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Database schemas may be partitioned into two subclasses: three schemas and cyclic 
schemas. The analysis of tree vs cyclic schemas introduced the concepts of GYO reductions, 
canonical connections, and tree projections. This paper investigates the intricate relationships 
among these concepts in the context of universal relation databases. 0 1984 Academic Press, Inc. 

1. INTRODUCTION 

A universal relation database (UR database) is a collection of relations that are 
projections of a single “universal” relation. This paper explores connections among 
four concepts of database theory applied to UR databases: 

(1) the so-called Graham reductions of Graham [lo], and Yu and Oszoyoglu 
c191; 

(2) the canonical connections of Maier and Ullman [ 163; 

(3) tree and cyclic schemus of Beeri et al. [3,4, S] and Bernstein, Chiu, 
Goodman, and Shmueli [S, 6, 11-141; and 

(4) the tree projections of Goodman and Shmueli [13]. 

This paper gives a coherent framework for viewing results in [3-5, 7, 8, 10-16, 
181. 

Sections 2 and 3 give terminology and define the above concepts. Sections 4-6 
use these concepts to analyze three basic prbblems in UR database theory: 

(1) Computing rL&QRED R) over database D using joins followe(l by a 
single project. 

(2) Determining whether a “sub-database” has a lossless join. 

(3) Computing lL(~,ED R) using joins, semijoins, and projects in any com- 
bination. 

We also treat some aspects of y-acyclicity, a type of tree schema characterized by 
Fagin [7]. 
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2. TERMINOLOGY 

A relation schema is a set of attributes and a database schema (or simply schema) 
is a multiset of relation schemas. (All sets and multisets in this paper are finite.) A 
relation state R for relation schema R is a relation over the attributes of R; a 
database state for schema D is an assignment of relation states to the relation 
schemas of D. We use D = (RI,..., R,) to denote a database schema and 
D = (RI,..., R,) for a corresponding state. If for all R’ E D’, there exists R E D such 
that R’ G R, we denote this by D’ < D. D is reduced if no relation schema in D is a 
subset of another relation schema in D. The reduction of D is the schema obtained 
by eliminating relation schemas that are subsets of other. U(D) = lJ;= 1 Ri denotes 
the attributes of D. 

As usual, we use w for natural join, J& for projection onto attribute set X, and 
K for natural semijoin. (R K S 4 nR(R w S).) We use Q = (D, X) = J&(cu;= 1 Ri) 
to denote the natural join query with target X, i.e., Q applied to a state D for D is 
Q(D) = l--MY= 14). 

We shall only consider universal databases, i.e., databases of the form 
D = { & 11 R E D}, where I is a universal relation. Q is weakly contained in Q’, 
Q G Q’, if for all universal databases Q(D) E Q’(D). Q is weakly equivalent to Q’, 
Q - Q’, if for all such databases, Q s Q’ and Q’ G Q. 

3. KEY CONCEPTS 

3.1. Tree and Cyclic Schemas 

A qua1 graph for D is an undirected graph whose nodes are in one-one 
correspondence with the relation schemas of D, such that for each A E lJ (D), the 
subgraph induced by the nodes whose corresponding relation schemas contain A is 
connected [6]. D is a tree schema if some qua1 graph for it is a tree; else D is a 
cyclic schema. See Fig. 1. (These are called acyclic and cyclic schemes and 
hypergraphs in much of the literature.) 

The following fact is useful. Let T be a qua1 tree for D. Let r and s be nodes in T 
and p a node along the path in T from r to s. Let R, S, and P be the relation 
schemas corresponding to r, s, and p, respectively. If A E R n S, then A E P. We call 
this property attribute connectivity. 

Let U= {Al,..., A,}, n>2. The schema D=({AI,A,}, (A2,A3) ,..., {A,_I,A}, 
{A,, A,}) is called an Aring of size n. The schema D= (U- (A,}, U- {AZ},..., 
U - {A,} ) is called an Aclique of size n. (Any schema isomorphic to an Aring or an 
Aclique is an Aring or Aclique simply by appropriately ordering the attributes.) 
Axings and Acliques are the “building blocks” of cyclic schemas in the following 
sense. 

LEMMA 3.1 [12]. Schema D is cyclic iff there exists XE U(D) such that 
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C A qua1 graph reprcmnting C Type 

(ab.bc.cd) 

(ab,bc,ac) 

ab - bc - cd 

ab - bc 

'aL 

tree 

this is the only qua1 
graph for C; 
so C is cyclic 

(abc,cde,ace,afe) abc - ace - afe 

‘cd/ 

c is a tree schema since 

obc-aye-afe 
cde 

is also a qua1 graph 
for c. 

