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New Applications of Cardiac
Computed Tomography
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Computed tomography (CT) has evolved into a powerful diagnostic tool, and it is impossible to imagine current clinical

practice without CT imaging. Because of its widespread availability, ease of clinical application, superb sensitivity for

the detection of coronary artery disease, and noninvasive nature, CT has become a valuable tool within the arma-

mentarium of cardiologists. In the past few years, numerous technological advances in CT have occurred, including

dual-energy CT, spectral CT, and CT-based molecular imaging. By harnessing the advances in technology, cardiac

CT has advanced beyond the mere evaluation of coronary stenosis to an imaging tool that permits accurate plaque

characterization, assessment of myocardial perfusion, and even probing of molecular processes that are involved in

coronary atherosclerosis. Novel innovations in CT contrast agents and pre-clinical spectral CT devices have paved the

way for CT-based molecular imaging. (J Am Coll Cardiol Img 2015;8:710–23) © 2015 by the American College of

Cardiology Foundation.
S ince the advent of 64-detector row computed
tomography (CT) in 2005, coronary computed
tomographic angiography (CTA) has been

demonstrated as a promising noninvasive technique
for the evaluation of coronary artery stenosis (1,2).
In the past few years, numerous technological ad-
vances in CT have occurred, including dual-energy
computed tomography (DECT), spectral CT, and
CT-based molecular imaging. Early studies of these
methods have been largely promising and shown
improved cardiac and coronary evaluation. An under-
standing of these advanced CT principles is required
to fully appreciate the promise of the applicability
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THE PRINCIPLES OF DECT

Improvements in CT, although rapid in recent years,
are nevertheless constrained by the physical princi-
ples underlying this technology, which are a function
of x-ray attenuation detected from multiple orienta-
tions around an imaged object. In a basic sense, these
principles are generally 2-fold and include the pho-
toelectric and Compton effects when considering
x-ray photons within the diagnostic energy range
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AB BR E V I A T I O N S

AND ACRONYM S

CAC = coronary artery calcium

CTA = computed tomographic

angiography

CT = computed tomography

DECT = dual-energy computed

tomography

MPI = myocardial perfusion

imaging

SECT = single-energy

computed tomography

SPECT = single-photon

emission computed

tomography

VUE = virtual unenhanced
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(Figure 1). The former is highly dependent on the
photon energy level and is related to the atomic
number and photon energy level, whereas the latter is
independent of the photon energy level but rather
related to material density. For a proper grasp of the
advances in DECT and spectral CT, a basic under-
standing of these principles is required.

The photoelectric effect is the ejection of an elec-
tron from the innermost shell of an atom (the K shell)
by a photon with a greater energy than the binding
energy of the K shell. As a result, the total energy of
any incoming photon is absorbed (Figure 1). The
binding energy of electrons in the K shell is material
specific and is proportional to the atomic number (Z).
For a given photon energy, the photoelectric effect
scales on a magnitude order of Z3. However, this does
not imply that an element with Z ¼ 100 yields an 8
times greater attenuation than a material with Z ¼ 50.
This can be explained by the spike in attenuation
seen related to a maximal photoelectric effect (the K
edge), which occurs when the photon energy level is
just greater than the electron binding energy of the K
shell of an atom. The K-edge value varies for each
material and is higher with increasing atomic
numbers. Paradoxically, the photoelectric effect is
maximal at the K edge of the absorber and is reduced
with increasing photon energy levels, inversely pro-
portional to the photon energy cubed (1/E3). There-
fore, the probability of the photoelectric effect is
dependent on both the atomic number and the
photon energy level according to Z3/E3.

The Compton effect is the collision of photons with
valence electrons of the outermost shell of an atom.
In contrast to the photoelectric effect, the energy of
the incoming photon is not totally absorbed, giving
rise to photon scattering (Figure 1). Compton scat-
tering is dependent on the density of electrons, and
because all elements have approximately the same
amount of electrons per unit mass, the atomic num-
ber is of less relevance for the occurrence of Compton
scattering.

