On the components of $X_0(p^n)$

Robert F. Coleman

Department of Mathematics, University of California, Berkeley, 970 Evans Hall, Berkeley, CA 94720, USA

Received 22 October 2003; revised 14 July 2004
Communicated by D. Goss

In fond memory of Arnold Ross

Abstract

We show the ordinary locus of $X_0(p^n)(\mathbb{C}_p)$ is normally the set of \mathbb{C}_p-valued points on $2n$ affinoids which correspond to components of the stable model of $X_0(p^n)$. We then show the points on Edixhoven’s “horizontal” components of $X_0(p^2)$ correspond to elliptic curves which are p-isogenous to curves which Buzzard calls “too supersingular.”

© 2004 Elsevier Inc. All rights reserved.

Keywords: Stable model; Modular curve; Too supersingular; Canonical subgroup

Fix a prime p. Suppose $n \geq 1$. We first present a viewpoint of the ordinary locus of $X_0(p^n)$, slightly different from that taken in Katz–Mazur and Edixhoven [K-M,E] which allows one to see the stable structure of the ordinary locus. Next, we give a moduli-theoretic interpretation of Edixhoven’s (semi)stable model of $X_0(p^2)$ [E].

Edixhoven found the p-adic stable model of $X_0(p^2)$ by blowing up the Katz–Mazur–Edixhoven model [K-M,E] at the supersingular points of the reduction. We interpret points on the components of this model in terms of the canonical subgroups of elliptic curves described by Katz in [K-pPMF]. In particular, (E, C) corresponds to a point “on” one of Edixhoven’s “horizontal” components of $X_0(p^2)$ if and only if E/pC is “too supersingular” in the sense of Buzzard [B] i.e., has no canonical subgroup.

E-mail address: coleman@math.berkeley.edu
One can easily add tame level structure which we plan to do in a subsequent article.
These results facilitate a determination of which eigenforms on \(X_0(Np^2) \) give rise to a representations potentially crystalline at \(p \). In a future article, using the results in this paper and the description of the Fontaine monodromy operator given in [C-I], we will show that the representation attached to an eigenform on \(X_0(Np^2) \), \(p > 3 \), which isn’t old and doesn’t come by twisting from a form on \(X_0(Np) \) is potentially crystalline at \(p \).

0. Semi-stable coverings

Our approach to the semi-stable reduction of a curve is encapsulated by the following fact:

Semi-stable coverings of a curve correspond to semi-stable models of the curve.

which is proven in [C-SM, Proposition 2.1] and which we now explain.

First, a wide open is a rigid space conformal to \(\mathbb{C} \setminus D \) where \(\mathbb{C} \) is a smooth complete curve and \(D \) is a finite disjoint union of affinoid disks in \(C \), which contains at least one in each connected component. A wide open disk is the complement of one affinoid disk in \(\mathbb{P}^1 \) (it is conformal to \(B(0,1) \)) and a wide open annulus is conformal to the complement of two disjoint such disks (it is conformal to \(A(r,1) \), where \(r \in |\mathbb{C}_p| \), \(0 < r < 1 \)). One can also characterize these spaces as smooth one-dimensional rigid spaces \(W \) which contains an affinoid \(X \) such that \(W \setminus X \) is a finite union of annuli and \(H^0(W) \) is isomorphic to \(H^2(W,W-X) \) and is finite dimensional.

By the ends of \(W \), we mean \(\lim X \) Conn. Comp.\((W\setminus X)\) where \(X \) runs over the affinoid subdomains of \(W \). We call an affinoid subdomain \(X \) of \(W \) underlying if the map from Conn. Comp.\((W \setminus X)\) to the set of ends of \(W \) is bijective. A semi-stable covering of a curve \(C \) is a finite-admissible covering \(D \) of \(C \) by connected wide opens such that

(i) if \(U \neq V \in D \), \(U \cap V \) is a finite collection of disjoint wide open annuli,
(ii) if \(T, U, V \in D \) are pairwise distinct, \(T \cap U \cap V = \emptyset \),
(iii) for \(U \in D \), if

\[
Z_U := U \setminus \left(\bigcup_{V \in D, V \neq U} V \right),
\]

\(Z_U \) is a non-empty affinoid whose reduction is irreducible and has at worst regular singular points. We call \(Z_U \) an underlying affinoid of \(D \).

A final object in the category of semistable coverings exists and corresponds to the stable model of \(C \) if and only if the stable model of \(C \) exists and its reduction has at least two components.

1. The vertical components of \(X_0(p^n) \)

For an elliptic curve over \(\mathbb{C}_p \), with ordinary reduction, let \(K(E) \) denote the kernel of reduction and \(K_n(E) \) the cyclic subgroup of order \(p^n \) in \(K(E) \) (more generally,
if E is arbitrary, the canonical cyclic subgroup of order p^n, when it exists (see [B, Definition 3.4]).

Let $X_0(p^n)$ be the complete smooth rigid curve over \mathbb{Q}_p associated to the course moduli problem that associates to a scheme S over \mathbb{Q}_p the set of pairs (E, C) where C is a subgroup of E of order p^n. There is an (Atkin–Lehner) involution α of $\bigcoprod_{n \geq 0} X_0(p^n)$ which takes the point in $X_0(p^n)$ corresponding to the pair (E, C) to the point corresponding to $(E/C, E[p^n]/C)$. There are also two maps $\pi_f, \pi_v : \bigcoprod_{n \geq 1} X_0(p^n) \to \bigcoprod_{n \geq 0} X_0(p^n)$ which take the point in $X_0(p^n)$ corresponding to the pair (E, C) to the point corresponding to (E, pC) and to $(E/p^{n-1}C, C/p^{n-1}C)$, respectively. We have,

$$\alpha \circ \pi_v = \pi_f \circ \alpha. \quad (1)$$

There are several affinoids to consider in $X_0(p^n)$. First, there are the affinoids X_{ab}, $a + b = n$, implicit in the work of Katz–Mazur–Edixhoven whose \mathbb{C}_p-valued points correspond to pairs (E, C) where E is a generalized elliptic curve over (the ring of integers in) \mathbb{C}_p with ordinary (this includes multiplicative) reduction and $C \cap K(E) = \text{Ka}(E)$ (The reduction of C modulo p is what is called “(a, b)-cyclic” [K-M, 13.4.1]) [K-M, E].

More precisely:

Let $X_0(p)$ denote the model of $X_0(p)$ found by Deligne and Rapoport [D-R, Theorem 1.16]. The formal completion of $X_0(p)$ along the smooth locus of its reduction is an affinoid subdomain of $X_0(p)$ with two connected components. We take X_{10} to be the component containing the cusp ∞ and X_{01} the cusp 0. When $p \geq 5$, we could also obtain the more general X_{ab} from the “(a, b)-component” of Edixhoven’s model, in this way. (See also [K-M, Section 13.4].)

Now let $\pi_{ab} = \pi_f^b \circ \pi_v^a$. Then, if $a + b = n$

$$X_{ab} = \pi_{a-1,b}^{-1} \pi_{a-1,b}^1 X_{10} \cap \pi_{a,b-1}^{-1} \pi_{a,b-1}^1 X_{01},$$

where we take $\pi_{a-1,b}^{-1} \pi_{a-1,b}^1 X_{10} = \pi_{n-1}^{-1} \pi_{n-1}^1 X_{01} = X_0(p^n)$. The rigid space X_{ab} is an affinoid subdomain of $X_0(p^n)$ because a finite cover of an affinoid is an affinoid and the intersection of two affinoid subdomains of a curve is an affinoid subdomain (see Corollary A.7).