FIG. 1. Tree and cyclic schemas: use a, 6, c,..., for attributes, concatenate elements to denote sets, 
and identify nodes of a qua1 graph with the corresponding sets. 

eliminating subset and duplicate relation schemas from D’ = (R - XI R E D), results in 
an Aring or an Aclique. (See Fig. 2.) 

In particular, Arings and Acliques are cyclic (let X= 0). 

3.2. Tree Projection 

Let D 6 D” <D’. D” is a tree projection of D’ wrt D, written D” E TP(D’, D), if 
D” is a tree schema [13]. Let Q = (D, X). D” is a tree projection of D’ wrt Q, 
denoted D” E TP(D’, Q) if D” E TP(D’, D U (X)). 

EXAMPLE. D = tab, bc, cd, de, ef,fg, gh, ha), 
D” = (ab, abch, cdgh, defg, ef ), 
D’ = (abef, abch, cdgh, defg, e). 

Clearly, D <D”<D’. Also, D” is a tree schema, viz., ab-abch- cdgh -defg-ef: 
Hence, D” is a tree projection of D’ wrt D. One can show that both D and D’ are 
cyclic schemas. 

3.3. G YO Reductions 

Let D be a schema and X_c U(D). Consider the following operations. 

(1) (Isolated attribute deletion.) Eliminate an attribute A $ X which belongs 
to exactly one relation schema of D. (Hence, X consists of “sacred nodes” that are 
never eliminated.) 

(2) (subset elimination.) Eliminate a relation schema in D contained in 
another relation schema. 

D’ is a partial GYO reduction of D wrt X, denoted D’ E pGR(D, X), if D’ can be 
obtained from D by a sequence of zero or more of the above operations. It is easy 
to show [12] that (1) and (2) preserve schema type, i.e., D and D’ are either both 
tree schemas or both cyclic schemas. D’ is the GYO reduction of D wrt X, denoted 
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a. *ring of size 4: Q = (ob, bc, cd, da) 

qua1 graph: ab-lx-cd-da 
I I 

b. Aclique of sire 4: Q= Ibcd, acd, abd, abd 

qua1 graph: bed-acd-abd-abc 
I I 

C. Cyclic schcms arc based on Arings or Acliques. 

fi - 
,Bef - aCe\ak 

\dab/ \bcd -cg 

f 

\cda’ 

\ 

delete X = abgi 
and eliminate subsets 

delete X = efgi 
and eliminate subsets 

ef ;cce 

I \ 
fd -cd 

abc 

/ \ 
dab bed 

\ / 

‘cd6 which is an Aring of 
size 4 

which is on Aclique of 
size 4 

FIG. 2. Arings and Acliques (using the notation of Fig. 1). 

D’ = GR(D, X), if neither operation has any effect on D’. (This is usually called 
Graham reduction in the literature. We propose the name GYO reduction in 
recognition of the early work by Yu and Ozsoyoglu on this problem [lo, 191.) If 
X= @, we write GR(D) for GR(D, X). Maier and Ullman have proved that 
GR(D, X) is unique and reduced [16]. 

3.4. Canonical Connections 

Let Tab(D, X) denote the “standard” tableau [2] for the query (D, X); i.e., 
Tab(D, X) is a tableau with rows ri,..., I, such that 

(i) nA(ri) = the distinguished variable a iff A E Rin X. 
(ii) JjA (ri) = the nondistinguished variable a’ iff A E Ri - X. 
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(iii) All other entries of Ti are unique nondistinguished variables. 

(iv) Entry A of the summary is a if A E X, and blank otherwise. 

If T and T are tableaux with the same distinguished variables, and the rows of T 
are rows of T, then T is a subtableau of 7”. If T has less rows, it is a proper sub- 
tableau. 

A containment mapping is a row-to-row mapping which is induced by a symbol- 
to-symbol mapping and preserves distinguished variables [2]. 

T and T are equivalent, denoted T= T’, if there is a containment mapping from 
T to T and a containment mapping from T to T. Since a composition of contain- 
ment mapping is a containment mapping, tableau equivalence is transitive. T and 
T’ are isomorphic, denoted T N T’, if there is a one-to-one correspondence between 
their rows which is a containment mapping in both directions. If T = Tab(D, X) 
and T’ is not equivalent to a tableau with fewer rows, T’ is said to be a minimal 
tableau for (D, X). 