The principles of DECT are based largely on the
photoelectric effect and can be achieved by exploiting
the energy-dependent attenuation of materials when
exposed to 2 different photon energy levels. These
physical principles can be exploited for in vivo hu-
man imaging, because DECT is based on dissimilar
tissue characteristics with respect to their energy-
dependent x-ray attenuation. Subsequently, DECT
enables the distinct differentiation between 2 basis
materials (Figure 2). These materials can be chosen
arbitrarily, as long as their K edges are sufficiently
different (i.e., attenuation profiles), such as water and
iodine. Any other material with an attenuation
spectrum different than that of the chosen
basis materials will be reflected as a combi-
nation of the 2 basis materials (Figure 3).
As such, by exploiting differences in energy-
related attenuation of tissues, DECT pro-
vides information about tissue composition
that is unobtainable with conventional
single-energy computed tomography (SECT).

The advantage of using different energy x-
ray levels for decomposition of tissues has
been known for a long time and was even
mentioned by Hounsfield (3) in his original
paper on CT 4 decades ago: “Two pictures are
taken of the same slice, one at 100 kV and the
other at 140 kV so that areas of high atomic
numbers can be enhanced. Tests carried out

to date have shown that iodine (Z ¼ 53) can be readily
distinguished from calcium (Z ¼ 20)”. However, this
approach at that time was subject to technological
limitations and was therefore abandoned.

DECT METHODS

Although SECT is typically performed with poly-
chromatic energy levels of photons set to 120 or
140 kVp, energy levels of photons with DECT are
typically 80 and 140 kVp for the acquisition of
low- and high-energy-dependent tissue attenuation
profiles, respectively. The exploitation of 2 poly-
chromatic energy spectra by DECT can be achieved by
at least 3 different methods (Figure 4): 1) 2 x-ray
source and detector pairs, with each source operating
at a different tube voltage; 2) a single source-detector
pair with an x-ray tube capable of rapidly switching
between low and high tube potential or by switching
tube potential between gantry positions; and 3) an
x-ray source operating at constant tube voltage with
a double-layer detector capable of differentiating
between low- and high-energy photons.

CLINICAL APPLICATIONS OF DECT

MYOCARDIAL PERFUSION IMAGING. Compared with
SECT, DECT may allow better tissue characterization
and therefore enhanced visualization of myocardial
perfusion defects, thus encouraging its use for is-
chemia assessment. Given the unique ability of DECT
to allow differentiation of iodine attenuation char-
acteristics when it is exposed to different photon
energy levels, DECT allows the mapping of iodine
distribution in the myocardium as a quantitative,
albeit surrogate, marker for perfusion and blood vol-
ume (4) (Figure 5). There is an early body of evidence
showing the clinical feasibility of a DECT myocardial
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perfusion protocol as a supplement to anatomic
evaluation of the coronary arteries with coronary CTA
(5–7). The majority of these investigations have
compared DECT with rest-stress single-photon emis-
sion computed tomography (SPECT), cardiac mag-
netic resonance, or invasive coronary angiography
as a reference standard (5,7–11). In a small study
(n ¼ 20) by Weininger et al. (12), stress-rest first-pass
myocardial perfusion DECT detected myocardial
perfusion defects on cardiac magnetic resonance with
sensitivity and specificity of 93% and 99%, respec-
tively. Also against a cardiac magnetic resonance
reference standard, Ko et al. (9) found that stress-rest
first-pass myocardial perfusion DECT could detect
reversible perfusion defects with sensitivity and
specificity of 89% and 78%, respectively. Although
first-pass myocardial perfusion DECT alone revealed
the diagnosis of ischemia corresponding to a $50%
stenosis on invasive coronary angiography with
sensitivity of 89% and specificity of 76% (9), it
is conjectured that a hybrid approach—namely,
combining DECT perfusion with coronary CTA—may
FIGURE 1 Schematic Illustration of the Photoelectric and Compton E
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FIGURE 3 Linear Attenuation Coefficients of Materials
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FIGURE 2 Mass Attenuation Coefficients for Iodine, Calcium, and Water at

Different Photon Energies
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56% to 79% and from 55% to 71%, respectively. As a
consequence, the hybrid approach improved accuracy
significantly from 69% to 82% (14).