When $a \geq b$ (which we’ll assume until pointed out otherwise), the points on X_{ab} also correspond to pairs (E, \mathcal{P}) where E is an elliptic curve with ordinary reduction and \mathcal{P} is a pairing on $K_a := K_a(E)$ onto μ_{p^b}. Indeed, define a pairing \mathcal{P} on K_a by setting

$$\mathcal{P}(A, B) = (R, S)_{E,n}.$$
where $S \in C$, $p^bS = B$ and $R \in K_n$, $p^bR = A$. Here $(\cdot, \cdot)_{E,i}$ denotes the Weil pairing into μ_{p^i} on $E[p^i]$. On the other hand,

$$C_{\mathcal{P}} = \{ S \in E[p^n] : p^bS \in K_a, (R, S)_{E,n} = \mathcal{P}(p^bR, p^bS), \forall R \in K_n \},$$

is a cyclic group of order p^n such that $C_{\mathcal{P}} \cap K_n = K_a$.

We see that \mathbb{Z}_p^* acts on X_{ab} via $\tau_r : (E, \mathcal{P}) \mapsto (E, \mathcal{P}^r)$, for $r \in \mathbb{Z}_p^*$, $(C_{\mathcal{P}} = \{ T \in C_{\mathcal{P}} : \exists S \in C_{\mathcal{P}}, T \equiv rS \mod K, p^bT = p^bS \}).$

One can use this point of view to show that, over $C_{\mathcal{P}}$, X_{ab} has as many irreducible components as classes mod squares in $(\text{the reduction of } X_{pb})$. This holds if $\text{image of } X_{pb}$ represents a point on $K(E)$.

Now fix b and set $B := B_b$. All the pairs (E, \mathcal{P}) such that the class of $\mathcal{P}(P, P)$ for a generator P of $K_a(E)$ equals a given element of B lie on the same component of X_{ab} because the map $X_{ab} \rightarrow B$ which takes the point corresponding to (E, \mathcal{P}) to the class of \mathcal{P} is rigid analytic. To see this, let X_{ab}^1 be the affinoid above X_{ab} in $X_1(p^n)$. Let Y be the inverse image in X_{ab}^1 of a component of X_{ab}.

Suppose (E, Q) corresponds to a point y of Y, so p^bQ generates $K_a(E) = (Q) \cap K(E)$. Suppose $R \in K(E)$, $p^bR = Q$. Then, $y \mapsto (R, Q)_{E,n}$ is a rigid analytic map from Y to the primitive p^bth roots of unity and its image modulo the action of $((-Z/p^bZ)^*)^2$ depends only on the image of y in X_{ab}.

For $\beta \in C_{ab}$, call the corresponding component in X_{ab}, X_{ab}^{β}. It is easy to see these components are non-empty. In fact, these components are irreducible. To see this, first, the reduction of X_{ab}^{β} is isomorphic (non-canonically) to the quotient of the Igusa curve $Ig(p^b)$ by the group of automorphisms

$$H_b = \{ z_t : z_t(E, Q) = (E, tQ), t \in (Z/p^bZ)^*, t^2 = 1 \}. $$

(In fact, $z_{-1} = z_1$.) Indeed, let $\zeta \in \mu_{p^b}$ represent β, then there exists a $P \in K_b$ such that $\mathcal{P}(P, P) = \zeta$. Let $Q \in E[p^{2b}]$ such that $(P, Q)_{W_2b} = \zeta$. Then the point (\tilde{E}, \tilde{Q}) of $Ig(p^b)$ is well defined up to the action of H_b. If ζ is replaced with ζ^2 we can replace P with yP and Q with yQ.

Now, the coup de grace is that X_{ab}^{β} is naturally isomorphic to X_{ab}^{β}. Simply, if (E, \mathcal{P}) represents a point on X_{ab}^{β}, (E, \mathcal{P}') represents a point on X_{ab}^{β}, where

$$\mathcal{P}'(R, S) = \mathcal{P}(p^{a-b}R, p^{a-b}S)$$

for $R, S \in K_a$. Denote this map from X_{ab}^{β} to X_{ab}^{β} by r_{ab}^{β}.
These components can all be defined over K_p, where

$$K_p = \begin{cases} \mathbb{Q}_p(\sqrt{(-1)(p-1)/2}) & \text{if } p \text{ is odd}, \\ \mathbb{Q}_2(\sqrt{-1}, \sqrt{2}) & \text{if } p = 2. \end{cases}$$

To see this, define a function $f_{a,b}$ on $X_{a,b}^1$ with values in μ_{p^a}, by: if (E, P) represents a point x of $X_{a,b}^1$,

$$f_{a,b}(x) = (Q, P)_{E,n},$$

where $Q \in K_n(E)$ and $p^bQ = p^bP$. Clearly, $f_{a,b}$ is a rigid analytic function, and using it, we see $X_{a,b}^1$ has at least $\phi(p^a)$ irreducible components. Now, if $x_{a,b} \in B$, let $\chi_{a,b}$ be the function on the primitive p^bth roots of one such that $\chi_{a,b}(x) = \begin{cases} 1 & \text{if } x \in \beta, \\ 0 & \text{otherwise}. \end{cases}$ Then $g_{a,b} = \chi_{a,b} \circ f_{a,b}$ is a rigid analytic function on $X_{a,b}^1$ and if $\tau \in \text{Gal}(\bar{Q}_p/K_p)$, $g_{a,b}(\tau(E, P)) = g_{a,b}(E, P)$.

It follows that $g_{a,b}$ is defined over K_p. But also, if x and y, in $X_{a,b}^1$, have the same image in $X_0(p^n)$, $g_{a,b}(x) = g_{a,b}(y)$, Thus $g_{a,b}$ is the pullback of a function on $X_{a,b}^1$ defined over K_p. We thus see the components $X_{a,b}^1$ are defined over K_p.

Also, if $\gamma \in C_{a,b}$, $X_{a,b}^\beta \cong X_{a,b}^\gamma$ because, if $r \in \mathbb{Z}^*_p$ such that $r\beta = \gamma$, τ_r restricts to an isomorphism from $X_{a,b}^\beta$ onto $X_{a,b}^\gamma$.

There is also a natural map $i_{a,b}^\beta : X_{a,b}^\beta \to X_{b,b}^\beta$.

$$(E, \mathcal{P}) \mapsto (E/K_{a-b}, \mathcal{P}|_{K_a/K_{a-b}}).$$

One can show $t_{b+1, b}$ is the restriction of π_v to $X_{b+1, b}$. Also, $t_{b+1, b}^\beta \circ r_{b+1, b}^\beta$ is a lift of Frobenius. Indeed, suppose

$$t_{a, b}^\beta \circ r_{a, b}^\beta (E, \mathcal{P}) = (E/K_{a-b}, \mathcal{P}')$$

and $\phi_e : E \to E/K_c$ is the natural isogeny. Suppose $P, Q \in K_c$, $p^{a-b}R = P$ and $p^{a-b}S = Q$. Then,

$$\mathcal{P}'(\phi_{a-b}(R), \phi_{a-b}(S)) = \mathcal{P}(P, Q).$$
Proposition 1.1. Suppose \((E, \mathcal{P})\) represents a point \(x\) in \(X_{bb}\). Then \(x\) is represented by \((E', \mathcal{P}')\), where \(E' = E/C \mathcal{P}\) and if \(\rho: E \to E'\) is the natural isogeny
\[
\mathcal{P}'(\rho(u), \rho(v)) = \mathcal{P}(p^b u, -p^b v)
\]
if \(u, v \in K_{2b}(E)\).

