the label of the last node in this path is either B~ or a Bin-production. The
choice of descendant from each node is indicated by B 1 , B2 ,..., B ~ . The
path a is sketched in Fig. 6.

i2 BI -~ ¥2)

(i3 B2--Y3)
I

I

FIG. 6. Path in parse tree.

I f production /1 is an A-production, and the symbol ~'~(B~n) appears p
times in the string @cj(A)), then p copies of the value of "rk(Bm) will be
included in the value of %(A) at the node labeled i 1 . (It is straightforward
to show this by induction on m.) Thus, the proliferation rate of a translation
symbol A s is the maximum number of translations of any nonterminal B
which can appear in the value of A 9. at a node N as a function of the length
of the path from N to the node labeled by B or a B-production.

In the next section we will use the proliferation rate of the translation

7 Conventionally, we take the empty string of homomorphisms to be the identity
homomorphism.

s [x I denotes the length of x, (i.e., the number of symbols in x).
a Note that subscripted capital letters here represent a sequence of nonterminal,

not translation, symbols.

TRANSLATIONS ON A CONTEXT FREE GRAMMAR 453

symbols of a G S D T to determine the growth of the output length of the
translation defined by the G S D T as a function of the number of nodes
of a parse tree.

EXAMPLE 4.2. Consider the G S D T in Example 4.1. Consider the path
n--1 Z/ //2~-1 h2A hlA in a parse tree. Since n-1 h2A hl~(S1) = ~1~ 2 , the proliferation rate

of S 1 is easily seen to be fs~(n) = 2".
Let F = (G, A, 1", R) be a GSDT. We define sets 1"") C_ 1" and 1"V],

for integers i ~> 0, j ~> --1, by

(1) 1"[-~ = ~.
(2) For i) 0, 1"(*) is the set of C in 1 " - 1"[~-1] such that for some

constant e, fc(n) <~ cn* for all n > /1 .
(3) For i) 0 , 1"[i] = 1"[i--1] k.J 1"(i).

That is, F") is the set of C in 1" such tha t f c (n) is greater than cn i-1 but
at most cn*. We shall show that if C is in 1"(i), i >~ 1, thenfc(n) is proportional
to n i.

LEMMA 4.1. Let F =- (G, A, F, R), let ~ be in 2/gr* and C be in1" (i). Then:

(a) I f ~(C) has an instance of symbol D, then D is in F[i].
(b) I f ~(C) has an instance of a symbol in 1"(J), and ~ = fly, then 7(C)

has a symbol in F (1~) for some k >~ j .

Pro@ (a) I f not, then we can easily find continuations i l l , fi2 ,... of ~,
such that the number of symbols in fi~(C) is greater than c [fij~]* for any
fixed c and arbitraryj. (b) If 7(C) is in (1"[J-11)*, a violation of (a) would occur.

We next show a "pumping lemma" for translation symbols.

LEMMA 4.2. Let F = (G, A, 1", R), 1"' be a subset of 1", and C be in 1".
I f there is no constant upper bound on the number of instances of a symbol of 1"'
in ~(C) for c~ in #dr*, then there exist fil , fi2 and fi8 in WF* such that for all m,
filfl~'~fia(C) has at least m + 1 instances of symbols in F'.

Proof. Let F have s symbols and let r be the maximum of] h(X)J for X
in 1" and h in W r . By hypothesis, there is some a in JCr* such that a(C)
has more than r 2~ instances of symbols in F'. Let ~ = gk " "g2g l , with
g 's in .gFF, and define ai = gi "'" g2 gl for 0 <~ i ~ h. Define F i to be the
set of D appearing in ~i(C), such that gkgk-1 ""gi+l(D) has at least one
element of 1"'. Note that P i va ~o.

Since an element of ~/'~ increases the length of a string upon which it

454 AHO AND ULLMAN

operates by at most a factor of r, we can find a set Q of 2 ~ q- 1 integers
between 0 and k, such that if i and j are in Q, i < j, then a~(C) has more
instances of symbols in Fj. than ai(C) has instances of symbols in F i . Thus,
we can find i and j in Q, w i t h / ' i =/ '~" -~ -P and j > i. Observe that if D
is in f ' , then gj g~-i ""gi+l(D) contains at least one instance of an element
of/~, and for some D' in ~, gj g,_l '"g~+l(D') contains at least two such
instances. Let fil = gk ge-1 "" gJ+l, f12 = g~ g~-i ""gi+l and fia = gigi-1 ""gl •
The lemma follows immediately.

The next two lemmas give a recursive criterion for determining the
members of/'(~), i / > 0.

LEMMA 4.3. Let F = (G, A, F, R) be a GSDT, and suppose C is in
1" - - Fill, i >~ -- 1. I f there is a constant c such that for all ~ in ~ * , ~(C)
has at most c instances of a symbol not in F[q, then C is in F (i+1).

Proof. The case i = - - 1 is by definition. Assume i >~ 0. Let ~ =
g , ""g2gl be in ~ * . Define wj =g~ ""g2ga(C), for 0 ~ j ~< n. Let xj
be the string obtained by deleting all occurrences of symbols in 1 "[i1 from w~.
Let YJ+I be the string consisting of those symbols ofgj+l(Xj) which are in Fill.
It follows by Lemma 4.1 and induction o n j that w~- is a permutation of the
symbols of the strings xj , y j , g~(YJ-1), g~ gJ-l(Y~-~),'", g~ gJ-1 "'" g2(Yl)-

By hypothesis, [xk] ~< c for all k. Let r be the maximum of [h(D)] for
D in T', h in ~gF. Then [y~ [<~ cr for all k. Since Yk consists only of symbols
in F[q, there is a constant c', depending only on F, such that

] gng~-i "" gk(Yk-1)[~< cc'r(n -- k -k 1) i.

Thus, l w~i < ~ c + c r q - c c ' r [V + 2 i - ? ' ' ' + (n - 1) i] ~<c"n ~+1 for some
constant c".

LEMMA 4.4. Let F = (G, A, 1", R) and let C be in F -- F[q, i ~> 0.
Then there is a constant c > 0 such that for all n, there is an c~ n in (~F) ~,
such that c~,(C) has at least cn instances of symbols of 1"- / ' [i -11 .

Proof. By Lemma 4.3, there is no constant upper bound on the number
of instances of symbols in F - T'[i-I] found in a(C), for ~ in ~ * . By
Lemma 4.2, there exist i l l , /3~ and f13 in WF* such that filfl2~fi3(C) has at
least j -}- 1 symbols in / ' -- / ' [i-11. Let r be the maximum length of the
right side of a rule of F.

As a general observation, if 71 and y~ are in J/Z F*, and 71~,2(C) has k instances
of symbols i n /1 - - FEi-l], then 72(C) has a least k/ri~ll instances of symbols

TRANSLATIONS ON A CONTEXT FREE GRAMMAR 455

f r o m / ~ - 1,[i-11. (This follows directly from Lemma 4.1.) Choose j~ to be

the smallest integer j >~ 0 such that 1filf12J/33 l >~ n, and let a n be the
r ightmost n symbols of/31fl~/33. By the minimali ty of i n , we know that

[fil/3~/33] - -] an I ~ 1/31/32fi3 [" Thus, an(C) has at least (j~ q- 1)/rl~e2~r
instances of a symbol in /1 - - 1,[,-1]. Since Jn >/ [n/I/31/3~/33 [],10 we have

j~ 4- 1 ~ n/1 fi32/33 [. Thus, the lemma is satisfied with c -~ 1/rI~2e81 [fllfl2fl3 [.
We now prove that there are no proliferation rates between n * and n z+l

for integer i.