These results suggest that MPI with DECT may
decrease the number of false-positive results on cor-
onary CTA, which is in line with the observations seen
for hybrid positron emission tomography and SPECT
and coronary CTA (15). Despite the notion that com-
bined physiologic-anatomic evaluation by DECT
provided additive diagnostic value, Wang et al. (5)
observed a negligible effect of MPI with DECT when
added to coronary CTA for measures of diagnostic
accuracy, with a compromised increase in sensitivity
from 82% to 90% at the loss of specificity (from 91% to
86%). Similarly, a recently published pilot study re-
ported MPI with DECT to improve the accuracy of
coronary CTA alone, but the combination of these 2
tests resulted in lower performance compared with
DECT perfusion imaging alone (16).

Several important considerations of MPI with
DECT have been discussed and require attention for
the optimization of MPI protocols. Among the early
studies of MPI with DECT, there has been variability
regarding when to perform the “rest” portion and the
“stress” portion, with many contending that vasodi-
lator stress is important to perform first to reduce
the chance of residual contrast that may confound
perfusion defects. Others have argued for a rest-first
protocol, maintaining the importance of coronary
artery evaluation by coronary CTA as the foremost
information to be garnered from the study. Pertaining
to the latter, rest DECT has been reported to allow
the detection of perfusion defects not visible on rest
SPECT (5,11), suggesting its use as a possible adjunct
to traditional evaluation with coronary CTA. This
finding may be due to myriad reasons, including the
higher spatial resolution of CT, which may encourage
the detection of subtle perfusion abnormalities that
are not visible on SPECT (5,11,17). However, a recent
study by Ko et al. (14) reported stress MPI with
DECT to convey higher accuracy for the detection
of ischemia compared with rest DECT perfusion im-
aging. Despite these early studies emphasizing the
potential of DECT to provide complementary infor-
mation on coronary artery disease, MPI with DECT
may be regarded as being in its infancy, with pub-
lished studies to date limited by small sample sizes,
referral bias, and the lack of a proper reference
standard.
CORONARY ATHEROSCLEROTIC PLAQUE CHARAC-

TERIZATION. From prior invasive and pathologic
evaluations, several coronary atherosclerotic plaque
features have been implicated as crucial to the path-
ogenesis of acute coronary syndromes, including
measures of plaque burden, thin-cap fibroatheroma,
inflammatory infiltration, intraplaque hemorrhage,
microcalcifications, and a necrotic lipid-rich core
(18–20). Considering their importance, these plaque
features have been extensively investigated by SECT,
given the relative ease with which SECT can reliably



FIGURE 4 Schematic Illustration of 4 Different Approaches for Obtaining Dual-Energy Information
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gantry rotations. Figures 4A, 4B, and 4C are courtesy of Philips Healthcare, Best, the Netherlands.
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separate calcified and noncalcified plaques. Yet,
conventional CT faces a significant challenge in dif-
ferentiating different components of noncalcified
plaques (e.g., lipid-rich vs. fibrous). Several studies
have shown considerable overlap in Hounsfield units
between lipid-rich and fibrous-rich noncalcified pla-
ques inherent to the spatial resolution of CT and a
variable intraplaque uptake of iodine contrast agents
(21–23).

It has been posited that DECT may overcome
these limitations because of its capability for tissue
decomposition, although early results have been
mixed. CT attenuation–based characterization of
noncalcified plaques using DECT was examined in an
ex vivo study of 15 human arteries, with discrimina-
tory improvement with DECT over conventional
SECT (24). In contrast, in a small prospective study of
patients undergoing intravascular ultrasound and
CT, DECT had similar sensitivity compared with SECT
(45% vs. 39%, respectively) for necrotic core detec-
tion (25). Even when using post-mortem samples,
in which image quality is not governed by body
habitus or motion, DECT misclassified 21% of non-
calcified plaques (26).

The mixed findings observed to date may be due
to an array of issues, including scanning protocols
as well as DECT image visualization. As indicated
earlier, DECT may allow both monochromatic energy
imaging as well as material basis decomposition. To
date, the exact energy and/or material basis pair that
optimizes plaque visualization has not been system-
atically evaluated. Future studies will be required to
determine the proper methods for plaque character-
ization by this emerging technology.