Proof. First, \(x\) is represented by \((E/C \mathcal{P}, E[2b]/C \mathcal{P})\). Suppose \(A, B \in K_{2b}(E)\).

Let \(P, Q \in K_{2b}(E)\) such that \(p^b P = A\) and \(p^b Q = B\). Suppose \(R \in E[2b]\), \(p^b R \equiv P \mod C \mathcal{P}\) and \(S \in K_{3b}(E)\), \(p^b S = Q\). Write \(p^b T = -p^b P = -A\).

\[
P' = \begin{pmatrix} x \end{pmatrix}_{E', 2b} = \begin{pmatrix} (S, R) \end{pmatrix}_{E, 3b} = \begin{pmatrix} (p^b S, p^b R) \end{pmatrix}_{E, 2b} = \begin{pmatrix} (Q, T) \end{pmatrix}_{E, 2b} = \mathcal{P}(B, -A).
\]

\[\square\]

Corollary 1.1.1. If \(p\) is odd, \(\mathcal{X}(X_{bb}) = X_{bb}^{(\frac{1}{p})\beta}\).

If \(a < b\), we set \(X_{ab}^\beta = \mathcal{X}(X_{ba}^\beta)\).

Suppose \(C\) a curve over \(\mathbb{C}\) which has a stable model \(C\). We call the rigid spaces \(\text{red}^{-1}x\), where \(x\) is a point on \(\overline{C}\), residue classes of \(C\). If the reduction of \(C\) has at least two components, we call the affinoids \(\text{red}^{-1}Z\) in \(C\) where \(Z\) is the smooth locus of a component of \(\overline{C}\) underlying affinoids of \(C\). We define residue classes of affinoids similarly.

Let \(X_0(p^n)\) denote the stable model of \(X_0(p^n)\), when it exists.

Theorem 1.2. If \(p \geq 23\), \(c + d = n\) and \(\beta \in B_{\min(c, d)}\) then \(X := X_0(p^n)\) exists, its reduction has at least two irreducible components and \(X_{cd}^\beta\) is an underlying affinoid of \(X := X_0(p^n)\).

Proof. Since \(p \geq 23\), \(X_0(p)\) and hence \(X_0(p^n)\) has genus at least 2, and since the reduction of \(X_0(p)\) has two components it follows from Proposition 1.5 of [C-SM] that the reduction of \(X\) has at least two irreducible components. We remark that the theorem is true for \(n = 1\). In fact, it follows from [D-R] that \(X_{10}\) and \(X_{01}\) are the underlying affinoids of \(X_0(p)\), in this case.

Now since \(X_{cd}^\beta\) is an affinoid with good reduction, it is either contained in a residue class of \(X\) or is the complement of finitely many residue classes in an underlying affinoid of \(X\). Suppose \(X_{cd}^\beta\) is contained in a residue class \(U\). Then since \(X_{cd}^\beta\) maps finitely onto \(X_{10}\) or \(X_{01}\) via \(\pi_f\) and the reductions of these affinoids are smooth affines with at least three points at infinity, the same is true for the reduction of \(X_{cd}^\beta\). Since
U is a wide open disk or annulus it follows that one of the connected components of \(U \setminus X_{c,d}^B \) is a wide open disk \(D \). The image of \(D \) under \(\pi \) can not be contained in \(X_{10} \) or \(X_{01} \) since some the points in \(D \) correspond to supersingular elliptic curves. It follows that \(\pi(D) \) is disconnected from \(X_{10} \) or \(X_{01} \) which is impossible since \(D \) is connected to \(X_{c,d}^B \). Thus, \(X_{c,d}^B \) is the complement of finitely many residue classes in an underlying affinoid \(Z \) of \(X \). Since these residue classes must be disks, we see they can’t exist using the same argument as above. □

This result should be true for all \(p \), for sufficiently large \(n \).

If \(a \geq b > 0 \) there is a natural map \(p: C_{ab} \rightarrow C_{a,b-1}; (A, \mathcal{P}) \mapsto (A, \mathcal{P}^p) \). If \(a > b > 0 \), there is another natural map \(\sigma: C_{ab} \rightarrow C_{a-1,b}; (A, \mathcal{P}) \mapsto (A/p^{a-1}A, \mathcal{P}) \).

Lemma 1.3. Suppose \(a + b = n > 1 \) and \(\beta \in C_{ab} \). Then \(\pi_f \) restricts to a finite map \(X_{ab}^\beta \rightarrow Y_{ab}^\beta \) where

\[
Y_{ab}^\beta = \begin{cases}
X_{ab}^\beta \text{ if } a \geq b \geq 1, \\
X_{a,b-1}^\beta \text{ if } a < b \geq 1, \\
X_{a-1,b} \text{ if } a \geq 1 = b + 1.
\end{cases}
\]

The degree of this restriction is

\[
\begin{cases}
p & \text{if } p > 2 \text{ and } b > 1 \text{ or } p = 2 \text{ and } b \geq 4, \\
(p-1)/2 & \text{if } p > 2 \text{ and } b = 1, \\
1 & \text{otherwise.}
\end{cases}
\]

Proof. First note that \(\pi_f : X_0(p^n) \rightarrow X_0(p^{n-1}) \) is finite of degree \(p \). Also if \(a + b = n \) and \(b > 1 \), \(\pi_f^{-1}X_{a,b-1} = X_{ab} \). We have seen that the irreducible components of \(X_{a,b-1} \) are the \(X_{a,b-1}^\gamma \) for \(\gamma \in C_{a,b-1} \). It is easy to see, using (1), that \(X_{ab}^\beta \) maps to \(Y_{ab}^\beta \).

Suppose now \(p > 2 \) and \(b > 1 \) or \(p = 2 \) and \(b > 3 \). Since \(|C_{a,b-1}| = |C_{ab}| \), this implies that each irreducible component of \(X_{ab} \) maps with degree \(p \) onto an irreducible component of \(X_{a,b-1} \). This proves the lemma in this case.

Now suppose \(p = 2 \) and \(2 \leq b \leq 3 \). The lemma follows in this case because two irreducible components of \(X_{ab} \) map to each irreducible component of \(X_{a,b-1} \).

Now note that \(\pi_f^{-1}X_{a-1,0} = X_{a-1} \) and \(\pi_f |_{X_{a-1}} \) has degree 1. This completes the proof the lemma when \(p = 2 \) and when \(b = 0 \). So suppose \(p > 2 \) and \(b = 1 \). Then \(\pi_f \) restrict to a finite degree \(p-1 \) map from \(X_{a-1}^\beta \) onto \(X_{a,0}^\beta \). Where \(\beta \in C_{a,1} \) and \(r \in (\mathbb{Z}/p\mathbb{Z})^* \) is a quadratic non-residue. The lemma follows from the fact that \(\pi_f \circ \tau_r = \tau_r \circ \pi_f \) on \(X_{ab} \), \(a \geq b \). □

2. Annuli

Suppose \(r \leq s \in \mathbb{R} \). By the width of an annulus isomorphic to \(A(r,s) \), we mean \(\log_p(s/r) \). If \(A \) is a wide open annulus, denote its width by \(w(A) \).
Lemma 2.1. Suppose \(f : \mathcal{A} \to \mathcal{B} \) is a morphism of wide open annuli such that \(C \) is not contained in any affinoid subdomain. Then \(C \) is an end of \(\mathcal{B} \), \(f : \mathcal{A} \to C \) is finite and \(w(C) = \deg_C(f)w(\mathcal{A}) \).