LEMMA 4.5. Let F = (G, A, 1,, R), and let C be in 1"--1,[i1, i / > 0.

Then there is a constant c > O, such that fc(n) >~ cn i+1, for all n.

Proof. The result is immediate from Lemma 4.4 for i = 0. Assume
it true for i < j and let C be in 1, - - 1,[J]. By Lemma 4.4, there is a constant
c I such that for all n there exists 7n in (~F) ~ such that 7n(C) has at least
cln instances of symbols of 1 , - 1,[~-11. By the inductive hypothesis, there

is a constant c 2 such that for all n and any D in F - 1,[j-1j, there is a find
in (JefF) n for which [/3nD(D)I ~ QnL

Let 1, have s symbols and let r be the maximum length of the right side
of a rule. Let D n be an element of 1 , - 1,P-E such that 7n(C) has at least
qn/s instances of Dn . Then I finD~Tn(C)] ~ (c2nJ)(qn)/s. Define ~2n to be
~3norTh and ~2n-1 to be a2n with the leftmost symbol deleted. Then for all m,
t ~ (C)]) (c2(m/2)J)(Q(m/2))/rs. The lemma then follows with c ---- qQ/rs2J+L

From Lemma 4.5, we immediately have:

THEOREM 4.1. Let F = (G, A, 1,, R) be a G S D T . Then for any i ~ 1
and all C in 1,(i), there are positive constants q and c 2 such that qn i
fdn) <~ c#.

THEOREM 4.2. Let F = (G, A, F, R) and let C be in 1". C is in 1,(o,
i >~ O, i f and only if C is not in 1,[,-1], and there is a constant c such that a(C)
has no more than c instances of elements of 1" - - 1,[i-1], for any ~ in 3fie*.

Proof. The theorem is true by definition for i = 0. For i >~ 1, the " i f"
port ion is Lemma 4.3. For the "only if" part, assume C is in 1 , - 1,[~-11,
and there is no bound on the number of symbols in 1 , - 1,[i-11 possessed

by any ~(C). By Lemma 4.2 there exist/31, /32 and/3z in Yt°p *, such that
fll/3j/33(C) has at least j + 1 instances of a symbol in 1, - - 1,[i-1]. Using
Lemma 4.5, it is then easy to show that C is not in 1,(o.

lo [x] is the integer part of x.

456 AHO AND ULLMAN

THEOREM 4.3. I t is decidable i f C is in F (i) for any C in F and i >~ O.

Proof. In the proof of Lemma 4.2, a finite test to determine whether C
can generate strings with an arbitrary number of symbols in F - / ' [~ - ~] is
implied.

THEOREM 4.4. Let F = (G, A, F, R). I f C is in 1"(i), i ~> 1, then there
is a constant c such that for all n, there exists a n in ~ e * for which an(C) has
at least cn instances of an element of 1"(i-1).

Proof. By Lemma 4.4 there is a constant c a and some fin in (~F) ~ for
each n, such that fin(C) has at least cln instances of an element of 1" -- F[i-2].
By Lemma 4.1, fin(C) has q n instances of an element of 1 ~(i-1) td 1"(i). But
by Theorem 4.2, there is a constant c 2 such that at most c 2 of these instances
are in [,(1) The theorem then follows by algebraic manipulation.

THEOREM 4.5. For every G S D T F = (G, A, F, R) there is an integer
i ~ -- 1 such that 1"(~) is nonempty i f and only i f 0 ~ j ~ i.

Proof. Immediate from Theorem 4.4.

THEOREM 4.6. Let F : (G, A, 1", R). I f C in F is not in 1"a) for any value
of i, then there are positive constants c and k such that fc(n) > /kc n.

Proof. Let 1"' be the set of D in 1" which are in no/~(i). By Theorems 4.2
and 4.5, for each D in 1"' there is some C in F ' and a9 in 3(re* , such that
c¢9(D) has at least two instances of C. Let q be the maximum length of ao
for any D in 1"', and let r be the maximum length of the right side of a rule
o f F . Then for any n, we can find fin in (~F) n such that] fi~(C)l >~ r-C12~/%
Let k = r -el and c = 21/cl.

V. INPUT--OuTPUT LENGTH RELATIONSHIPS

One quanti ty which is of particular practical interest in the definition
of translations is how the length of the output varies as the length of the
input. In particular, we might like to know that inputs cannot give outputs
too much longer than themselves. Investigation of this mat ter yields a
necessary condition that a translation be a G S D T . We define the output growth
of a translation T as the function g(n) ~- maxl~l= n min(x,~)inT [y [. g(n) will
be undefined for those values of n for which there is no word of length n
in the domain of T.

TRANSLATIONS ON A CONTEXT FREE GRAMMAR 457

There is a close relationship between the output growth of a translation
defined by a G S D T and the proliferation rate of its translation symbols.
Informally speaking, we shall show that if T is an unambiguous translation
defined by some G S D T F', then T can be defined by a G S D T F such that
if the proliferation rate of the translation symbol S 1 of F is f(n), then T(F)
has output growth proportional to nf(n).

For ambiguous translations defined by G S D T ' s this relation between
output growth and growth rate of translation symbols is somewhat obscured
when there is more than one output word for an input word. However,
in general we can show that if a translation T is defined by some G S D T F ' ,
and T has an infinite domain, then T is defined by a G S D T F such that
if the proliferation rate of S 1 is f (n) , then there exists an infinity of x in the
domain of T such that (x, y) is in T and l Y I is proportional to nf(I x I).
Moreover, the output growth of T is at most proportional to nf(n). For
this purpose, the following concepts will be useful.

I f x in ,4. is a translation string defined at some node of a parse tree,
I x T = n, then we say that x has npositions, each containing one of the symbols
of string x. T h e positions are numbered 1, 2,..., n, from the left.

Let v(Ai), the value of A i , be computed at some node N by the rule
./1~ = B1B ~ ... B ~ . We assign an origin to each position of v(A~) at N as
follows:

(1) Suppose we have assigned an origin to the first j positions of
v(Ai), j > /0 , and have considered B 1 , B 2 ,..., B~, 0 ~ k < m.

(2) IfB~+ 1 is inA, then posi t ionj + 1 ofv(Ax) is said to be an introduced
position, and B~+ 1 an introduced symbol. The origin of position j -[- 1 is
the k ~- 1st position of the rule Ai -~ B1B2 "'" B,~. We have now assigned
an origin to the first j -~ 1 positions of v(A~) and considered Bk+l.

(3) Suppose Bk+ 1 = C~ is in f ' , and the string v(C~) is defined at the
descendant of node N labeled by a C-production. I f I v(Ct)[= m, then the
origin of position j -]- p of v(Ai) is the p- th position of v(Cz), 1 ~ p ~ m.
We have now assigned an origin to the first] ~ m symbols of v(Ai) and
considered Bk+ 1 .

We extend the notion of origin transitively and reflexively. Tha t is, any
position is its own origin, and if a position Pl in some string is an origin
of position P2 in a second string, and P2 is in turn an origin of a position pa
in some third string, then Pl is an origin of Ps .

Informally, we can visualize the origin relation as follows. At some node
N of a parse tree, mark some position p of the value of a translation defined
at N, by changing the symbol there to some new symbol. Then, recompute

643/~9/5-6

458 AHO AND ULLMAN

the translation strings at the nodes above N. The positions of the various
strings which hold the new symbol are those of which position p is an origin.

Let Na and N2 be two nodes of a parse tree, with a path from N 1 to N~.
Let p be a position of a string v(Bs) defined at N2 and let v(Ai) be defined
at N1 • The multiplicity of position p in v(Ai) is the number of positions
of v(Ai) having p as origin. This set of positions is called the projection
of p to v(Ai).