MINIMIZING IMAGE ARTIFACTS USING

DUAL-ENERGY COMPUTED TOMOGRAPHY

Image quality is particularly challenging when it
comes to a moving organ such as the heart. Sufficient
diagnostic image quality is highly dependent on the
patient’s heart rate. Therefore, heart rate control
is mandatory when performing CT-based coronary
angiography. Alternatively, dual-source CT is less



FIGURE 5 A 77-Year-Old Woman With Hypertension, Hypercholesterolemia, and Atypical Angina Chest Pain

(A) Curved multiplanar reformatting of the left anterior descending coronary artery shows a calcified plaque with significant stenosis. (B to D)

Assessment of computed tomographic perfusion (B) and myocardial blood flow map (C) revealed an anterior perfusion defect (arrows, B and

C), which was confirmed by single-photon emission computed tomography (arrows, D).
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susceptible to artifacts as a result of high or irregular
heart rates, because of its high temporal resolution.
Scheffel et al. (27) demonstrated dual-source CT to
provide high diagnostic accuracy for the detection of
coronary artery disease in patients with extensive
calcifications (50% had Agatston scores >400) and
without heart rate control, a population that is often
considered challenging for conventional coronary
CTA. Additionally, in a recent meta-analysis, dual-
source CT in patients with atrial fibrillation yielded
similar diagnostic value as standard coronary CTA
in patients with stable and regular heart rates (28).
The improved performance of dual-source CT in
this specific population is attributable to the high
temporal resolution of dual-source CT (66 to 75 ms),
which allows fewer motion artifacts to occur (28).
Furthermore, the unique features of the DECT data-
set allows the generation of virtual monochro-
matic images, which are analogous to conventional
single-energy CT images. However, monochromatic
images depict a scanned object at a single x-ray en-
ergy level, rendering these images less susceptible
to beam-hardening and blooming artifacts (29–31).
Because of the polychromatic nature of the x-rays
used in conventional CT, imaging of high-density
objects will result in substantial absorption of
lower energy photons, giving rise to a shift towards
a high-energy x-ray beam. This alteration of the
photon-energy spectrum leads to distortions in the
reconstructed image of high-attenuation tissue or
objects, such as, among others, coronary stents,
highly concentrated contrast, and/or calcium. Indeed,
coronary calcifications and metal artifacts from cor-
onary stents are known for hampering the diagnostic
value of CT-based coronary artery imaging. Interest-
ingly, monochromatic images at high energy levels
suffer less from blooming and beam-hardening arti-
facts. Therefore, analyzing monoenergetic high-
energy images carries with it the potential to reduce
these artifacts (32). It has been demonstrated that
calcium blooming and beam-hardening artifacts that
impair accurate delineation of stenosis degree are
significantly reduced at high energy levels using
phantom models (33,34). Another phantom study
showed improved enhancement of coronary stent
lumen, beyond that achieved with traditional CT,
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using DECT technology based on a dual-layer detector
(33). A recently published feasibility study performed
in 21 patients revealed that single-source DECT (with
rapid tube voltage switching) with monochromatic
image reconstructions below 80 keV was associated
with an increase in stent-related blooming artifacts,
causing an underestimation of stent diameter (35).
Similarly, Secchi et al. (36) evaluated artifact size in
35 patients and reported substantial reductions of
high-attenuation artifacts, resulting from metal arti-
facts (coronary stents, bypass clips, and sternal wires)
and concentrated contrast in the vena cava, by
using monochromatic images at high energy levels.
With stress myocardial perfusion CT, beam hardening
arising from high-density iodinated contrast hampers
accurate assessment of myocardial perfusion. Stu-
dies using ex vivo hearts and phantom models
demonstrated improved detection of myocardial
perfusion defects by reduction of beam-hardening
artifacts mimicking perfusion deficits using fast-
switching tube voltage DECT technology (37,38).
A clinical study by So et al. (4) showed rapid tube
voltage–switching projection-based DECT to improve
ischemia detection by the elimination of beam-
hardening artifacts. Notably, DECT data obtained
with a rapid tube voltage–switching DECT device al-
lows the generation of monochromatic images
from projection space, theoretically providing a
more sophisticated beam-hardening correction over
the image-based method (38–40). However, clinical
studies on this topic are currently lacking.