Proof. We can suppose \(\mathcal{A} = A(r, 1) \), \(B = A(s, 1) \) and

\[
\lim_{|x| \to 1} |f(x)| = 1.
\]

Then \(h(T) := f^*(T) \) is a unit in \(A(\mathcal{A}) \). We can write

\[
h(T) = cT^e g(T),
\]

where \(c \in K^*, e \in \mathbb{Z} \) and \(|g(x) - 1| < 1 \) for \(x \in \mathcal{A} \). It follows that \(|c| = 1 \), \(C = A(r^e, 1) \) and \(e = \deg_C(f) \). Thus,

\[
w(C) = -\log_p(r^e) = -\deg(f) \log_p(r) = \deg(f)w(\mathcal{A}).
\]

If \(\mathcal{A} \) is an annulus over \(K \), there are two natural maps \(\Omega^1_{\mathcal{A}/K} \to K \). Indeed, if \(T \) is a parameter on \(\mathcal{A} \) we can write every element \(\omega \) of \(\Omega^1_{\mathcal{A}/K} \to K \) in the form

\[
\left(\sum_{i=-\infty}^{\infty} c_i(\omega, T)T^i \right) \frac{dT}{T},
\]

where \(c_i(\omega, T) \in K \). The map \(\omega \mapsto c_1(\omega, T) \) is a linear map and if \(T' \) is another parameter, there is an \(\varepsilon \in \{\pm 1\} \) such that

\[
c_1(\omega, T) = \varepsilon c_1(\omega, T')
\]

for all \(\omega \in \Omega^1_{\mathcal{A}/K} \) (see [C-RLC, Section II].) We call a choice of one of these two homomorphisms an **orientation** of \(\mathcal{A} \) and if \(\mathcal{A} \) is oriented, we denote the chosen homomorphism by \(\text{Res}_A \).

The following lemma will be used in a future article where we will discuss the crystalline nature of the representation attached to an eigenform.

Lemma 2.2. Suppose \(h : \mathcal{A} \to \mathcal{B} \) is a finite surjective morphism of annuli and suppose \(\mathcal{A} \) and \(\mathcal{B} \) are oriented. Then, if \(\omega \) is a differential on \(\mathcal{B} \) and \(v \) is a differential on \(\mathcal{A} \)

\[
\text{Res}_A h^* \omega = \varepsilon d \text{Res}_B \omega \quad \text{and} \quad \text{Res}_B \text{Tr}_h v = \varepsilon \text{Res}_A v,
\]

where \(d \) is the degree of \(h \) and \(\varepsilon = -1 \) if \(h \) is orientation reversing and \(1 \) otherwise. If \(h \) is an inclusion such that \(\mathcal{B} \setminus h(\mathcal{A}) \) is a union of annuli, the first formula is still true with \(d = 1 \).
Lemma 2.3. Suppose $h: A \to B$ is morphism of annuli, $C \subseteq B$ is a subannulus at an end of B and $h^{-1}C \to C$ is finite of degree d. Then $h(A)$ is an annulus and $h: A \to h(A)$ is finite, étale of degree d. If $(d, p) = 1$, $h: A \to h(A)$ is Galois and $A \times h(A)A$ is a disjoint union of d annuli each projecting isomorphically onto A.

Proof. Suppose $A = A(t, 1)$ and $B = A(s, 1)$ and $C = A(t, 1)$, $t \geq s$. We can write

$$h(T) = cT^n g(T),$$

where $|g(T) - 1| < 1, s \leq |c| < 1$ and $s \leq |c| r^n \leq 1$. We can suppose $n \geq 0$. The hypothesis about C implies $n = d$ and $|c| = 1$. It follows that h is finite onto $A(r^n, 1)$ of degree d.

To prove the last part observe that $g(T)^{1/d}$ makes sense. \(\square\)

By a circle we mean an affinoid isomorphic to $\mathcal{C}_p(T, T^{-1})$, i.e., an annulus conformal to $A[1, 1]$. We call a subannulus U of an annulus A concentric if the connected components of $A \setminus U$ are annuli.

3. Horizontal components

Suppose $p > 3$ is prime. The reduction of Edixhoven’s semi-stable model X'_2 of $X_0(p^2)$ (which may be obtained by blowing up the Katz–Mazur–Edixhoven regular model over \mathbb{Z}_p of $X_0(p^2)$ at the supersingular points on its reduction over the extension of \mathbb{Q}_p^{nr} of degree $(p^2 - 1)/2$) has four vertical components $X_{20}, X'_{11}, X_{11}^-$ and X_{02} (as described above (we also let $X'_{20} = X_{20}$ and $X_{02}^\pm = X_{02}$)) and $|SS|$ horizontal components (we’ll frequently use SS to denote $|SS|$, $Z_2(s)$ for $s \in SS$, where SS is the set of supersingular j-invariants [E]. (It is stable if $|SS| > 1$.) Moreover, the reductions of any two of these components intersect when and only when one is vertical another is horizontal, in which case, they intersect in one point.

Remark. X'_2 is stable if there are at least two supersingular points mod p. In general, it may be characterized as follows. Recall, $\pi_f: X_0(p^2) \to X(1)$ is the forgetful map. Let $D \subseteq X(1)$ be the disk around ∞ corresponding to elliptic curves with multiplicative reduction. Then X'_2 is the minimal semistable model X of $X_0(p^2)$ such that the sections of π_f over D factor through embeddings $Spec(\overline{A}_f(D)) \to X$.

An elliptic curve over \mathbb{C}_p is called too supersingular if it has no canonical subgroup and nearly too supersingular if it is p-isogenous to a too supersingular curve. Nearly too supersingular curves do have canonical subgroups. (Canonical subgroups of elliptic curves are introduced by Katz [K].) These are subgroup schemes of order p. Buzzard defined canonical subgroups of order p^n [B, Definition 3.4.]. If (E, C) is a pair consisting of an elliptic curve E over \mathbb{C}_p with a model with good supersingular reduction and a subgroup C of order p, the Buzzard invariant of (E, C) is the positive real number $b(E, C)$ which is characterized by the properties, $b(E, C)$ is the valuation of
the Hasse invariant of the reduction modulo p of a model for E with good reduction when E has a canonical subgroup and it is C and in general

$$b(E, C) + b(E/C, E[p]/C) = 1.$$

(It is always true that either C is the canonical subgroup of E or $E[p]/C$ is the canonical subgroup of E/C.) In particular, E is too supersingular if and only if $b(E, C) = p/(p + 1)$ for one and hence all subgroups C of E of order p. If E has a canonical subgroup K of order p^2, $b(E/K_1, K_2/K_1) = pb(E, K_1)$ and if $K_1 \neq C$, $b(E/C, E[p]/C) = b(E, C)/p$.

In general, if H is a supersingular elliptic curve over $\overline{\mathbb{F}}_p$ corresponding to $s \in SS$ and $b \in \mathbb{Q}$, the pairs (E, C) such that E reduces to a curve isomorphic to H and $b(E, C) = b$ correspond to the \mathbb{C}_p-valued points on a concentric circle, $C_b(s)$, in the wide open annulus $A_1(s)$ in $X_0(p)$ above the singular point of the reduction of $X_0(p)$ corresponding to s. Moreover, $A_1(s)\backslash C_b(s) = W_\infty \bigcup W_0$ where W_∞ is a wide open annulus connected to X_{10} of width b.

Let $Z_2(s) = \text{red}^{-1}(Z(s)) - \bigcup_{i+j=2} X_i^0$ be the underlying affinoid of $\text{red}^{-1}Z(s)$.