LEMMA 3.2 [2]. (D, X) = (D’, X) iffTab(D, X) = Tab(D’, X). 

Given any Tab(D, X), we can construct a canonical schema, CS(D, X), as follows. 
For each row ri E Tab(D, X), construct the relation schema R, = {A 1 nA (rJ = a or 
nA (ri) = nA (rj) for some rJ # ri}. Then CS(D, X) is the reduction of the schema 

(Ri as constructed above 1 ri E Tab(D, X)). 

The following lemma is an immediate consequence of the above definitions. 

LEMMA 3.3. (i) IfTab(D, X) N Tab(D’, X), then CS(D, X)=CS(D’, X). 

(ii) rfCS(D, X) = CS(D’, X), then Tab(D, X) - Tab(D’, X). 

LEMMA 3.4 [2]. Zf T and T’ are equivalent tableaux, and neither is equivalent to 
a tableau with fewer rows, than T ‘v T’. 

By Lemma 3.4, two minimal .tableaux for (D, X) are isomorphic, and so by 
Lemma 3.3(i) the two have the same canonical schemas. This unique schema is 
called the canonical connection of (D, X), denoted CC(D, X) [16]. 

LEMMA 3.5. (D, X) z (D’, X) iff CC(D, X) = CC(D’, X). 

ProoJ (a) By Lemma 3.2, Tab(D, X) = Tab(D’, X). Let T and r be minimal 
tableaux for (D, X) and (D’, X), respectively. Then Tr T’ and by Lemma 3.4, 
T z T’. By Lemma 3.3(i), CC(D, X) = CC(D’, X). 

(*) By Lemma 3.3(ii), T= T’, where T is a minimal tableau for (D, X) and T 
is a minimal tableau for (D’, X). Hence, Tab(D, X) = Tab(D’, X) and by Lemma 
3.2, (D, X) = (D’, X). 1 
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corresponding to the nodes of the connected subgraph T’ of T are the required 
R R,. 1 ,***, 

(ii) (a) Let T be a qua1 tree for D such that D’ induces a connected sub- 
graph T. We now describe a sequence of GYO operations which transforms T to 
T. The basic idea is to eliminate leaves of T until T becomes T. The reason we can 
repeatedly eliminate leaves follows from Lemma 3.7. Once those attributes in a 
relation schema corresponding to a leaf, which appear only in this relation schema 
are eliminated, the relation schema becomes a subset of the relation schema 
corresponding to its parent in the tree and hence can be eliminated. Therefore, 

D’E~GR(D, u (D’)) and GR(D, u (D’))iD’. 

(=) Since attribute deletion is not applicable to the attributes of lJ (D’), the 
only operation permitted on D’ in the GYO reduction of D wrt U (D’) is subset 
deletion. But these subset deletions commute with “later” operations in the reduc- 
tion; hence, given the sequence of operations that led to GR(D, (J(D’)), we can 
construct another sequence of operations that has the subset deletions on D’ com- 
ing after all other operations. Thus, D’ E pGR(D, lJ (D’)) and, furthermore, no 
operations had been performed on relation schemas in D’ in this partial GYO 
reduction. Let T’ be a qua1 tree representing D’. By reversing the GYO reduction, 
we can construct a qua1 tree T representing D such that 7” is a connected subgraph 
of T. Since no operations had been performed on relation schemas in D’ in the par- 
tial GYO reduction, the relation schemas corresponding to the subgraph T of T 
are precisely those in D’. Hence D’ is a subtree of D. 

Finally, suppose GR(D, U (D’)) E D’. If GR(D, U (D’)) = D’, then since 
GR(D, lJ(D’)) is reduced, so is D’. Conversely, if GR(D, U(D’)) $ D’, then some 
relation schema in D’ was deleted in the GYO reduction, and so D’ is not 
reduced. l 

Theorem 3.1 establishes a link’ between the GYO reduction and qua1 trees. 
Theorem 3.l(ii) provides a characterization of subtrees of a tree schema that will 
prove useful when we consider joins in tree databases. The next theorem examines 
further the relationship between the GYO reduction and tree schemas. 

THEOREM 3.2. Let D be an arbitrary schema: 

(i) D u (R) is a tree schema implies GR(D) u (R) is a tree schema; 
(ii) D u (lJ (GR(D))) is a tree schema; 

(iii) if D u (S) is a tree schema then Sz lJ (GR(D)); 
(iv) ifGR(D)u(S) is a tree schema then S?U(GR(D)). 