Some basic relations are stated without proof.

LEMMA 5.1. (a) I f p 1 and p2 are two distinct positions of translation strings
at a node N1 , then the projections of Pl and P2 to any string defined at any
node are disjoint.

(b) Every position of every translation string has a unique origin (possibly
itself) which is an introduced symbol.

(c) Let N i and Nz be nodes of a parse tree, with a path from N1 to Nz .
Let c~ in 2/g~* represent that path. I f v(Ai) is defined at N 1 and v(B~) at N2 ,
then the multiplicity of any position of v(Bj) at N~ in v(Ai) at N x equals the
number of instances of the symbol Bj in a(A~).

We now proceed to relate the proliferation rate in translation symbols
to the output growth of translations.

LEMMA 5.2. Let Y = ((V, X, P, S), A, P, R) be a G S D T , and suppose
that there are constants q and c 2 such that the proliferation rate of $1 is bounded
above by q(n + 1)% Then there is a constant c~, such that i f v(S1) is defined
at the root of a parse tree D with n nodes, Iv(SOl <~ can c~+1.

Proof. Let r be the maximum length of the right side of a semantic
rule. By Lemma 5.1(b),] v(S1)] at the root of D is the sum over each
introduced symbol (in the value of each translation symbol at each node
of D) of the multiplicity of that symbol in v(S1). By L e m m a 5.1(e), this
sum is bounded by r times the number of nodes of D times the maximum
multiplicity in v(S1) of a position in the value of a translation symbol. No
path in D has length greater than n - - 1. Thus, [v(S1) [~ rncan e2 and the
lemma is proven, with c 3 = Qr.

LEMMA 5.3. I f F is as in Lemma 5.2, but the growth rate of S 1 is bounded
above by c ~ for some constant c, then there is a constant c' such that for a tree
with n nodes, v(Sa) at the root has length at most (c')%

Proof. Similar to Lemma 5.2.

TRANSLATIONS ON A CONTEXT FREE GRAMMAR 459

We will now give a general framework for the modification of G S D T ' s
in such a way that some desired information is carried along at the nodes
of parse trees. Let G ~ (V, 27, P , S) be a proper CFG, and let Y be a
finite set of symbols. Let/~ be a mapping from P × Y to the finite subsets
of Y* such that:

(1) if /x(i, A) contains w, [w] = k, then the i-th production of P
has k nonterminals on the right, and

(2) if the i-th production has k nonterminals on the right, then every
w in yk is in/x(i, A) for exactly one value of A.

Given Y and/x, we can construct from G an equivalent C F G G', such
that the nodes of a parse tree in G' contain an additional finite amount
of information represented by the elements of Y. Specifically, let G' be the
CFG (V', 27, P ' , S) where V' = {S} u [(V - - {S}) × Y] and P ' be defined
as follows.

(a) Let the i-th production in P be S- -~ A1A 2 "" A n. Then all
productions S --~ B1B 2 "" Bn are in P ' , where Bj ~ A s whenever M s is in ~',
and B s = [As, Cs] for some C~- in Y, whenever A s is in V, 1 ~ j ~< n. 11

(b) I f A -+ A1A ~ "" An is the i-th production in P, A :/: S, then
for C in Y, [_/1, C] --~ B1B ~ "" Bn is in P ' , where B s z A s if A~ is in 27,
and B e = [As, Cj] if A s is in V, I ~ j ~ n. However, the string C1C ~ "" Cn,
wher~ Cj = • if A s is in 27, must be in/z(i, C).

I f the above conditions hold, then we say G' is the convolution of G with
Y and/z. Call/z a uniquely invertible function on G and Y.

Informally, the grammar G' is the grammar G with certain information
(the elements of Y) carried at each node of its parse trees, with the exception
of the root and the leaves. The information is passed from a node to its
ancestor. Because of rule (2), the information is such that given a parse
tree in G, one can find a unique parse tree in G' with the same yield. This
is shown in the next lemma.

LEMMA 5.4. Let G = (V, Z, P, S) be a proper CFG, Y a finite set and
i~ a uniquely invertible function on G and I 7. Let G' be the convolution of G
with Y and i~. Let h be the homomorphism defined by h([A, C]) = A for all A
in V - - (S}, C in Y and h(A) = A for all A in Z t 3 (S}, and extend h to
productions of G' so that i f j is a production of G', then h(j) is the number

11 Note that if there are identical productions in P, a new set is made for each
production.

4 6 0 AHO AND ULLMAN

of the production of G from which j was constructed according to rule (a) or'(b)
above. Then h is a 1-1 tree correspondence from G' to G.

Proof. Under the correspondence h, any tree in G' becomes a tree in G-
Let D be a parse tree in G. We will uniquely assign new labels to the nodes
of D to form a new tree D ' which will be a parse tree in G' with the same
yield as D. The assignment of labels to nodes will be by induction on the
height of a node.

Let N be a node (not the root) of D with label i, and suppose all of N ' s
descendants are leaves. Then Ix(i, C) = {e} for some one value of C in Y
and Ix(i, B) = ~p for B ~ C. Thus, if the i-th production of P is A --+ w,
change the label of node N to the corresponding production [.d, C] --+ w.

Now, let N be a node (not the root) all of whose descendants are either
leaves or have had new labels assigned. Let the label at node N be the i-th
production of P, A -+ B1B 2 "'" B n . For 1 ~< j ~< n, define Cj = E if Bj is
in 27 and Cj = C if the new label of the j - th descendant of N is of the form
[Bj , C] --~ ~. Let C be the unique element of Y such that C1C 2 "" Cn is
in Ix(i, C). Then the new label of N is [A, C] --~ DID 2 ... D~, where Dj = Bj
if B~ is in 27, and D; = [Bj, Cj] if B e is in V.

I f the label of the root is S --~ BaB 2 "" B~, and all its descendants are
leaves or have new labels, change the label of the root to S --+ D1D 2 "" Dn,
where the DSs are defined from the B / s as in the paragraph above.

The above assignment produces the unique parse tree in G' whose yield
is the same as that of G. Thus, h is a 1-1 tree correspondence.

Our next task is to extend the results on proliferation rate to results on
output growth. We do this by modifying a G S D T so that each translation
symbol used actually produces arbitrarily long outputs.

LEMMA 5.5. Given a G S D T F = (G, A,/", R), G = (V, X, P, S), there
is a G S D T F ' = (G', A, /" ' , R'), G' = (V' , X, P', S), with T(F') = T (F) ,
such that i f .d i is in /" ' , A ~= S, then there is no constant upper bound on the
length of a string v(Ai) which can be defined at a node of a tree in G'. Moreover,
there exists a 1-1 tree correspondence from G' to G.

Proof. Let 1"1 be the set of .di in /", A :/: S, such that there is a finite
least upper bound on the length of v(Ai) defined at any node of any tree
in G, and let b be the maximum of these bounds, lz P ' will use only those
translation symbols i n / " -]"1 • When a rule involves a symbol A i in / "1 ,
that symbol will be replaced by one of the values v(Ai) would assume if

1~ We leave it to the reader to show that it is decidable if A, is i n / ' 1 • Decidability
of this question is not, however, needed in the proof of L e m m a 5.5.

TRANSLATIONS ON A CONTEXT FREE GRAMMAR 461

defined at some node N. The grammar G and the rules must then be modified
to insure that whatever is subsequently derived from node N will cause
the selected value of v(di) to actually occur at N.

Let Y be the set of maps from 2' 1 to U b A J. Now, suppose production i j=0

in P is of the form A --~ WodlwlAew 2 "" Amw m , where the A's are in V,
the w's in Z'*. Let M, M1, Ms, . . . , Mm be in Y.