Theorem 3.1. The \mathbb{C}_p-valued points of $Z_2(s)$ correspond to pairs (E, C) where E is a nearly too supersingular elliptic curve and C is a cyclic subgroup of order p^2 and pC is its canonical subgroup or equivalently $Z_2(s)$ is the inverse image under the forgetful map to $X_0(p)$ of $C_{1/(p+1)}(s)$.

This will be proven below.

Proposition 3.2. Suppose $f: W \to V$ is a finite map of basic wide opens and V is not a disk. Then if X is a minimal underlying affinoid of W, $Z := f(X)$ is a minimal underlying affinoid of V and $X = f^{-1}(Z)$.

Remark. A basic wide open which is neither a disk nor an annulus has a unique minimal underlying affinoid. The minimal underlying affinoids in a wide open annulus are the concentric circles. The image of a disk or an annulus under a finite map is a disk or an annulus.

Proof. If V is not an annulus let Y be its minimal underlying affinoid. If V is an annulus, the image of X is an affinoid with irreducible reduction so must be contained in a concentric circle of V which we will call Y in this case. Let E be a connected component of $W \backslash X$. Then, because f is finite, $U := f(E)$ is a disk or annulus containing an annulus at an end of V so in the corresponding connected component D of $V \backslash Y$. Claim, it must be contained in D. First, suppose V is not an annulus. Then by [C-RLC] (see also, [BL]) U must be contained in Y or in a component of $V \backslash Y$. Since the former is precluded, we have our claim, in this case. If V is an annulus, the claim follows from the fact that if h is a unit on $A(r, 1)$, $h = cT^n$, where $c \in K^*$, $n \in \mathbb{Z}$ and $|g - 1| < 1$ so, in particular if $n \neq 0$, determines a finite map onto $A(|c|T^n, |c|)$. This implies either $U \cap Y$ equals Y or \emptyset. Suppose $Y \subset U$. Then there is a proper concentric
wide open subannulus A of E such that $f^{-1}(D \cup Y) \subset A$. It follows that $U - f(A)$ and Y are disconnected but this is impossible since $E - A$ and X are connected and so $f(E) \subseteq D$.

We conclude $f^{-1}Y = X$ and finiteness implies $Y = f(X) = Z$ which concludes the proof. □

It follows that $\pi_f(Z_2(s))$ is a circle.

One thing we may conclude from Lemma 2.1 is that in the situation of Proposition 3.2, $W \setminus X$ maps finitely onto $V \setminus Y$.

There exists a semi-stable model X_1 of $X_0(p)$ such that π_f extends to a finite morphism $X_2 \to X_1$ (cf. [C-SM]). This amounts to adding components corresponding to the circles $\pi_f(Z_2(s))$, $s \in SS$. Let $G_0(p^n)$ be the oriented graph of the reduction of X_n (one vertex for every irreducible component and one edge for every singular point).

The component X_{ij}^\pm of \overline{X}_n is the irreducible component of the reduction of X_n containing the reduction of X_{ij}^\pm.

For every supersingular point s on the reduction of $X(1)$ we have one component $Z_n(s)$ of the reduction of X_n lying over it. Let

$$Z_1(s) = \text{red}^{-1}(Z_1(s) - (X_{10} \cup X_{01})) = \pi_f(Z_2(s))$$

be the underlying circle in $A_1(s) = \text{red}^{-1}Z_1(s)$ and let $A_{ij}^\pm(s)$ be the annulus which is the reduction inverse of the intersection of $Z_n(s)$ and X_{ij}^\pm. This annulus has a natural orientation corresponding to the ordered pair $(X_{ij}^\pm, Z_n(s))$. We also put

$$A_{ij}^\pm = \bigcup_s A_{ij}^\pm(s).$$

and $A_{11}(s) = A_{11}(s)^+ \cup A_{11}(s)^-$. Theorem 3.1 is equivalent to the assertion that $Z_1(s)$ is the nearly too supersingular circle $C_{1/(p+1)}$, which we will now prove.

Note that π_f has degree p and

$$\pi_f^{-1}A_1(s) \setminus Z_2(s) = A_{20}(s) \cup A_{11}^+(s) \cup A_{11}^-(s) \cup A_{02}(s)$$

Lemma 3.3. $w(A_{20}(s)) = w(A_{02}(s))$, and

$$w(A_{10}(s)) + w(A_{01}(s)) = 1.$$

Proof. As the Atkin–Lehner involution τ acts on X_2 as X_2 is canonical and $\tau(X_{20}) = X_{02}$ we must have $\tau(A_{20}(s)) = A_{02}(s)$ so $w(A_{20}(s)) = w(A_{02}(s))$. The last assertion
follows from the fact that the annulus $A_1(s)$ has width 1 and is the disjoint union of the annuli $A_{10}(s)$ and $A_{01}(s)$ and the circle $Z_1(s)$. □

Lemma 3.4. The maps induced by $\pi_f: A_{20}(s) \to A_{10}(s), A_{11}^+(s) \to A_{10}(s), A_{11}^-(s) \to A_{10}(s), A_{11}^+(s) \to A_{10}(s)$ have degrees 1, $(p - 1)/2$, $(p - 1)/2$ and p respectively.

Proof. This follows from Lemma 2.3 and the fact that the morphisms $X_{20} \to X_{10}, X_{11}^+ \to X_{10}$ and $X_{20} \to X_{01}$ have, by Lemma 1.3, degrees 1, $(p - 1)/2$ and p respectively. □

Lemma 3.5. $w(A_{10}(s)) = w(A_{20}(s))$ and $w(A_{01}(s)) = pw(A_{02}(s))$.

Proof. This follows from the previous lemma and Lemma 2.1. □

Thus $w(A_{10}(s)) = 1/(p + 1)$ so $Z_1(s) = C_{1/(p+1)}(s)$. This concludes the proof of Theorem 3.1.

Let $W_{20} = \text{red}^{-1}(X_{20})$ etc.

Corollary 3.5.1. The pair (E, C) corresponds to point in $W =: W_{20} \cup W_{11}^- \cup W_{11}^+$ if and only if E has supersingular reduction, $K_2(E)$ exists and $pC = K_1(E)$. It corresponds to point in W_{20} if and only if $C = K_2(E)$, to a point in W_{11}^- if and only if $C \neq K_2(E)$ and the induced pairing $K_1(E) \times K_1(E) \to \mu_p$ is of type e.

Proof. The first sentence of the corollary is clear since we know $\pi_f^{-1}W_{10} = W$. Next, there is a section s of $\pi_f: W_{20} \to W_{10}$, since if (E, D) corresponds to a point in W_{10}, $K_2(E)$ exists and $K_1(E) = D$. Then $s(P)$ will correspond to $(E, K_2(E))$. This is a section because it is when restricted to X_{10} and W_{20} is irreducible. This establishes the corollary for W_{20}. Now suppose (E, C) corresponds to a point P in W_{11}^-. Then $C \neq K_2(E)$, so we get a pairing P_P on $K_1(E)$ onto μ_p. If c generates $K_1(E)$ and $P_P(c,c) = \zeta^a$, $\zeta(a)$ depends only on P and gives an analytic function on W_{11}^-. It must be constant since W_{11}^- is connected. This concludes the proof. □

Appendix A. Affinoids in curves

We prove some well-known results about curves for which we don’t know a good reference.