RADIATION DOSE ASPECTS OF DECT

Although cardiac CT provides invaluable information
regarding diagnosis and the management of patients
evaluated for coronary artery disease, the exposure
to ionizing radiation is of concern with CT-based
imaging. In recent years, substantial reductions
in radiation dose have been achieved with the
implementation of electrocardiographically guided
tube modulation, prospective electrocardiographi-
cally gated imaging (step-and-shoot mode), and body
mass index–based tube voltage reductions. As a
consequence, dose reductions of more than 60%, and
even 90% in some studies, have been achieved
without sacrifices in image quality and diagnostic
performance (41–44). Nevertheless, the question ari-
ses of whether cardiac imaging using DECT comes with
a radiation dose penalty compared with SECT. In an
early small clinical study, dual-source CT in single-
energy mode (4.54 � 1.87 mSv) and DECT (9.8 � 4.77
mSv) were shown to deliver less radiation than regular
16-slicemultidetector coronary CTA (12.00� 3.59mSv)
in a routine clinical setting in patients with low and
stable heart rates (45). Halliburton et al. (46) compared
in a clinical setting dual-source and 32-slice CT with
regard to radiation exposure, and they showed no
difference in radiation doses for coronary imaging
between the 2 modalities. Similarly, in a head-to-head
prospective randomized clinical trial evaluating 102
patients, DECT based on rapid tube voltage switching
enabled coronary CTA examinations at dosage levels
comparable with contemporary multidetector coro-
nary CTA, 2.31 mSv versus 2.23 mSv, respectively (47).
Although no study has evaluated the radiation dose of
DECT devices on the basis of double-layer technology
for cardiac imaging, presumably these devices will
produce similar radiation doses overall to SECT,
because there is no double irradiation of tissue to
obtain low- and high-energy datasets. However,
these data are acquired at 140 kVp, which is a high
tube potential for most cardiac imaging. Arguably,
lowering tube current will balance the effects of high–
tube voltage imaging without affecting spectral sep-
aration, but data are so far lacking.

Radiation dose in cardiac CT is closely related to
the pitch value, whereby a pitch value <1 implies
overlapping image slices (table movement is less than
1 detector width during 1 gantry rotation) and a pitch
>1 indicates gaps between radiation beams. Interest-
ingly, dual-source CT systems have enabled the
implementation of high-pitch spiral acquisition pro-
tocols with pitch values of 3.0 and higher, avoiding
overlapping radiation exposure, allowing shorter
scan times, and thus reducing effective radiation dose
(48–50). Notably, high-pitch spiral acquisition is
only possible with dual-source CT because of its
unique geometry of a dual-source detector pair
providing, among other features, high temporal res-
olution by using only a quarter of the gantry rotation
time to obtain 1 cross-sectional image. The tube-
detector pair allows fast table movement, whereby
image gaps in the trajectory of the first detector are
covered by the second detector. As such, the dual-
source, high-pitch mode allows coverage of the
entire heart in the diastolic phase of 1 cardiac cycle,
which is referred to as prospective electrocardio-
graphically gated spiral scanning. This approach
has markedly reduced radiation doses to sub-
millisievert fractions, albeit in single-energy mode
(48–56). Clinical feasibility studies have investigated
the diagnostic accuracy of high-pitch protocols and
found that CT-based coronary angiography could be
performed with effective radiation doses averaging
1 mSv, without a penalty in terms of diagnostic ac-
curacy and image quality (48–56). Although high-
pitch scanning holds great promise, a drawback of



FIGURE 6 A Gold-Based Nanoparticle and Spectral Computed Tomography for

Atherosclerotic Plaque Composition

(A) Structure of a computed tomographic gold (Au)–high-density lipoprotein (HDL)

nanoparticle contrast agent targeted at macrophages. (B) Spectral computed tomographic

image of a phantom model of an artery using gold nanoparticles. Adapted with permission

from Cormode et al. (75).
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this mode is that the image data of the entire heart
need to be acquired during the diastasis of 1 heart-
beat. Consequently, with the second-generation,
dual-source devices (acquisition speed 458 mm/s
and temporal resolution of 75 ms at a gantry rota-
tion time of 282 ms), coverage of the entire heart
(w12 cm) typically requires 250 ms. Therefore, the
high-pitch mode is restricted to patients with low
(<65 beats/min) and regular heart rates to match the
required long image acquisition window (48–52,55).
Recently, pilot studies demonstrated the feasibility of
high-pitch coronary examinations using third-
generation dual-source CT devices (acquisition
speed 737 mm/s and temporal resolution of 66 ms
owing to a gantry rotation time of 250 ms) to obtain
good-quality images at heart rates up to 75 beats/min
with submillisievert radiation dose (53,56).