For each %.(A) IS in 2"1, let rs(A) = a s be the rule associated with produc-
tion i by R. Define the function /x such that M1M2"" Mm is in /~(i, M)
if and only if:

(1) The string M(rj(A)) is the string formed by replacing each instance
of z~(A~) in aj by M~(-rk(A~)). (Obviously, rT~(A~) is in 2"1 .)

(2) M(.rj(B)) = E if B va A.

/~ is uniquely invertible on G and Y. Let the grammar G' = (V', 27, P ' , S)
be the convolution of G with Y and/z. Then, the homomorphism h such
that h (S) ~ - S and h([A ,M]) = A for all M in Y is a 1-1 tree corre-
spondence from G' to G.

I f a node of a tree in G' is labeled [A, M] - + ~, then M(ri(A)) is the
value of v(r~(A)) defined by F at the corresponding node of the corre-
sponding tree in G. This is easy to verify by induction on the height of a
node.

F ' is constructed as follows. Let 2 " = {S1} ~.J {~-I([A, M]) I ~dA) is in
2 " - - 2"1, M in Y.} Define R ' in the following manner:

(1) Suppose R associates -ci(A) ~ B 1 B 2 " " B ~ with production
A -+ A~A 2 "" A,~, A =/= S. Let [A, M] --,- C~C 2 "" C~ be a corresponding
production in P', where C s = A s if A s is in 27 and C s = [As, Ms] otherwise.
Then R ' associates ri([A , M]) = D1D 2 "" D,~ with [A, M] --+ CaC ~ "- Cn ,
where for 1 ~<j ~< m:

(i) D 3 = B~ if B~- is in A.
(ii) D~ = zk([A~, Mz]) if B s = r7~(At) is in 2" - - 2"1,

(iii) D~ = Mz(B,) if B s ~ "rk(A,) is in 2"1.

(2) I f R associates S 1 - ~ B 1 B ~ ' ' ' B m with S ~ A 1 A ~ ' ' ' A ~ , then
R ' associates S 1 = D1D 2 ... D~ with each S-- , -C1C 2 ""Cn in P', where
C~ , C~,..., C~ and D 1 , D2,... , D~ are related as above.

A straightforward argument by induction on the height of a node shows
that T(F') = T(F).

1~ Note the change in notation for symbol in /'.

462 AHO AND ULLMAN

A G S D T satisfying Lemma 5.5 will be called reduced.
We now prove another type of "pumping lemma," this time concerned

with the length of output string, rather than proliferation rate.

LEMMA 5.6. Let F be a reduced G S D T (G, A, F, R) with G ~- (V, I , P, S).
Let A i be in 1", A @ S. Then there are constants c 1 and c 2 such that for all m
there is a tree in grammar G, with root labeled by an A-production and c a + Qm
nodes, such that for v(A~) defined at the root of this tree,] v(Ai)] >~ m.

Proof. L e t / " have s symbols, V have t symbols, and let r be the maximum
length of the right side of a rule. Since F is reduced, there is some tree D,
whose root is labeled by an A-production, and for which I v(Ai)I ~ (st + 2) r,
when v(Ai) is defined at the root. It is straightforward to find a path H
in D, say H = N a , N2, . . . , N k , k > st -]- 2, such that N 1 is the root, and
Nk a leaf. For each Nj in H, there is some string v(B~) defined at N e , with
[v(B~)[>~ [v(Bm)[>~ I v(Be)l/r, ann B a = Ai ; moreover, for 1 ~< j < k,
the rule B e ~ a applied at node N~. is such that a has at least one instance
of B;+a.

Since v(Bk_a) at N7~-1 has length at most r, there are at least st -t- 1 values
o f j for which I v(Bj)l > [v(Bj+l)l, where v(B3) and v(Bj+i) are defined at
nodes N~ and Nj+a, respectively. Thus we can find p and q such that p > q,
B~ = Bq and at the appropriate nodes, l v(B~)[< [v(Bq)[. Let c 2 be the
number of nodes in the subtrce Dq which has root N q , exclusive of the
subtree D~ which has root N~ . Let c a be the number of remaining nodes
in tree D. Form the sequence of trees Ea, E 2 ,..., E,~ ,..., where E 1 = Dq,
and E~- is formed from Ej._ 1 by replacing the subtree D~ by Dq. Then v(Bq)
defined at the root of E m has length at least m. Therefore, if E~ replaces
Dq in D, the length of v(Ai) at the root of this tree is at least m. Moreover,
this tree has c a ~- Qm nodes.

LEMMA 5.7. Let F = (G, A, F, R), G = (V, Z, P, S), be a reduced
GSDT. I f the proliferation rate of Sa is at least c'n ~, p >/O, c' > O, then
there is a constant c > 0 and an infinite set of parse trees in grammar G, such
that for each tree in the set with n nodes, v(Sa) has length at least cn~+l.

Proof. By Lemma 5.6, there is a constant c~ such that for any Ai i n / ' ,
A v a S, and any j ~ 1, there is a subtree D in grammar G, for which v(Ai)
defined at the root of D has length at least j, and D has no more than c3j nodes.
(Let c~ be twice the largest of the q ' s and c2's defined in Lemma 5.6.)

We also observe the following. Let D 1 be a tree with a path H of length m.
Construct tree D 2 by replacing each node N which either is not on p a t h / 7

TRANSLATIONS ON A CONTEXT FREE GRAMMAR 463

or has a nonterminal label by the shortest tree with terminal leaves whose
root has the same label as N. There is a constant c 4 , depending only on G,
such that D e has no more than c4m nodes.

Now, let n be an arbitrary integer greater than zero, j = [n/2ca] and
m = n -- czj. By Lemma 4.4, there exists ~ in ogC'F* such that I ~(S1)I ~> c 'm~.
Construct a parse tree with a path H represented by ~, having at most
cam nodes. Let F have s symbols. Then c~(S1) has at least c'm~/s instances
of some symbol BT~ • Since G is assumed to be proper and m > 0, B ~= S.
By Lemma 5.6, we can replace the last node of the path H by a subtree
with at most caj nodes, such that v(Bl~) defined at the root of the subtree
has length at least j.

Thus, v(S1) defined at the root of the entire tree has length at least
jc'mV/s. Also, the number of nodes of the entire tree is at most qm -t- c3j
nodes. By observing that for large n, both j and m are bounded above and
below by positive multiples of n, we have the desired result.

LEMMA 5.8. Let F be a reduced G S D T as in Lemma 5.7. I f the proliferation
rate of $1 is f (n) ~ [(c')n], then there is a constant c > I such that for an
infinite set of parse trees, each tree in the set with n nodes has [v(S1)[/> c ~,
whenever v(S1) is defined.

Pro@ Similar to Lemma 5.7.

THEOREM 5.1. Let T be defined by a GSDT. Then T is defined by some
G S D T F = (G, A, F, R), with G = (V, ,U, P, S), such that one of three eases
holds:

(1) There is a constant c such that i f (x, y) is in T, then [y [<~ c.
(2) There are positive constants c 1 and c 2 , and an integer i) 1 such

that i f v(S1) is defined at the root of a parse tree with n nodes, then I v(S1)[~< c2 hi,
and there is an infinite set of parse trees in G such that v(S1) defined at the
root of a tree with n nodes has length at least cln i.