Suppose K is a complete subfield of \mathbb{C}_p with ring of integers R. Suppose C is a smooth proper curve over K and \mathcal{C} is a model of C over R. If V is a subscheme of the reduction \overline{C} of C, let $X(C, V)$ denote generic fiber of the formal completion of C along V. If V is a reduced open affine, $X(C, V)$ is an affinoid subdomain of C with reduction V. Now suppose C is semi-stable and S is a subset of the set of components $T := T_C$ of \overline{C}. Let $Y_S = \bigcup_{Z \in S} Z$, $Y_S^\circ = Y_S \setminus Y_T \setminus S$ and let $X(C, S) = X(C, Y_S^\circ)$. This is an affinoid subdomain if $S \neq T$ of C because if C_S is the blow down of C along $\bigcup_{Z \in S} Z \subseteq Y_S^\circ$ then the image Y'_S of Y_S° in C_S is a reduced open affine in \overline{C}_S and

$$X(C, S) = X(C_S, Y'_S).$$

Of course, $X(C, T) = C$. Also set $S^\infty = Y_S \setminus Y_S^\circ$.

If $f: \mathcal{T} \to \mathcal{C}$ is a morphism of semi-stable models of \mathcal{C}, and $S_{\mathcal{T}} = \{ Z \in T_{\mathcal{T}} : \tilde{f}(Y^\alpha_Z) \subseteq Y^\alpha_S \}$

$$X(\mathcal{T}, S_{\mathcal{T}}) = X(\mathcal{C}, S).$$ \hfill (A.1)

Also, if $E \subseteq \mathcal{C}_p$ is a complete extension of K,

$$X(\mathcal{C}_E, S_{\mathcal{R}_E}) = X(\mathcal{C}, S)_E.$$

If U is another subset of T,

$$X(\mathcal{C}, S) \cap X(\mathcal{C}, U) = X(\mathcal{C}, S \cap U) \quad \hfill (A.2)$$

and if $S^\infty \cap U^\infty \subseteq (S \cap U)^\infty$

$$X(\mathcal{C}, S) \cup X(\mathcal{C}, U) = X(\mathcal{C}, S \cup U). \quad \hfill (A.3)$$

If $f: \mathcal{T} \to \mathcal{C}$ is a morphism of semi-stable models of \mathcal{C} and $\tilde{f}^{-1} x \in T_{\mathcal{T}}$ for $x \in S^\infty \cap U^\infty$, $S^\infty_{\mathcal{T}} \cap U^\infty_{\mathcal{T}} \subseteq (S_{\mathcal{T}} \cap U_{\mathcal{T}})^\infty$ so

$$X(\mathcal{C}, S) \cup X(\mathcal{C}, U) = X(\mathcal{T}, S_{\mathcal{T}} \cup U_{\mathcal{T}}). \quad \hfill (A.4)$$

If $\{ W_Z : Z \in T \}$ is the semi-stable covering of \mathcal{C} corresponding to \mathcal{C},

$$X(\mathcal{C}, S) = \bigcup_{Z \in S} W_Z \setminus \bigcup_{Z \in T \setminus S} W_Z.$$

Theorem A.1. If X is an affinoid subdomain of \mathcal{C} and S is a semi-stable model of \mathcal{C} over R_K, then there exists a finite extension E of K and a semi-stable model \mathcal{T} of \mathcal{C}_E over R_E mapping to $S_{\mathcal{R}_E}$ and a subset S of $T_{\mathcal{T}}$ so that $X_E = X(\mathcal{C}, S)$.

We first extend scalars to \mathcal{C}_p (one can descend later). We will prove the translation of this theorem into the language of semi-stable coverings. That is, we will regard S as a semi-stable covering and find an appropriate semi-stable refinement \mathcal{T} of S. We let \overline{S} denote the reduction of the corresponding semi-stable model. We may and will suppose X is irreducible (equivalently, connected).

By a residue class U of S, we mean the subspace of \mathcal{C} corresponding to a point P of \overline{S} and we let $\overline{U} = P$. The space U is a wide open disk or wide open annulus according as P is smooth or singular and we call it either a residue disk or residue annulus. if $W \in S$, let Z_W denote the underlying affinoid in W.

If $R \subseteq S$ are rigid spaces let $\mathcal{C}(R, S)$ denote the subspace of S connected to R. If f is function on S and R is an affinoid $\| f \|_R$ will denote the sup-norm of the restriction of f to R. By a circle we mean an affinoid isomorphic to $\mathcal{C}_p(\mathcal{T}, T^{-1})$, i.e., an
annulus conformal to $A[1,1]$. We call a subannulus U of an annulus A concentric if the connected components of $A\setminus U$ are annuli.

Lemma A.2. If U is a wide open disk in C, there exists a function z on C with a single pole such that $U = \{x \in C : |z(x)| > 1\}$.

Proof. Claim: We can find a semi-stable covering S of C so that U is contained in a residue disk D of S. This is clear when C has a model with good reduction. Otherwise, there exists a semi-stable covering T of C such that no element of T is a disk (e.g., the covering corresponding to the stable model if the genus of C is at least 2 and this model has at least two components). Then U must be contained in a residue class of T. If it is contained in a residue annulus A, it must be contained in a concentric circle Z in A (see [C-RLC, Lemma 3.2]). We can then take S to be

$$\{A\} \cup \{ \text{CC}(W\setminus A, W\setminus Z) : W \in T \}.$$

It follows using a blowing down argument as above, applied to S that $Y := C\setminus D$ is an affinoid.

Now, let $P \in U$ and suppose f is a function on C with a pole only at P. Then

$$D = \{x \in C : |f(x)| > ||f||_Y\}$$

and there exists $r \in |C_p|$, $U = \{x \in D : |f(x)| > r\}$. Suppose $a \in C_p$, $|a| = r$. Take $z = f/a$. □

We will say such a z determines U.

Lemma A.3. If D is a collection of disjoint wide open disks D in C such that $D \cap X \neq \emptyset$ and $D \setminus X \neq \emptyset$, then D is finite.

Proof. For $U \in D$, let z_U be a function on C which determines U. Suppose $a_U \in C_p$, $|a_U| = ||z_U||_X > 1$. Let $f_U = (z_U/a_U)|_X$. Then $\overline{f}_U \neq 0$ and $\overline{f}_U \overline{f}_V = 0$ if $V \neq U$ in D. Since \overline{X} is reduced of finite type over \overline{F}_p, this implies D is finite. □

Lemma A.4. If Z is an underlying affinoid of S, then either (i) $X \cap Z = \emptyset$, (ii) X is contained in a residue class of Z or (iii) $X \cap Z$ contains all but finitely many residue classes of Z.

Proof. Suppose neither (i) nor (ii) is true. Let D be a residue disk in Z and z a function on C which determines D. Then since $X \setminus D = \{x \in X : |z(x)| \leq 1\}$, $Y := X \setminus D$ is an affinoid. Also $V := C \setminus D$ is an affinoid whose reduction is the blow down of \overline{S} along $T_S \setminus \overline{Z}$ minus \overline{D}. Since neither conditions (i) nor (ii) hold, the image of \overline{Y} in \overline{V} is not a point. Since X is connected, $X \cap Z$ cannot be contained in a finite number
greater than one of residue classes, so the image of Y must be a non-empty Zariski open of V. The lemma now follows from Lemma A.3. \qed

Proposition A.5. If U is a residue class of S and $X \not\subset U$, $U \setminus X = \bigcup (B \cup A)$ where B is a finite set of wide open disks and A is empty if U is a disk, and is either empty or a concentric wide open annulus in U if U is an annulus.