Notably, the submillisievert radiation doses were
achieved with a combination of multiple dose-saving
strategies, such as prospective electrocardiographic
triggering, low tube voltages, and iterative image
reconstruction. The increased image noise resulting
from low-voltage imaging is offset by the application
of iterative reconstruction techniques (54,57,58).
These novel reconstruction algorithms have reduced
image noise derived from low-photon counting,
while increasing image quality. A recently published
small-scale clinical study of 26 patients revealed an
effective radiation dose to be 0.3 mSv using a third-
generation dual-source device capable of producing
high tube current at a tube voltage of 70 kVp without
a sacrifice in image quality, albeit in a population
selected by body weight (<100 kg) with low heart
rates (54). Similarly, Schuhbaeck et al. (57) managed
to reduce effective radiation dose below 0.1 mSv in
21 patients using a high-pitch spiral acquisition mode
with low tube voltage (80 kVp) in conjunction with
low tube voltage and iterative image reconstruction.
In addition, the diagnostic performance of sub-
millisievert coronary CTA is high, using invasive cor-
onary angiography as a reference, despite the
low radiation dose delivered to patients (59). By har-
nessing the advantages of dual-source CT devices
combined with low-voltage imaging and iterative im-
age reconstructions, the radiation dose of a coronary
CT study is only a fraction of 1 mSv, which is com-
parable with the dose of a mammogram (0.4 mSv).

Another application of DECT for further radia-
tion dose reduction is the generation of virtual
unenhanced (VUE) images through the use of post-
imaging reconstructions that are unique to DECT.
These VUE images are generated from contrast-
enhanced scans by virtual iodine subtraction using
3-material decomposition algorithms and may replace
true contrast-enhanced scans (60,61). Subsequently,
coronary artery calcium (CAC) scoring and standard
contrast coronary CTA can all be gleaned from a
single scan, obviating the need for separate non-
contrast CAC scoring CT. In this way, scan acquisition
time, costs, and radiation to the patient may be
decreased. Several studies have already demon-
strated the feasibility of CAC scoring using VUE im-
aging by showing good agreement of the CAC score
derived from VUE images with true noncontrast CAC-
scoring scans. Yamada et al. (62) revealed that DECT
coronary angiography using VUE technology for cal-
cium scoring resulted in a 20% dose reduction
compared with conventional coronary CTA with a
prior separate noncontrast CAC scan, while in a
recently published study, an average dose reduction
of 51% was seen by replacing separate CAC-scoring
scans by VUE imaging for quantification of coro-
nary calcium deposits (63). Although promising, the
technique is still in its infancy, and further valida-
tion and more sophisticated correction algorithms



FIGURE 7 Mass Attenuation Coefficients for Iodine, Gadolinium, Gold, and Bismuth at
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are warranted to avoid underestimation of CAC
burden by incorrect subtraction of calcium content–
mimicking iodine contrast agents.

IODINATED CONTRAST DOSE

REQUIREMENTS

Contrast-enhanced CT bears the risk of inducing an
acute deterioration in renal function, particularly in
patients with pre-existing kidney disease. Although
the incidence of contrast-induced nephropathy is low,
it is associated with significant morbidity and even
death (64). However, lowering contrast volume comes
at the cost of lower image quality due to impaired
contrast-to-noise and signal-to-noise ratios (65).
Nonetheless, previous studies have observed in-
creased conspicuity of iodine-based contrast agents
achieved with low tube voltage, while facilitating re-
ductions in iodine load and radiation dose (30,66,67).
In a recent study, Scheske et al. (29) reported improved
signal-to-noise and contrast-to-noise ratios in both the
myocardium and coronary arteries with low-energy
monochromatic imaging compared with polychro-
matic CT. Therefore, an optimal difference in contrast
attenuation between normally perfused myocardium
(high attenuation) and ischemic myocardium is anti-
cipated with low-energy monochromatic imaging,
considering the low K edge of iodine. In a prospective
randomized clinical study of 102 patients, Raju et al.
(47) evaluated the feasibility of DECT associated with
reduced iodine load, and they found that mono-
chromatic images at 60 keV provided signal- and
contrast-to-noise ratios comparable to single-energy
CT coronary angiography with a full iodine load,
while preserving diagnostic interpretability. Interest-
ingly, this was accomplished despite a more than 50%
reduction in iodine load for CTA with DECT. Similarly,
a recently published study revealed that mono-
chromatic images at 50 to 60 keV allow an iodine vol-
ume reduction of up to 60% without compromising
image quality, as reflected by similar contrast- and
signal-to-noise ratios as those obtained with standard
coronary CTA using a full iodine load (68).