(3) There are constants c 1 > I and c 2 > I such that i f ~)(S1) is defined at
the root of a parse tree with n nodes, then I v(Si)l <~ (ce)% and there is an
infinite set of parse trees such that v(S~) defined at the root of a tree with n
nodes has length at least (q)%

Proof. Let F be reduced. Assume (1) does not hold, and let f (n) be the
proliferation rate of S 1 . Now f (n) 4 = 0 for any n. (For if f (n) = 0, then
f (n ') = 0 for all n' >~ n, and (1) could be shown.) Suppose v(S1) is in F(~),
j ~> 0. By the foregoing (for j = 0), and Theorem 4.1, f (n) >~ e~nJ for

464 AHO AND ULLMAN

some c 3 > 0. Case (2) then follows from Lemmas 5.2 and 5.7 with i = j + 1.
I f 81 is in no F (j~, case (3) follows from Theorem 4.6 and Lemmas 5.3
and 5.8.

THEOREM 5.2. Let T be defined by an unambiguous G S D T . Then one of
three cases holds:

(1) There is a constant c such that for all (x ,y) in T, lY[<~ c.
(2) There are positive constants q and c 2 and a positive integer i such that

i f (x, y) is in T, then]y [~ c2(t x[-k 1) i, and for an infinity of x there exists
(x ,y) in Tsuch that [y] >~ q([x] + 1)q

(3) There are constants q > I and c 2 > [such that i f (x ,y) is in T,
then I Y] ~< (c2)(I*l+l), and for an infinity of x there exists (x, y) in T such
that]y [/> (q)(I~l+l).

Proof. This result follows from Theorem 5.1 and the observation that
for an unambiguous C F G G, there is a constant c such that the parse tree
for each x in L(G) has at most c([x [@ l) nodes.

THEOREM 5.3. Let F = (G, A, P, R) be a G S D T , with G = (V, X, P, S).
I f S 1 is in 17" ,i), then there is a constant c such that for all x in L(G), there exists
(x ,y) in T(F), with lY] <~ c([x / + 1) i+1.

Proof. I t is left to the reader to show that there is a constant q , such that
every x in L(G) is the yield of a parse tree with at most ca(l x [-t- 1) nodes.
(Essentially, given any tree with yield x, one can modify it to eliminate
large subtrees with • yield and long sequences of nodes with a single
descendant. These modifications produce the desired tree with yield x.)
By L e m m a 5.2, for some constant c2, the translation produced by such
a tree is of length at most c2q([x [-[- 1) t+1.

THEOREM 5.4. For an arbitrary G S D T F , there is a constant c >1 such that
for each x in the domain of T(F), there exists (x, y) in T(F) and l y [~ c (l~l+l).

Proof. Similar to Theorem 5.3.

VI. TREE AUTOMATA

In this section we develop an exact characterization for translations
defined by a certain class of G S D T ' s in terms of finite automata operating
upon the parse trees of context free grammars. This type of finite automaton

TRANSLATIONS ON A CONTEXT FREE GRAMMAR 465

we call a tree automaton. Recently, some interest has been focused upon
finite automata with the domain of definition extended to directed graphs,
especially trees [17-20]. However, our notion of tree automata differs in
substantial respects from the various notions of [17-20]. 1~

Intuitively, our tree automaton is a deterministic finite transducer
operating on a parse tree of a C F G G = (g, •, P, S). A tree automaton A
defines translations of an input word x in L(G) in the following manner.
Let D be a parse tree with yield x. A is initially in its start state qo and is
at the root of the parse tree. ~ / t h e n executes a sequence of moves. A move
is determined by the label of the node N at which A is positioned and the
current state of A. In one move, A changes state, emits a finite length output
string, and moves either to the ancestor of node N, a designated descendant
of node N or remains at node N. I f A can make some sequence of moves
on D, during which it emits the output strings Yl , Yz ,--., Yn (in that order),
such that it begins this sequence of moves on the root in state q0 and halts
on the root in the final state, then Y~Y2 "'" Y~ is said to be a translation of x.

Formally, a tree automaton is a 6-tuple A = (Q, G, A, 3, %, ql) where:

(1) Q is a finite set of states.
(2) G = (V, 27, P, S) is a proper CFG, called the underlying grammar.
(3) A is a finite set of output symbols.
(4) 3 is a mapping from (Q - {@}) × (P u 27 u {e}) to Q x I x A* u %

where I = {--1, 0, 1, 2,..., p}. p is the maximum length of the right side
of a production in P. I f 3(q, L) = (q', i, x), and L is an S-product ion, then
i @ - - 1. I f L is in 27 U {~}, then i ~ 0. I f L is a production with r symbols
on the right, r ~> 1, then i ~ i". I f L is a production of the form A --~ ~,
then i <~ 1. (These conditions ensure that A will always have a node to
move to).

(5) qo, in Q, is the start state.
(6) @, in Q, is the final state.

We describe the action of A on a parse tree D with yield x, by defining
three functions of t ime (number of moves made), s(t), N(t) and O(t). s(t) is
the state of A after t moves. N(t) is the node at which the automaton is
posit ioned after t moves, and O(t) is the accumulated output after t moves.
s(0) = qo. N(0) is the root of D and 0(0) = e. Inductively, suppose s(t),
N(t) and O(t) have been defined.

14 Since this was written, interest in our model has been stimulated. In particular,
M. O. t/abin has recently shown that they are equivalent in their tree recognizing
ability to the automaton of [17].

466 AHO AND ULLMAN

I f s(t) -~ ql and N (t) is the root, then O(t) is a translation of x. s(t'), N(t ')
and O(t') are undefined for t' > t.

I f s(t) =# q f , let the label of node N(t) be L in P • X u {e}. I f 3(s(t), L) =-
(q , i ,x) , then O (t + 1) = 0 (t) x and s (t + 1) = q . N (t + 1) is N(t), the
ancestor of N(t) or the i - th descendant of N(t) from the left, as i = 0,
i = - -1 or i > 0, respectively.

The translation defined by A , denoted T(A) , is the set of (x, y) such that
y is a translation of x. I f T is T (A) for some tree automaton A, then T will

be called a tree automaton translation (TAT) .

VII . TREE AUTOMATA AND G S D T ' s

We shall show that the class of tree automaton translations is exactly
the class of translations defined by G S D T ' s which have a linear relation
between the size of tree and length of output. The argument proceeds by
a series of lemmas.

LEMMA 7.1. Let A -~ (Q, G, A, 3, qo , q~) be a tree automaton. Then there
is a constant c such that on any tree D with n nodes, i f s(t) = qs , then t <~ cn.

Proof. Let c be the number of elements in Q. I f s(t) is defined for some
t > cn, then there exist t a and t2, such that s(t 0 = s(t2) and N(t l) = N(t2).
I t should be clear that A is in a loop; that is, for all i, s(t 1 + i(t 2 - - tl)) = s(tl).
Thus, _// can never enter state qf if started on the root of tree D.

LEMMA 7.2. I f T = T(A ') , for some tree automaton

A' = (9 ' , a ' , ~ , 3', qo , q~),

then T = T(A) , where ./1 ~ (Q, G, A, 3, qo, qy) is a tree automaton which,
i f it moves f rom a node N of some parse tree to one of N ' s descendants, will
always return to N . There is a 1-1 tree correspondence from G to G'.