Proof: (i) Let T be a qua1 tree for D, = D u (R). Construct a new database 
schema by uniformly deleting from D, attributes not in lJ (GR(D)) except that R is 
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left unchanged. Clearly, T is a qua1 tree for the new database schema as attribute 
connectivity is maintained. Now, eliminate subsets from the new schema but do not 
use R as a subset or superset. The result is GR(D) u (R). It is a tree schema as sub- 
set elimination preserves schema type. 

(ii) Let R = (J (GR(D)). Clearly, (R) u GR(D) E pGR(D u (R)). But R = 
lJ (GR(D)) implies that (R) u GR(D) is a tree schema. Since GYO preserves schema 
type, D u (R) is a tree schema. 

(iii) By (i), GR(D) u (S) is a tree schema. We claim that if GR(D) u (S) is 
represented by qua1 tree T, then T is “star-shaped” around S; i.e., the node 
corresponding to S is the root, and all nodes corresponding to other relation 
schemas are leaves. If T is not star-shaped, then T contains a leaf I and a node p 
adjacent to 1 with the associated relations R,, R, in GR(D). By Lemma 3.7 and the 
fact that no attribute in GR(D) appears only in one schema, R,c R,, this is 
impossible as GR(D) is reduced. The contradiction implies that T is star-shaped. 
Since every attribute in GR(D) appears in at least two relation schemas, and S is 
on the path between them, by attribute connectivity arguments every attribute in 
GR(D) must appear in the root S, i.e., (J (GR(D)) c S. 

(iv) By (iii), if GR(D)u (S) is a tree schema, then SzU (GR(GR(D))), i.e., 
s~U(WD)). I 

The following result of [3, 191 can be proved nicely from the preceding theorems. 

COROLLARY 3.1. D is a tree schema iff GR(D) = Qr. 

Proof. (=z-) Consider any RED. Since (R) is a subtree of D, by Theorem 
3.l(ii), GR(D, U ((R))) = (R). It follows that GR(D) = 0. 

(-+) By Theorem 3.2(ii), D u (0) is a tree schema, so D must be a tree 
schema. 1 

COROLLARY 3.2. The relation schema of least cardinality whose addition to D 
makes it a tree schema is U(GR(D)). 

GYO reductions are also related to canonical connections. 

THEOREM 3.3. Let D be an arbitrary schema and X E U (D): 

(i) CC(D, X) < GR(D, X). 

(ii) If D is a tree schema, then CC(D, X) = GR(D, X) [ 161. 
(iii) If U (GR(D, X)) s X, then CC(D, X) = GR(D, X). 

Proof. (i) It is proved in [16] that, if D” = GR(D, X), then Tab(D, X) = 
Tab(D”, X). By Lemma 3.2, (D, X) E (D”, A’), and so CC(D, x) =CC(D”, X) by 
Lemma 3.5. But CC(D”, X) <D” = GR(D, X). Hence the claim. 

(ii) This is proved in [16]. 
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(iii) Let D” = GR(D, X). As in (i), Tab(D, X) = Tab(D”, X). We shall argue 
that Tab(D”, X) is, in fact, a minimal tableau for (D, X). Now, U (D”) c X implies 
U (D”) =X, so Tab(D”, X) = Tab(D”, U (D”)). Thus all variables in Tab(D”, X) for 
attributes are distinguished, and any containment mapping from Tab(D”, X) to a 
tableau with fewer rows would correspond to relation schema elimination in a 
GYO reduction of D” w.r.t. U (D”), which is impossible. Therefore, Tab(D”, X) is a 
minimal tableau for (D, X) and D” = CC(D, X). 1 

4. SOLVING QUERIES USING JOINS 

Let XZ U(D). The problem is to characterize those D’6 D for which 
(D’, X) - (D, X). This problem is addressed in [ 15, 181. We use the concepts of 
Section 3 to unify their results. 

THEOREM 4.1. Let D’d D. The following are equivalent: (i) CC(D, X) 6 D’; (ii) 
(D, X) = (D’, X); (iii) CC(D, X) = CC(D’, X). 

proof (i)* (ii) Let D” =CC(D, X). Since D” 6D’<D, we have (D, X) s 
(D’, X) s (D”, X). But by definition of D”, Tab(D, X) = Tab(D”, X). By Lemma 3.2, 
(D, X) - (D”, X), so (D, X) = (D’, X). 

(ii) * (iii) Lemma 3.5. 

(iii) + (i) Simply observe that CC(D’, X) <D’. 1 

COROLLARY 4.1. To solve (D, X) by joining the relations in D’ c D and then pro- 
jecting the result onto X, it is necessary and sufficient that CC(D, X) <D’. 