COMPUTED TOMOGRAPHY–BASED

MOLECULAR IMAGING:

NANOPARTICLE CONTRAST AGENTS

Iodinated contrast and barium suspensions are
currently the only approved CT contrast agents and
are used for their ability to enhance visualization by
increased attenuation of x-ray photons. Recently,
nanoparticle contrast agents—tiny particles within
the range of 1 to 100 nm—have received considerable
attention (Figure 6). Several of these nanoparticles
have been approved for therapeutic and diagnostic
applications in the field of oncology (69,70). This is
due to a number of reasons, including longer circu-
latory half-lives, obviating the need for repeated in-
jections, and modifiable properties that offer tissue
specificity (71–76).

One of the nanoparticle CT contrast agents with
promising preliminary results is compound N1177.
This is a suspension composed of crystalline iodinated
particles dispersed with surfactant and has high af-
finity for activated macrophages (77). Upon injection,
increased densities of N1177 contrast are detectable in
atherosclerotic plaques that correspond to macro-
phage infiltration in post-mortem samples (77).
Referenced against a histopathologic reference stan-
dard, N1177 demonstrates high affinity for aortic
atherosclerosis in animal models and high correlation
to fluorodeoxyglucose uptake, a known surrogate
marker for macrophage density (78). In a related study
by Cormode et al. (76), a gold-core high-density lipo-
protein particle targeted at macrophages was found to
accumulate in atherosclerotic plaques in the aorta
walls of a mouse model as detected by micro-CT.
Rabin et al. (79) developed a long circulating bis-
muth sulfide nanoparticle agent for CT. X-ray
absorption was 5-fold better than with iodine, cir-
culation times were longer than 2 h in vivo, and the
efficacy and safety profiles were comparable with or



CENTRAL ILLUSTRATION Dual-Energy CT for the Evaluation of Coronary Atherosclerosis

Dual-energy computed tomography (CT) enables improved plaque characterization via material decomposition and monochromatic imaging.

Due to its unique features, dual-energy CT as a stand-alone technology offers the potential for a comprehensive noninvasive evaluation of

coronary artery disease by combining both morphological and functional information. Cardiac hybrid image courtesy of Dr. Ron Blankstein,

Brigham and Women’s Hospital, Boston, Massachusetts.
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better than those of iodinated contrast agents. Pan
et al. (80) evaluated another heavy metal, ytter-
bium, for its use in spectral CT imaging. The spe-
cific goal of these particles would be the detection
of nonocclusive microthrombus-associated ruptured
plaques within the coronary arteries. It is notable to
mention, however, that these encouraging findings
have been validated in animal studies alone, with
human evaluation currently lacking.