Proof. Let G ' = (V', 27, P ' , S). The gist of the argument is that we
may augment the grammar G ' to incorporate at each node N (except for
leaves and the root) information that answers the question: " I f A ' reaches
node N in state q, will A ' eventually reach the ancestor of N, and if so,

in what state ?"
To that aim, let Y be the set of maps from Q - {q~} to Q t3 {9}. We define/z,

a mapping from P x Y to finite subsets of Y*.
Let the i - th production of G be B -+ B1B 2 "" B ~ and let M~-, 1 ~< j ~< m,

be E or an element of Y, as B e is or is not a terminal . We define M, the

TRANSLATIONS ON A CONTEXT FREE GRAMMAR 467

unique element of Y such that /z(i , M) contains M1M 2 . ' . M,~, as follows.
For each q in Q - {ql}, we define a sequence of states ql, q2,..., by the fol-
lowing procedure:

(1) qz = q.
(2) I f q j , j ~> 1 has been defined and ~'(qj, i) = (p, k, x) go to step 3,

4 o r 5 a s k = 0 , k = - - I o r k > 0 .
(3) Set qJ+l = P. Go to step 6.
(4) Set M(q) = p. Halt.

(5) I f B~ is not a terminal, and Me(p) = 7), set M(q) = 7). Halt.
I f Mk(p) = p', set qJ+l ~ P' and go to step 6. I f B k is a terminal, determine
if A', starting in state p at a node labeled B k , will ever return to the ancestor
of that node. I f not, set M(q) ----- 7). Halt. I f A' will return in state p ' , set
qJ+l = P' and go to step 6. I f Be is e (in which case the i- th production
is B --+ e), perform the same computat ion as for the case in which B k is a
terminal.

(6) I f qJ+l has jus t been defined and q,+l ~ q l , then set M(q) = 7).
I f j + 1 exceeds the number of states of A', set M(q) = 7). Otherwise, return
to step 2.

Intuitively, based on the assumption that M1, M z , . . . , M m correctly
answer the question stated above for the descendants of a node N, then
M will answer correctly for N. Let G = (V, Z, P, S) be the convolution
of G' with Y and /z . Let h be the 1-1 tree correspondence from G to G '
defined by h(S) = S and h([B, M]) = B for all B in V' -- {S} and M in Y.

Let D be a tree in G and D' = h(D). We observe by induction on the
height of a node N in D that if the label of N is [B, M] --~ o~, and A' is started
in state q, on the node N ' of D' corresponding to N, then A ' will return
to the ancestor of N ' if and only if M(q) =/= 7). I f A' does return, M(q) is
its state at that t ime. Armed with this observation, it is straightforward
to specify a tree automaton A which will make the same moves on a parse
tree D in G as A' will make on the corresponding tree h(D) in G', provided
that A' defines a translation on h(D).

Note, however, that for some parse trees D ' = h(D) in G', A ' may halt
on one of the descendants of the root or loop around the root and its
descendants. In both cases, A is defined to make one move on D, staying
on the root of D and halting in a nonfinal state. No translation is produced
by A on D. These conditions can be detected by observing the production
used at the root of D.

LEMMA 7.3. I f T ~ T(A) for some tree automaton A = (Q, G, A, 3, qo, qs)
where G = (V , Z , P , S), then T = T(Aa) for a tree automaton A s =

468 AHO AND ULLMAN

(Q, G i , A, 3, q0, ql) such that A i produces a translation on every parse tree
of G i . I f G is unambiguous, then so is G i .

Proof. We may assumeA to have been constructed in Lemma7.2.Whether
A will produce a translation on a given tree is determined solely by the
S-production labeling the root of the tree. For each S-production S --+
for which A produces no translation on trees with S --+ a as label of the
root, we can delete S --~ a from P without altering the translation defined
by A. Let G i = (V, Z', P i , S) be the grammar with all such productions
removed and let A 1 = (Q, Gi , A, 3, q0, q~). Then A i produces a translation
on every parse tree in grammar G i with yield in Z*.

We say a G S D T F = (G, A,/~, R) is linear if there is a constant c such
that every parse tree in grammar G with n nodes produces a translation
of length at most cn.

L E M M A 7.4. Let F = ((V, Z, P, S), A, F, R) be a reduced GSDT. Then
F is linear i f and only i f S i is in I "(°).

Proof. The "if" portion follows from Lemma 5.2. For the "only if"
part, observe that if S i is not in/~(0), then, by Lemma 4.5, there is a positive
constant c a such that the proliferation rate of S a is at least can. By
Lemma 5.7, there is a positive constant cz and an infinite set of trees such
that a tree with n nodes produces a translation of length at least c2n 2.

LEMMA 7.5. I f T is a TAT, then T is defined by a linear GSDT.

Proof. Without loss of generality we can assume T is T(A1) where A i is
the tree automaton (Q, G1, A, 3, qo, ql) of Lemma 7.3 and G 1 = (V, Z',/)1, S).

Let F be the G S D T (G, A, F, R) where F = {ra(S)} t3 {rq([C, M]) [q is
in Q, [C, M] is in V -- {S}, and M(q) ~ ~o}. a5

The symbol %([C, M]) is intended to represent the output of A 1 when
started in state q on a node whose label is a [C, M]-production, until the
time that A a moves to the ancestor of that node. We define the rules of F
so that v(%[C, M]) defined at any node will in fact be the string desired.

Let [C, M]--~ B i B 2 "" B~ be the p- th production of G i , with Bj =
[Cj, Mj], if Bj is in V. We construct the rule zq([C, M]) = ~ associated
with this production by defining a sequence of strings a i , c~2 in (F u A)*
and a sequence of states qi , q2 in Q. Initially, ai = • and qi = q. Suppose
aj and qj have been defined, j / > 1. Let 3(qj, p) = (q', k, x). Four cases
arise:

i~ W e a s s u m e t h a t s t a t e s o f A i a r e i d e n t i f i e d w i t h i n t ege r s .

TRANSLATIONS ON A CONTEXT FREE GRAMMAR 469

(1) I f k = 0, then q~+l = q' and %'+t = ajx.
(2) I f h = - -1 , then ~i+1 and qJ+l are not defined. Instead, ~ = ~jx,

and the process terminates.

(3) I f h > 0 and B k is in V, then ~J+l = %x~-q,(Bk) and qJ+l = M~(q').
(4) I f h > 0 and B k is in 2:, let y be the string of output symbols

A1 will produce up to the t ime it returns to the original node, and let q"
be the state at that time. Then %+~ = ogxy and q~+l = q".

Since ~-q([C, M]) is only defined if M(q) =/= % the above process must
terminate (i.e., (2) becomes applicable.)

Next, let S ~ B1B 2 "" B~ be the p - th production. Associate with this
product ion the rule r l (S) = a, where ~ is constructed from B1, B e ,..., Bm
by constructing a sequence of strings ~ , ~2,... and sequence of states
q l , q2 ,..., in a manner similar to the above process. Let B 3- = [Cj , M~-]
if Bj is in V. Initially, ~1 = ~ and ql = q0, the start state of A 1 . Suppose
%. and qj have been defined, j >~ 1. Let ~(qj, p) = (q', k, x). Case (2) above
(k = - -1) cannot arise, but in each of the other three cases above, %'+1
and qJ+l can be constructed by the procedures given in Cases (1), (3) and (4).
When some qj+~ = qs, the process terminates and ~ = %'+1. We have
constructed G 1 so that this event will always occur.

I t is straightforward to show by induction on the height of a node N
that if v(.rq(B)) is defined at N, then v(~'q(B)) is the output string A would
produce if started at node N, in state q, up to the t ime A first moves to
the ancestor of N. I t then follows that v(S1) is the output of A when started
at the root in state q0, until d enters state qs at the root. Lemma 7.1 implies
that F is linear.

Combining Lemmas 7.4 and noting that every translation defined by a
linear G S D T is defined by a reduced linear G S D T , we have the following
result.

THEOREM 7.1. If T is a T A T , then T = T(F) for some G S D T F =
(G, A, 1", R), with G = (V, ~, P, S), such that S 1 is in 1 "(°). I f the grammar
of the T A T is unambiguous, so is G.