COROLLARY 4.2. Suppose D’ < D. Checking (D, X) = (D’, X) can be done by 
minimizing Tab(D, X) [2] to obtain CC(D, X) and then oerifving that 
CC(D, X) <D’. 

If D is a tree schema then, by Theorems 3.3 and 4.1, (D, X)= (D’, X) iff 
GR(D, X) 6 D’. This was proved by Hull [lS] and Yanakakis [18]. They also 
proved that for cyclic schemas, GR(D, X) d D’ is a sufficient condition for (D, X) - 
(D’, X). Theorem 4.1 strengthens this result by stating that for cyclic schemas 
CC(D, X) d D’ is a necessary and sufficient condition. 

We now discuss the case of non-UR databases briefly. One strategy for solving 
(D, X) is to transform the database into a UR database and identify D’ as above. If 
D is a tree schema, the non-UR transformation can be done efficiently using semi- 
joins [S]. If D is cyclic, a possible strategy is (i) transform D into a tree schema by 
adding one or more relation schemas; (ii) use joins and projects to build relation 
states for those relation schemas-this reduces the cyclic case to the previous tree 
case; (iii) use semijoins as in the previous case to obtain a UR database. If step (i) 
is done by adding a single relation schema, Corollary 3.2 tells us the best choice for 
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that schema, namely IJ (GR(D)). If, however, step (i) is done by adding multiple 
relations, we run into the following NP-complete problem: 

Fixed Treefication. Given a schema D and integers K, B, are there R;,..., Ri 
such that D u (R;,..., R’,) is a tree schema, and for 1 ,< i < k, 1 RI 1 < B? 

Fixed treetication is straightforwardly in NP; to prove completeness, we use the 
following NP-complete problem [9]: 

Bin Packing. Given a set Z of items, a size s(i) E 2 + for each i E Z, a positive 
bin capacity B and a positive integer K. Is there a partition of Z into sets Ii,..., ZK 
such that the sum of the sizes of the items in each Z, is B or less? (W.1.o.g. we may 
assume that each s(i) and B are divisible by 3.) 

THEOREM 4.2. Fixed treefication is NP-complete. 

Proof: We reduce bin packing to fixed treelication by constructing a database 
schema D = iJio, Ri. Each Ri is an Aclique of size s(i) over a unique set of 
attributes. (This means that an integer s(i), represented by using log,(s(i)) bits in 
the bin packing instance, is transformed into log,(s(i)) * s(i)’ bits in the fixed 
treefication instance. However, bin packing is NP-complete in the strong sense [9], 
which renders the reduction proper.) 

Claim. There is a fixed treelication for D, K, B iff there is a bin packing 
assignment for Z, K, B: 

(*) Let D’ = D u (R;,..., Rk). Since D’ is a tree schema, GR(D’) = (0). This 
implies that each Acli,que in D is eliminated in the reduction process; as no Aclique 
attribute appears only in one relation, the attributes in each Aclique in D must 
appear together in some R;. Assign iE Z to a bin j such that u (Ri) E Rj. Observe 
that each i is assigned to a bin. Also, the sum of sizes of items in some bin j cannot 
be more than the number of attributes in Rj’, which cannot exceed B. Hence we 
have a bin packing assignment for Z, K, B. 

(G) Let I, ,..., K Z be the partition. Construct, for 1 < 1~ k, R; = iJ {U (Ri) 1 ie I,}, 
i.e., R; contains all the attributes associated with Acliques corresponding to items in 
Z,. Let D’ = D u (Rj 11 B 1 <K). Since the sum of sizes of items in no bin exceeds B, 
and item i of size s(i) generates an Aclique of size s(i), 1 Rj I < B. Also, as the 
attributes of each Aclique appear together and the set of attributes of Acliques are 
disjoint, GR(D’) = (0) and so D’ is a tree schema. 1 

5. LOSSLESS JOINS 

5.1. Canonical Connections and Lossless Joins 

A join dependency (jd) is a statement of the form w D; this jd holds in a universal 
relation Z, written Z+ CUD if &,,,Z=M..,(~,Z) [17]. (If U(D) rj; U, this is 
usually called an embedded join dependency.) We use w D k w D’ to mean 



348 GODDMAN,SHMUELI,ANDTAY 

Z k w D implies Z k w D’. In this case we also say that w D implies that D’ has a 
lossless join [ 11. 