SPECTRAL CT IMAGING

Similar to DECT, spectral CT, often referred to as
“multicolor CT,” exploits the energy-dependent
attenuation of x-ray photons and may be coupled
to nanoparticles to potentially offer improved
atherosclerosis evaluation. In contrast to DECT,
which is performed with only 2 photon energy levels,
spectral CT uses multiple energy levels to provide
more detailed tissue information based on their
behavior at different x-ray spectra (information that
is disguised by the use of only 2 x-ray spectra). The
principle of spectral CT relies on an energy-sensitive
photon-counting detector that enables the differen-
tiation of photons from multiple energy levels. In this
configuration, when a photon collides with an x-ray
detector, a current pulse is generated proportional
to the energy of the detected x-ray photon.
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Subsequently, the detected photon is allocated to
energy bins representing several electron voltage in-
tervals. A specific element can be more easily detec-
ted with the limits of the bins placed at the K edge of
the material of interest. As such, simultaneous sam-
pling of multiple photon energy levels allows a more
sophisticated characterization of tissues on the basis
of the K-edge behavior of multiple materials. To date,
only pre-clinical data based on phantom models and
post-mortem samples are available on coronary pla-
que imaging using photon-counting CT devices.
Nevertheless, this technique holds great potential,
allowing the precise detection and quantification of
contrast agents and enabling their extraction and
separation from tissue components (81). Different
approaches for spectral CT are being developed. One
of those is the Medipix All Resolution System CT
scanner (CERN, Geneva, Switzerland), which incor-
porates a Medipix All Resolution System camera with
a Medipix3 spectroscopic photon-counting detector
(82). A single polychromatic x-ray tube is used in this
system with an energy-discriminating photon-
counting detector with selectable thresholds (83). So
far, these scanners have been used in the pre-clinical
setting. DxRay (DxRay Inc., Northridge, California)
developed another photon-counting detector that
was evaluated on a LightSpeed VCT scanner (GE
Healthcare, Waukesha, Wisconsin). This detector is
based on cadmium telluride and cadmium zinc
telluride arrays (84). In vivo patient CT images were
acquired, and the spectral technique was used to
remove calcium from the images, resulting in a good
image quality (84). Siemens Healthcare (Erlangen,
Germany) developed another approach, a prototype
scanner with a photon-counting technique imple-
mented in the context of a clinical CT system (85).
This prototype system is equipped with both
a cadmium telluride photon-counting detector and
a conventional detector from a clinical CT scanner.
Using both approaches allows direct comparison
of image quality between photon-counting and con-
ventional detectors. A chess-pattern configuration for
energy level thresholds enables a virtual number of 4
energy bins. Image acquisition of an anatomical
phantom demonstrated increased iodine contrast,
allowing a potential radiation dose reduction of up to
32%. Finally, Philips Medical Systems (Best, the
Netherlands) developed a pre-clinical spectral CT
scanner (86). This animal CT system is equipped with
a single-line photon-counting cadmium telluride
array that allows measurements of 6 energy bins (87).
Feuerlein et al. (87) reported that this pre-clinical
spectral CT system improved coronary luminal
depiction by effectively isolating gadolinium agents
from contrast-free calcified plaques and stent mate-
rial using a phantom model. A recently published
study by Boussel et al. (88) is the first study, albeit
in vitro, of human coronary plaque analysis with the
pre-clinical photon-counting spectral CT system.
They reported promising results regarding its capa-
bility to differentiate distinct coronary plaque com-
ponents on the basis of differences in spectral
attenuation and iodine-based contrast concentrations.
Of note, the absorption of low-energy photons by the
human body renders the use of K-edge imaging with
iodine challenging given its low K-edge energy of 33.2
keV. Therefore, to harness the full benefits of K-edge
imaging using photon-counting CT, contrast materials
with higher K edges, such as gadolinium (50.2 keV),
gold (80.6 keV), and bismuth (90.5 keV), are preferable
(Figure 7). However, the potential toxicity of these
agents limits their use in humans. Nevertheless, the
potential application of gold-based targeted nano-
particles in combination with spectral CT to improve
tissue differentiation at the cellular level, albeit in
phantom and animal models, has been explored. In a
phantom study, Cormode et al. (75) demonstrated the
feasibility and accuracy of the pre-clinical spectral
CT scanner to simultaneously distinguish among
iodine- and gold-based contrast agents, tissue, and
calcifications. In addition, the investigators showed in
an animal model the potential of this pre-clinical
spectral CT system for imaging intraplaque inflam-
mation using gold-labeled high-density lipoproteins
targeting activated macrophages (75). These pre-
liminary results illustrate the potential of CT-based
molecular imaging using spectral CT in conjunction
with nanoparticle contrast agents to provide valuable
information on coronary atherosclerosis anatomy
while providing important physiologic data at the
molecular and cellular levels.

CONCLUSIONS

In recent years, there have been rapid advances in
cardiac CT technology, with progression of conven-
tional SECT to DECT, spectral CT, and CT-based mo-
lecular imaging. Initial studies of these technologies
have been promising and suggest their potential
for improved cardiac and coronary atherosclerosis
evaluation (Central Illustration).
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