We can also prove the converse of Theorem 7.1. T h e construction
is somewhat involved, so we begin with an informal description. Let
F = (G, A, y', R) be a G S D T , with G = (V, Z', P, S), and assume that S 1
is in/~(0). G must be modified so that at any node N of a parse tree, if a is
the element of o~v* representing the path from the root to N, then the
string c¢($1) is available at N. Call this string the "key". The fact that there
is a bound on the length of such a string will make the modification possible.

470 AHO AND ULLMAN

Let G 1 be the modified grammar. We will construct A to walk on the
trees of G 1 . I f N is a node of a tree, then when A reaches N from its ancestor
it will have in its finite control, a "pointer" set to one of the symbols of
the key. This symbol will represent the name of the translation symbol,
the value of which A is about to produce at its output. Let C be the symbol
to which the pointer is set. The semantic rule for the computation of the
value of C at this node involves various symbols of N. These elements
are each found in the key associated with the semantic rule at a particular
descendant of N. For each of these symbols, in turn, A moves to the proper
descendant of N, setting the pointer to the correct position of the new key.

The essential step in showing that A can operate correctly is concerned
with what occurs when A returns to node N with a pointer to a position
in the key at one of N ' s descendants. By comparison of this key with the
key at N, A can determine for what position of the key at N it was attempting
to produce a translation string. Let C be the symbol at this position. A may
have just made an excursion to a descendant corresponding to the last
symbol (in F) of the semantic rule for C. If so, A records the key at N in
its finite control, sets a pointer to the proper instance of C in that key and
moves to the ancestor of N. If in the rule for C there is a symbol in F
following the one for which the excursion was made, A moves to the proper
descendant of N, setting a pointer to that symbol.

We will now formalize the above argument.

T~EO~M 7.2. I f T is T(F), for a G S D T F ~- (G, A, F, R) with
G = (V, Z, P, S), and S 1 in F ~°1, then T is a T A T . I f G is unambiguous,
then so is the underlying grammar of the tree automaton.

Proof. Let b be the maximum I ~($1)[, for ~ in ~F*. We construct
b

the CFG G 1 ~ (Vj , ~Y', P~, [S, $1]), where V 1 = V × ~Ji=0 Fi" Let
B --+ BIB ~ "" B~n be the p- th production in P. Let w be in T'*, [w] ~ b.
The production [B, w] --~ CIC 2 "" Cm, where C~ = B e if Bj- is in 27 and
C~ = [B~, h~B~(W)] otherwise, is in P1, if] h~Bj(w)] ~ b for all h~B ~ in
and all appropriatej. Give this production the "number" (p, w) in P1 • The
homomorphism h given by h([B, w]) = B, for B in V, h(B) = B, for B ~ 27,
and h((p, w)) ~- p is a 1-1 tree correspondence from G I to G.

Define A to be the tree automaton (Q, G1, A, 3, q0, qf), where
Q = { q f } w { [X , w , i J t w in / '*, l w l ~<b, 1 ~ i ~ l w [, X in {D,U}).
qo = [D, S 1 , 1]. (The symbols D and U in the state of A indicate whether
A has just moved down (D) or up (U) the tree. Initially, A acts as though
it had just moved down, to the root. The second component stores a key,
the third is the pointer.)

TRANSLATIONS ON A CONTEXT FREE GRAMMAR 471

Before describing the moves of d , we must introduce some notation.
Let (p, y) be a production in P1 and let h~B be in ~ F . We can write
y = CIC 2 " . . C n , where the C's are in F, and we can write h~B(y) =
YlY2 "'" Yn , where h~B(Cj) = y i = D31D32 ... Ds~ ' with Dji in T', 1 ~ j ~ n.
I f D~i in Ye is the k-th symbol of h~B(y), then the image of the k-th position
of h~B(y) in y is j and the subposition of the k-th position of h~B(y) is i. That
is, the image of a position in h~B(y) is the position of y which produces it,
and the subposition is its relative position among the positions produced
by its image. Let T' B be the set of elements of F which are of the form B 5
for somej. We shall call a production (p, w) of P1 a B-production if production
p of P is a B-production.

Let [D, w, i] be a state of A, and B e the i-th symbol of w. If A finds itself
in this state, at some node N, then w will be the string in T'* associated
with the left side of the production labeling N. Let this production be
(p, w), and let B e = B1B 2 ... Bm be the rule which R associates with the
p- th production of P. A must next emit the string v(B~) defined at node N,
then move to the ancestor of node N. If B1B 2 "." B~ is in A*, then

(R1) 8([D, w, i], (p, w)) = ({U, w, i], - -1 , B1B2 "." Bin).

That is, -// emits B I B 2 ".. B m and returns to the ancestor of N, its job
done. (Note that when A last left the ancestor of N, it entered state [/9, w, i]
and that A returns in state [U, w, i]. This relation will be shown true in
general after we have completed the specification of 8.)

I f for some smallest s, Bs is in F, let B, be in F c , and let the k-th descendant
of N be that descendant whose label is a C-production. Define y = h~c(W).
Let position n of y be that position whose subposition is 1 and whose image
is the i-th position of w. Then:

(R2) 3([D, w, i], (p, w)) = ([D, y, n], k, B1B2 ... B~_a).

(In explanation of (R2), it is possible that in order to compute v(Bj) at
node N, A must compute some number of translation strings at N ' s des-
cendants. The rule for Bj is examined and the prefix of symbols in A is
emitted. When the first symbol in T' is encountered, A sets its state to
indicate the desired translation and moves to the proper descendant.)

Now, let [U, w, i] be a state of A. I f A finds itself in this state at some
node N, then _d has just returned from one of the descendants of N - - t h e
unique descendant labeled by a production (q, w) in P1, for some q. Let
the label of node N be (p, y).

Then w = h~n(y) for some B in V. Let the image of the i-th position

472 AHO AND ULLMAN

of w in y be l. Let production p of P be a C-production, and suppose that
the l-th symbol of y is Cj for some j. Also, assume that R associates
Cj = D1D 2 . . .D~ with production p. Let k be the subposition of the
i-th position of w, and suppose that D e is in / 'B, and exactly k - 1 of
D1, D~ ,..., D~_ 1 are in -PB. Then A has just emitted the portion of v(Cj)
corresponding to D~. Three cases arise:

(1) I f N is not the root (p is not an S-production), and all of
Ds+ 1 , Ds+ 2 ,..., D~ are in A, then:

(R3) S([U, w, i], (p, y)) = ([U, y, l], - - l , D,+ID~+2"" D,~).

(In this case, A finishes emitting v(Cj) at node N and returns to the ancestor
of N.)

(2) If N is the root (p is an S-production) and all of Ds+ 1 , D~+ 2 , D~
are in A, then

(R4) 8([U, w, i], (p, y)) = (q, , O, Ds+xD~+ ~ ... D~).

(Here, it must be that j = 1 and C = S. -// finishes emitting v(S1) , the
correct translation, and ends its computation.)

(3) If for some smallest t > s, D, is in F, let D~ be in F E. Let r be
the number of the unique descendant of N whose label is an E-production.
Define x = h~E(y). Let n be the position of x whose image is position l of y,
and whose subposition is equal to the number of D 1 , D 2 D, which are
in F E . Then:

(R5) ~([U, w, i], (p, y)) = ([D, x, n], r, D~+xD~+2"" D,_a).

We can show that T(A) = T(F) by showing that:
(*) I f on some parse tree in grammar G 1 , A reaches a node N, other

than the root, in state [D, w, i], and the i-th symbol of w is B ; , then upon
moving to the ancestor of N for the next time, A will enter state [U, w, i],
and the output of A from this time until A reaches the ancestor of N will
be v(Bj) defined at the node corresponding to N in the corresponding tree
in grammar G.