Let D be a UR database for schema D, and let Z= w,, D R. Trivially, Z k w D. 
This and Theorem 4.1 give 

THEOREM 5.1. Let D’ < D. The following are equivalent: (i) CC(D, U (D’)) c D’, 
(ii) w D k w D’, and (iii) CC(D, IJ (D’)) = CC(D’, U (D’)). (There is equality in (i) 
iff D’ is reduced.) 

Proof: By Theorem 4.1, the following are equivalent: (i) CC(D, U(D’)) <D’; 
(ii) (D, U (D’)) = (D’, U (D’)); (iii) CC(D, U (D’)) = CC(D’, U (D’)). Suppose 
CC(D, U (D’)) SD’, R E CC(D, tJ (D’)), SE D’, R c S. Since SE D’ and D’ < D, 
there exists S’E CC(D, U(D’)) such that SGS’, and so R cS’. But CC(D, U(D’)) 
is reduced, so R =S= S’ and RED’. Hence CC(D, U(D’)) < D’ implies 
CC(D, tJ (D’)) c D’. Conversely, it is obvious that CC(D, IJ (D’)) ED’ implies 
CC(D, U (D’)) s D’. CC(D, U (D’)) <D’ and CC(D, U(D’)) ED’ are thus 
equivalent. 

It therefore suffices to show that 

(D, U P’)) - (D’, U VW) iff MD k MD’. 

(3) Given (~NII~~~~~ (b,dIL 0) =WR~~D~IIR~ VI. Suppose 1 I= W D. 
Then 

=l-I l-v 
U(D') UP) 

=nz since U (D’) E U (D) 
UP’) 

and hence Z k W D’. 

(e) For any Z, let .Z= W R E D(nR I). Then J k W D, and so J FW D’, i.e., 
l’Ju,n,, J=WR,~ DKIR~ J). Hence ~"~D,,(~R.D(~RZ))=W,,.D,(~,, J)= 
wRfEDp(&, I) (since D’G D), and so (D, U (D’)) = (D’, U (D’)). 

Suppose now that CC(D, U (D’)) cD’. If D’ is reduced, then every relation 
schema in D’ must be in CC(D, tJ D’)); hence CC(D, U (D’)) = D’. Conversely, if 
D’ is not reduced, then the subsets in D’ are surely not in CC(D, U(D’)), and so 
CC(D, UP’)) q D’. I 

COROLLARY 5.1. Suppose D’ < D. Checking W D /= W D’ cm be done by 
minimizing Tab(D, U (D’)) to obtain CC(D, U(D’)) and then uerifving that 
CC(D, U (D’)) E D’. 

For tree schemas, the lossless join question has a very appealing answer. 
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COROLLARY 5.2. Let D be u tree schema and D’ 5 D. Then w D l= w D’ iff D’ is 
a subtree of D. 

Proof. w D + w D’ iff CC(D, u (D’)) s D’ (Theorem 5.1) iff GR(D, u (D’)) E 
D’ (Theorem 3.3) iff D’ is a subtree of D (Theorem 3.1) 1 

As an example, consider D = { abc, ab, bc} and D’ = { ab, bc}. It is easy to see 
that w D t$ w D’ and D’ is not a subtree of D. 

THEOREM 5.2. Let D’ 6D be a minimum cardinality schema such that 
CC(D’, X) = CC(D, X). Then CC(D, U (D’)) = D’. 

Proof By Theorem 4.1, CC(D’, X)=CC(D, X) iff (D, X)z (D’, X), and by 
Lemma 3.2, (D, X) = (D’, X) iff Tab(D, X) = Tab(D’, X), so there is containment 
mapping h from Tab(D, X) to Tab(D’, X). We shall argue that h is also a contain- 
ment mapping from Tab(D, U (D’)) to Tab(D’, U (D’)): 

Since D’<D, for each RED’, select some ScD such that R sS, and denote 
S = parent(R). Let parent = {parent(R) ( R E D’}. Clearly, parent ED and 
Iparent(D’)I < ID’I. There is an obvious containment mapping h, from Tab@‘, X) 
to Tab(parent(D’), X) that maps the row for R to that for parent(R). 

We may consider Tab(parent(D’), X) to be a subtableau of Tab(D, X). Suppose 
that h maps the rows of Tab(parent(D’), X) to a proper subset of the rows of 
Tab(D’, X). Then by composing h, h,, and h (Fig. 3), there is a containment mapp- 
ing from Tab(D, X) to a proper subtableau of Tab(D’, X), thus contradicting the 
minimality of D’. 