Proof. Suppose D is a residue disk of S and neither $D \setminus X$ nor $(D \cap X)$ is empty. Suppose W is the element of S which contains D. Let z be a function on C which determines D. For each, $Q \in D \setminus X$, let $w_Q = z/(1 - z/z(Q))$ and suppose $a_Q \in C_p$ such that $|a_Q| = r_Q := |w_Q|_X$. Let $B_Q = \{x \in C : |w_Q(x)| > r_Q\}$ which is contained in D. Then B_Q is a wide open disk determined by $z_Q := w_Q/a_Q$. $z_Q |_X \in A^0(X)$. We want to prove the collection of disks, $S := \{B_Q : Q \in D \setminus X\}$, is finite.

Suppose $P \in D \setminus X$. Let $A_r := \{A(P, r) = \{x \in D : |z_P(a)| = r\}$. Since X is connected and $X \not\subset D$, $X \cap A_r \neq \emptyset$ and $X \not\subset A_r$ for all $R := r_P \geq r > 1$. Let $D_r = \{x \in D : |z_P(a)| \geq r\}$ and

$$S_r = \{D\} \cup \{W \setminus D_r\} \cup S \setminus \{W\}.$$

Then S_r is a semi-stable covering of C and D_r is an underlying affinoid of S_r. It follows that X contains all but finitely many residue classes of B_r and hence of A_r for $1 < r \leq r_P$.

Suppose $r_P \geq r_1 > \cdots > r_n > \cdots > 1 \in |C_p|$ and $\{P_i\}$ is a sequence of points such that $P_i \in A_r \setminus X$. Then $|z_{P_i}|_X \neq 0$ and $z_{P_i} |_X \cdot z_{P_j} |_X = 0$, if $i \neq j$. Thus X must contain all but finitely many of the circles $A(P, r)$, $1 > r \geq r_P$ and, by Lemma A.4, in each circle it contains all but finitely many residue disks.

It follows that if S is infinite there exists a sequence of points, $\{Q_i\}$, in $D \setminus X$ and a sequence of $s_j \in |C_p|$ such that $1 > s_{j+1} \geq r_{Q_j}$, $Q_{j+1} \in A(Q_j, s_{j+1})$, $s_{j+1} > |z_{Q_j}(Q_{j+1}) - z_{Q_j}(Q_{j+2})|$ (i.e., all the Q_i, $i > j$, lie in the same residue disk of a circle around B_{Q_j}). Let $f_i = (z_{Q_i} - z_{Q_j}(Q_{i+1}))$. Then $f_i |_X \in A^0(X)$, $(f_i |_X) \neq 0$ and $(f_j |_X) = 0$, if $i \neq j$. Again, this contradicts the finite typeness of X and establishes the proposition when U is a disk.

Lemma A.6. Suppose A is a residue annulus of S. Then if $T : A \cong A(R, S)$, $R, S \in |C_p|$, is parameter and $X \not\subset A$, $(R, S) \setminus \{|T(x)| : x \in A \cap X\} = (r, s)$ for some $r, s \in |C_p|$, $R \leq r \leq s \leq S$.

Proof. First suppose $\exists W_1, W_2 \in S$, $W_1 \neq W_2$, such that A is a component of $W_1 \cap W_2$. Let D_i be a residue disks in W_i for $i = 1$ or 2. Suppose z_i is a function on C which determines D_i. Then $M := C \setminus (D_1 \cup D_2)$ and $X' = X \setminus (D_1 \cup D_2)$ are affinoids. Moreover, $X \cap A = X' \cap A$ and \overline{M} equals the blow down of S along the components which don’t correspond to the W_i. In fact, \overline{M} has two components, Z_1 and Z_2, which correspond to W_1 and W_2, $z_1 \in A^0(M)$, $(z_1 |_{\overline{M}})$ is not constant but is on Z_2. We can and will suppose it vanishes on Z_2.

Let \(g \) be a function on \(\overline{M} \) which vanishes at and only at the singular points of \(\overline{M} \) apart from the one corresponding to \(A \). (Such a function exists because \(\overline{M} \) is an affine curve over a finite field.) Let \(\tilde{g} \in A^0(M) \) be a lifting of \(g \). Let \(N = \{ x \in M : |\tilde{g}(x)| = 1 \} \) and \(Y = \{ x \in X' : |\tilde{g}(x)| = 1 \} \). Then \(N \) and \(Y \) are affinoids, \(A \subset N \), \(N \setminus A \) has two connected components and \(Y \cap A = X \cap A \).

Suppose the restriction of the divisor \((z_1) \) of \(z_1 \) to \(A \cup Z_{W_1} \setminus D_1 \) is the effective divisor \(D \). There exists a positive integer \(n \) and a function \(f \) on \(C \) such that

\[
(f) = -nD + E,
\]

where \(E \) is an effective divisor supported on \(C \setminus W_1 \). (This is because the points on the Jacobian \(J \) of \(C \) represented by divisors supported on a non-empty open subset of \(C(C_p) \) form an open subgroup of \(J(C_p) \) and such open subgroups have torsion quotients.) We can also suppose \(||f||_{Z_{W_1}} = 1 \). Let \(h = z_1^nf \). Then \(h \) has poles only at the pole of \(z_1 \), \(||h||_M = 1 \), \(\overline{h(M)}(A) = 0 \) and \(h \) doesn’t vanish on \(A \cup Z_{W_1} \). It follows that if \(T \) is a parameter on \(A \), \(||T||_A = 1 \), \(|T(x)| \to 1 \) as \(x \to Z_{W_1} \) \(h = T^n u \), \(n > 0 \).

Suppose \(|T(A)| = (R, 1) \). Then since \(X \) is connected, \(X \cap A \) has at most two components and if \(|T(A \cap X)| \neq (R, 1) \) (which well now suppose), \(Y \) has two components \(Y_1 \) and \(Y_2 \) such that \(Y_i \cap Z_{W_j} \neq \emptyset \) if and only if \(i = j \). Then

\[
|T(A \cap X)| = (R, 1)(r, s),
\]

where \(r = ||h||_{Y_2}^{1/n} \) and \(1/s = ||1/h||_{Y_1}^{1/n} \).

Now suppose \(A \subset Z_W \). Suppose \(Q \in |C_p| \) and \(R < Q < S \). Let \(Z_Q = \{ x \in u : |T(x)| = Q \} \). Then \(Z_Q \) is a concentric circle of \(A \) and let

\[
S_Q := \{ W \setminus Z_Q \} \cup \{ A \} \cup S \setminus \{ W \}.
\]

Then applying what we just proved to the two components of \(A \setminus Z_Q \) which are residue annuli of \(S_Q \) and components of \(A \cap W \setminus Z_Q \), we see

\[
S := (R, S) \setminus \{ |T(x)| : x \in A \cap X \} = (r_1, s_1) \cup (r_2, s_2) \cup N,
\]

where \(R \leq r_1 \leq s_1 < Q \leq r_2 \leq s_2 < S \) and \(N \) is either empty or \(\{ Q \} \). Suppose \(R < Q' < Q \). We also see

\[
S = (r_1', s_1') \cup (r_2', s_2') \cup N',
\]

where \(R \leq r_1' \leq s_1' < Q' \leq r_2' \leq s_2' < S \) and \(N' \) is either empty or \(\{ Q' \} \). The only possibilities consistent with these two statements are \(S = (r_1, s_2) \), \((r_2, s_2) \) and \(S = (r_1, s_1) \). \(\square \)
It follows by an argument similar to that used in the analysis of $D \setminus X$ above that $A \setminus X = T^{-1}(r, s) \cup \bigcup B$ where B is a finite collection of wide open disks. This completes the proof of the proposition. □

Now we complete the proof of the theorem. We will make several refinements of S.