The proof proceeds by induction on the height of node N.
The result is immediate for nodes of height 1 from (R1). Suppose it

true for all descendants of node N. Let the label of node N be (p, w), and
suppose that R associates the rule B~. = CaC 2 "" C~ with production p.

If all of C a , C 2 ,..., Cm are in A, (.) follows from (R1). Otherwise, let
Cil , C~ ,..., Ci~ be those of C1, C 2 ,..., C~ in / ' . I f A reaches node N in

TRANSLATIONS ON A CONTEXT FREE GRAMMAR 473

state [D,w,i] , and the i-th symbol of w is B~., by (R2) A will emit
C1C 2 "" C~1_ 1 . I f C~1 is in -rE, A will also, by (R2), move to the descendant
of N whose label is a E-production. The state of A will be [D, y, n], and
the n-th symbol of y will be C~. By (.), A will emit v(E~), if Cq is the
k-th translation symbol for E', and return to N in state [U, y, n]. Because
of the way n is chosen in (R2), the value of i (in the original state [D, w, i])
is recovered by A. In a similar manner, by (R5), A continues to emit the
portions of v(Bi) corresponding to C,~,..., Cq . Then, by (R3), A moves
to the ancestor of N in state [U, w,i] and emits the last symbols
C~+ICL+2 "'" C~ of v(Bj).

From (,), (R4) and an argument similar to the above for the case where
N is the root, we conclude that T(A) ~ T(F).

From Theorems 7.1 and 7.2, we have the following:

THEOREM 7.3. A translation T is a T A T i f and only if it is defined by a
G S D T F = ((V, Z, P, S), A, F, R), for which S 1 is in F ~°). The underlying
grammar of the G S D T may be made unambiguous i f and only i f the underlying
grammar of F may be made unambiguous.

VIII. CONCLUSIONS

We have investigated a class of translations called generalized syntax
directed translations. They are effected by parsing the input according to
a context free grammar and then defining various translation strings at the
nodes, from the bottom up. We have shown that the function which relates
the length of the output to the size of the input parse trees is either an
integer power of the input length or exponential in the input length.

Next tree automata were defined, and it was shown that a translation
is a tree automaton translation if and only if it is a GSDT with a linear
relationship between the size of a tree and the output produced thereon.

On a theoretical level, we feel that there is a certain "naturalness" about
both GSDT ' s at TAT's . For example, in both cases, there is an analog
of the Chomsky normal form theorem. That is, the productions of the
underlying grammar can be put in the form "nonterminal replaced by two
nonterminals" or "nonterminal replaced by terminal or E." The analogous
statement is false for syntax directed translations [13]. It is expected that
all the usual closure properties (composition with finite state mappings,
for example) that hold for SDT's also hold for GSDT ' s and TAT's , with
the exception of closure under inverse.

643/I9/5-7

474 AHO AND ULLMAN

There may be some interesting characterizations of the G S D T ' s which
are not T A T ' s , in terms of pebble automata [21, 22] walking on trees.
We can show, at least in the case in which the underlying grammars are
linear, that the G S D T ' s with S 1 in /~m (in the usual meaning of these
symbols) are equivalent to the translations produced by i pebble automata
walking on trees of a CFG, under the constraint that the automaton must
keep the pebble between itself and the root. We conjecture that this is
true in general.

The range languages of the G S D T ' s and T A T ' s may form interesting
classes. The i r relation to some of the generalizations of context free languages,
especially indexed languages [23], deserves attention. I t is also possible
that some of the common classes of languages, such as one-way, nondeter-
ministic stack languages can be characterized in terms of pebble automata
walking on trees. A hint of this possibility appears in [24]. Such an approach
might lead to good proofs or new properties concerned with the theory
of languages.

REFERENCES

1. P. NAUR (Ed.), Report on the algorithmic language ALGOL 60, Comm. A C M 3
(1960), 299-314.

2. E. T. IRONS, A syntax directed compiler for ALGOL 60, Comm. A C M 4 (1961),
51-55.

3. J. FELDMAN AND D. GalES, Translator writing systems, Comm. A C M 11 (1968),
77-113.

4. J. A. FELDMAN, A formal semantics for computer languages and its application
in a compiler-compiler, Comm. A C M 9 (1968), 3-9.

5. R. M. MeCLum~, TMG--a syntax-directed compiler, Proc. A C M 20th Nat. Conf.
(1965), 262-274.

6. J. C. REYNOLDS, An introduction to the COGENT programming system, Proc.
A C M 20th Nat. Conf. (1965), 422-436.

7. R. W. FLOYD, On the nonexistence of a phrase structure grammar for ALGOL 60,
Comm. A C M 5 (1962), 483-484.

8. R. E. STEARNS AND P. M. LEWIS, Property grammars and table machines, In-
formation and Control 14 (1969), 524-549

9. P. M. LEWIS AND R. E. STEARNS, Syntax-directed transduction, J. A C M 15
(1968), 464-488.

10. K. CULIK, Well translatable languages and ALGOL-like languages, in Formal
Language Description Languages (T. Steele, Ed.), pp. 76-85, North Holland
Press, .Amsterdam, 1966.

11. D. H. YOUNGER, Context free language processing in time n 3, in Conference
Record of 7th Annual Symposium on Switching and Automata Theory, pp. 7-20, 1966.

12. A. V. AHO AND J. D. ULLMAN, Properties of syntax directed translations, jr.
Comp. Syst. Sci. 3 (1969), 319-334.

TRANSLATIONS ON A CONTEXT FREE GRAMMAR 475

13. A. V. AHO AND J. D. ULLMAN, Syntax directed translations and the pushdown
assembler, J. Comp. Syst. Sci. 3 (1969), 37-56.

14. L. PETRONE, Syntax directed mappings of context free languages, in Conference
Record of 9th Annual Symposium on Switching and Automata Theory, pp. 160-
175, October 1968.

15. A. V. AHO AND J. D. ULLMAN, Characterizations and extensions of pushdown
translations, Math. Systems Theory 5 (1971), 172-192.

16. D. E. KNUTH, Semantics of context free languages, Math. Systems Theory 2 (1968),
127-146; also see, Math. Systems Theory 5 (1971), 95-96.

17. J. W. THATCHER, Characterizing derivation trees of context free grammars
through a generalization of finite automata theory, J. Comp. Syst. Sci. 1 (1967),
317-322.

18. J. DONER, "Decision Problems of Second-Order Logic," Technical report,
System Development Corp., 1967. Santa Monica, California.

19. W. C. ROUNDS, Mappings and grammars on trees, Math. Systems Theory 4 (1970),
257-287.

20. M. A. ARBIB AND Y. GIVE'ON, Algebra automata 1: Parallel programming as
a prolegomena to the categorical approach, Information and Control 12 (1968),
331-345.

21. M. O. RABIN, Mathematical theory of automata, in Mathematical Aspects of
Computer Science, Proc. Symposia Applied Math., Vol. XIX, pp. 173-175,
Amer. Math. Soc., Providence, RI, 1967.

22. M. J. FISCHER AND A. L. ROSENBERG, Limited random access "luring machines,
in Conference Record of 9th Annual Symposium on Switching and Automata
Theory, pp. 356-367, October 1968.

23. A. V. AHO, Indexed grammars- -an extension of context free grammars, J. ACM
15 (1968), 647-671.

24. M. A. HARRISON AND M. SCHKOLNICK, A grammatical characterization of one-way
nondeterministic stack languages, J. ACM 18 (1971), 148-172.