Hence h maps the rows of Tab(parent(D’), X) onto those of Tab(D’, X), and 
Iparent( = ID’/. Since the mapping is one-one onto, if a is a repeated variable 
in Tab(parent(D’), X) ( i.e., u appears in two rows), so is h(a). Therefore h(u) = a for 
every distinguished or repeated variable a in Tab(parent(D’), 1). By the one-one 
subset correspondence between D’ and parent( the distinguished and repeated 
variables in Tab(D’, X) are also distinguished and repeated variables in 
Tab(parent(D’), X), hence h(u) = a for every distinguished or repeated variable in 
Tab(D’, X). 

Consider now a’ in Tab(D’, X) that is, neither distinguished nor repeated. If 
h(a’) # a’, and a’ appears in row s for an attribute in some SE D’, then h must map 

Tab Q. Xl Tob@‘,X) Tobkmnt(P’),Xl Tab Q: X) 

r~~q=j 

FIG. 3. Composition of h, h,, and h. 

571/29/3-4 
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the row for parent(S) to some row I for R E D’, R #S. Then the mapping h, from 
Tab(D’, X) to subtableau Tab(D’ - (S), X) defined by 

h,(t) = t if t # s, 

=r if t = s, 

is a containment mapping since all distinguished and repeated variables map onto 
themselves. Again, by composing h and h,, we get a containment mapping from 
Tab(D, X) to a proper subtableau of Tab(D’, X), which contradicts the minimality 
of D’. 

It must therefore be the case that h maps all variables for attributes in D’ to 
themselves. Thus, if all variables for attributes in D’ were made distinguished, h 
remains a valid containment mapping from Tab(D, U (D’)) to Tab(D’, U (D’)). But 
there is an obvious containment mapping from Tab(D’, U (D’)) to Tab(D, U (D’)) 
because D’ i D, so Tab(D, U (D’)) E Tab(D’, U (D’)). This implies, by Lemma 3.2, 
that (D’ U (D’)) s (D’, U (D’)), and therefore CC(D, U (D’)) = CC(D’, U (D’)) 
(Theorem 4.1). Since D’ minimal, CC(D’, U (D’)) = D’; hence the theorem. 1 

COROLLARY 5.3 [18]. Let D’ <D be a minimal cardinality schema such that 
(D, X) = (D’, X). Then w D’ implies D’ has a lossless join. 

ProoJ: By Theorem 4.1, (D, X) E (D’, X) implies CC(D, X) = CC(D’, X). Hence 
CC(D, U (D’)) = D’ (Theorem 5.2), and so w D l= w D’ (Theorem 5.1). 1 

These results are related to problems studied by Yannakakis [18], Goodman 
and Shmueli [ 111, and Fagin [7]. 

Yannakakis considered the following problem. Given D’sD and Xs U(D’), 
when does Z + w D imply n, (W,.,,, (&, I)) = n, Z? In our terms, this amounts 
to asking whether (D, X) E (D’, X). This can be answered using simple tableau 
techniques [2], or by applying Corollary 4.2. Taking X= U (D’), Yannakakis’s 
problem is precisely the lossless join problem, i.e., deciding whether w D /= w D’. 
Once again, tableau equivalence can be used to answer this question. Alternatively, 
Corollary 5.1 can be invoked. We note that Corollary 5.3 appears in [ 181 for the 
case D’ ED. Corollary 5.2 also appears there, although the proof using our techni- 
ques is more direct. 

In [ 113, the problem of ultra join reduction is considered. Let D be a database for 
D. D is UJR if for all minimum size (minimum number of edges) qua1 graphs G for 
D, and for all connected subgraphs of G, say consisting of nodes rl,..., rk 
corresponding to R, ,..., R,, the following holds: 

G (1, Ri)zjFl K,, where .A’= fi k,. 
j=l 
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Every UJR database is trivially UR. In [ 111, it is proved that for tree schemas the 
converse holds-i.e., for all tree schemas D, every UR database for D is also UJR; 
while for cyclic schemas the converse fails-for all cyclic schemas D, there exists a 
UR database for D that is not UJR. 

Let us interpret these results in light of the current treatment, For tree schemas, a 
minimum size qua1 graph is simply a tree, and so the question addressed is this: 
Does w D b w D’ for all subtrees D’ of D? Corollary 5.2 gives the answer, “yes.” 
Moreover, Corollary 5.2 strengthens [ 111 by answering the converse to this 
question, too. It is also easy to see why UR does not imply UJR for cyclic schemas: 
If the nodes corresponding to D’ induce a connected subgraph in some minimal 
qua1 graph representing D, it is not necessary that CC(D, U (D’)) ED’, Thus, by 
Theorem 5.1, w D k w D’. 