First we make sure X is not contained in any residue class. Suppose X is contained in a residue class U of S. Let B be a closed disk contained in X. Let $Y = B$ if U is a disk and the concentric circle in U containing B if U is an annulus. Let $V = U$ if U is a disk and the residue disk of Y containing B otherwise. Let W' be $\text{CC}(W \setminus U, W \setminus Y)$. Let S' equal

$$
\begin{cases}
\{W': W \in S\} \cup \{U\} & \text{if } U \text{ is a disk and} \\
\{W': W \in S\} \cup \{U \setminus B\} \cup \{V\} & \text{otherwise}.
\end{cases}
$$

Clearly, S' is semi-stable and X is contained in no residue class of S'.

We will next find a semi-stable refinement S'' of S' so that if $A \cap X \neq \emptyset$, $A \subset X$ for each residue annulus A of S''. Let A be the set of residue annuli of S'. For each $A \in A$ let C_A denote the collection of concentric circles Z in A such that neither $X \cap Z$ nor $Z \setminus X$ is empty. We know from Proposition A.5 that C_A is finite.

Let S'' be

$$
\{ \text{CC}(Z_W, W \setminus \bigcup Z'_W) : W \in S' \} \cup \bigcup_{A \in A} \{ \text{CC}(Z, A \setminus \bigcup Y) : Z \in C_A \}.
$$

This is a semi-stable covering with the required properties. Indeed, the spaces in the collection on the left are elements of S with annuli cut out off the residue annuli and the spaces in the collection on the right are annuli which fill in the gaps.

Now we will make a refinement S''' of S'' so that if $U \cap X \neq \emptyset$, $U \subset X$ for any residue class U of S. For $W \in S''$, let $B_W(X)$ denote the set of residue classes of S'' in W so that $X \cap D \neq \emptyset$ and $D \setminus X \neq \emptyset$. It follows from the construction of S'' that the elements of $B_W(X)$ are disks and from Lemma A.4 that $B_W(X)$ is finite for each $W \in S''$. For $D \in B_W(X)$, let D_D be the set of connected components of $D \setminus X$. It follows from Proposition A.5 that D_D is a finite collection of wide open disks.

Now suppose $D \in B_W(X)$. For $S \subseteq D_D$, $S \neq \emptyset$, let $B(S)$ denote the smallest closed disk in D containing $\bigcup_{E \in S} E$ and $U(S)$ the largest wide open disk containing $B(S)$ disjoint from $\bigcup_{E \in D \setminus S} E$, if it exists and the empty set if it doesn’t. Let

$$
W_S = U(S) \setminus \bigcup_{T \subseteq S \setminus B(T) \neq B(S)} B(T).
$$

Let S''' be

$$
\{W \setminus \bigcup_{D \in B_W(X)} B(D) : W \in S''\} \cup \{W_S : S \subseteq D_D, W_S \neq \emptyset\}.
$$
This is a semi-stable covering because
\[D = \bigcup_{S \in \mathcal{D}_D} W_S \]
and if \(T \) and \(S \) are non-empty subsets of \(\mathcal{D}_D \), \(W_S \neq W_T \), \(W_S \cap W_T \neq \emptyset \), either \(W_S \cap W_T \) equals \(U(T) \setminus B(T) \) or \(U(S) \setminus B(S) \), so is an annulus.

Finally, \(\mathcal{T} \) will be a refinement \(S''' \) so that if \(Z \) is a residue annulus or underlying affinoid of \(\mathcal{T} \) and \(X \cap Z \neq \emptyset \), \(Z \subseteq X \). Let \(\mathcal{B} \) be the set of residue disks \(D \) of \(S \) such that \(D \cap X = \emptyset \) but \(Z \cap X \neq \emptyset \) where \(Z \) is the underlying affinoid of \(S''' \) containing \(D \). For each \(D \in \mathcal{B} \), let \(B(D) \) be a closed disk in \(D \). We take \(\mathcal{T} \) to be
\[\{W \setminus \bigcup_{D \in \mathcal{B}} B(D): W \in S''' \} \cup \mathcal{B}. \]

The point is the residue annuli of \(\mathcal{T} \) are the residue annuli of \(S''' \) and \(\{D \setminus B(D): D \in \mathcal{B}\} \), and the underlying affinoid with respect to \(\mathcal{T} \) of \(W \setminus \bigcup_{D \in \mathcal{B}} B(D) \) is \(Z_W \cap X \) which is an affinoid whose reduction is a Zariski open in \(\overline{Z}_W \).

Then \(X = X(\mathcal{T}, S) \), where \(S \) is the set of components of \(\overline{\mathcal{T}} \) corresponding to the set of \(W \in \mathcal{T} \) such that \(W \cap X \neq \emptyset \). \(\Box \)

Corollary A.7. Suppose \(F \) is a complete subfield of \(\mathbb{C}_p \) and \(C \) is a smooth proper curve defined over \(F \). If \(X \) and \(Y \) are affinoid subdomains of \(C \), \(X \cap Y \) is an affinoid subdomain and \(X \cup Y \) either equals \(C \) or is an affinoid subdomain.

Proof. We know \(C \) has a semi-stable model over \(\mathcal{R}_K \) where \(K \) is a finite extension of \(F \). By Theorem A.1, there exists a finite extension \(E \) of \(K \), a semi-stable model \(\mathcal{T} \) of \(C \) over \(\mathcal{R}_E \) and a subset \(S \) of \(\mathcal{T}_E \) so that \(X_E = X(C, S) \). Also by this theorem there exists a finite extension \(L \) of \(E \), a semi-stable model \(\mathcal{R} \) of \(C \) over \(\mathcal{R}_L \) mapping to \(S \) and a subset \(U \) of \(\mathcal{T}_E \) so that \(Y_L = X(\mathcal{R}, U) \). It now follows from (1) and (2) that \(Z = X_L \cap Y_L \) is an affinoid subdomain of \(C_L \).

We can assume \(L \) is a Galois extension of \(F \) with Galois group \(G \). let \(\{f_\sigma: \sigma \in G\} \) and \(\{g_\sigma: \sigma \in G\} \) be the natural descent data for \(X_L \) and \(Y_L \). That is, \(f_\sigma: X_L^\sigma \to X_L \) and \(g_\sigma: Y_L^\sigma \to Y_L \) are isomorphisms such that
\[f_{\sigma t} = f_t \circ f_\sigma^T \quad \text{and} \quad g_{\sigma t} = g_t \circ g_\sigma^T. \]

Now, if \(t_X: X \to C \) and \(t_Y: Y \to C \) are the natural inclusions, \(t_X^\sigma = t_X \circ f_\sigma \) and \(t_Y^\sigma = t_Y \circ g_\sigma \). Also, if \(N \) is an extension of \(L \),
\[Z(N) = \{(x, y) \in X(N) \times Y(N): t_X(x) = t_Y(y)\} \]
and
\[Z^\sigma(N) = \{(x, y) \in X^\sigma(N) \times Y^\sigma(N): t_X^\sigma(x) = t_Y^\sigma(y)\}. \]
It follows that if $(x, y) \in Z^\sigma(N)$, $(f_\sigma(x), g_\sigma(y)) \in Z(N)$. Thus $\{(f_\sigma \times g_\sigma)|_{Z^\sigma}: \sigma \in G\}$ is descent data on Z. Since Z is an affinoid, it descends to an affinoid over F which represents $X \cap Y$.

The second part of the corollary follows similarly. □

References