5.2. y-Acyclic Databases 

Fagin [7] characterized those schemas D such that w D k w D’ for all “connec- 
ted” D’ ED [7]. (D’ is connected if every pair or relation schemas R and S is con- 
nected by a path Ril, Ri *,..., R,, where R = R,,, S = R,, and adjacent relation 
schemas share at least one attribute.) 

Fagin’s characterization is based on y-cycles. A weak y-cycle in D is a sequence 
(R,, A,, Rz,..., R,, A,, RI) such that m>3, the Ais are distinct, AiERinRi+i 
(m + 1~ l), AI is only in R, and RZ, and A2 is only in R2 and R3 [7]. D is y-acyclic 
if it contains no weak y-cycles. Fagin proves 

wD+buD’ for all connected D’ G D iff D is y-acyclic. (*) 

We offer the following alternative characterizations of y-acyclic schemas. 

THEOREM 5.3. The following are equivalent: 

(i) D is y-acyclic. 
(ii) For all RI, R2 in D such that RI n R2 # 0, deleting attributes RI n R2 

from D results in a schema in which RI - (R, n R2) and R2 - (RI n R2) are not con- 
nected. 

(iii) D is a tree schema and every connected D’ E D is a subtree of D. 

Proox (i) * (ii) Suppose, for the sake of deriving a contradiction, that there 
exists R, S E D violating (ii). Let X= R n S and delete X from all relation schemas 
in D. Let RI - X, R2 - X ,..., R, - X be a path connecting R, - X and R, - X, where 
R, = R and R, = S. Since we deleted R n S, n 2 3. 

If (Ri - X) n (Rj - X) # @ for some 1~ i <j < n and i + 1 <j, then the path can 
be shortened to 
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R,-X-Fli+,-X RI-X 

i 

j 
_Aj -X becomes 

3 i 

\ 
Ri -x 

R,-X R,-X R,‘X 

(lji-x)n @-xl+ + 

FIG. 4. Shortening a path connecting R, - X and R, - X. 

(see Fig. 4). Note that this shorter path must still have at least 3 relation schemas. 
We may therefore assume that (Ri - X) n (Rj - X) = @ for 2 < i + 1 <j< n, where 
n > 3. 

Let Ai~(Ri-X)n(R,+, -X) for l<i<n-1 and A,EX=RinR, (#a); by 
the preceding remark, the AiS are distinct. Furthermore, Ai 4 Ri for i# 1,2, and 
A,$Rifor i#2, 3. We thus have a y-cycle (R,, A,, R, ,..., R,, A,, R,). 

(ii) * (i). Suppose, for the sake of deriving a contradiction, that D has the y- 
cycle C= (R,, A,, RZ, A2 ,..., R,, A,, R,). If, for some i,j such that 1 <i<j<n, 
RinRi+iCRinRj+i, then Ci=(Ri, Ai, RZ, &,...,Ai_l, Ri, Ai, Rj+l, 
Aj + 1 y*..v A,, R 1) is a smaller-y-cycle (see Fig. 5). 

Continue until no further contraction is possible. Let the resulting y-cycle be 
C’= (R;, A;, R;, A; ,.., AL_,, Rk, AL, R;), where R;=R,, R;=R,, R;=R,, 
A;=A,, Ak=A,. Let X=R;nRk (#@). By the definition of a y-cycle, A;$X 
and A; # X. Furthermore, by definition of C’, there is no i such that 1 < i< m - 1 
and RI n R:, L E R; n Rk. Hence if we remove X from all relation schemas in D, 
R; -X, and Rk -X remain connected by the path R; -X, R;-X, 
R; -X,..., Rk -X (see Fig. 6); a contradiction. 

(ii) * (iii) By Lemma 3.1, if D is cyclic, then by appropriately deleting some 
attributes of D and omitting subsets, we can get either an Aring or an Aclique. In 
either case, if R and S are two relation schemas in this Aring or Aclique such that 
R n S # 0, then deleting the intersection of the supersets in D of R and S does not 
disconnect those supersets (see Fig. 7). Thus (ii) implies D is a tree schema. 

a2 R3 
bed 

d 
dc 

b/ 
\ 

c 
/ 

Rl Ob 

\ 

ce R4 

/ 

becomes 

ocf 

FIG. 5. Contracting a y-cycle. 
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FIG. 6. Deleting Rk n Rh_ , does not disconnect Rh and Rh-, 

We shall prove by induction on the size of D’ that if it is connected, then it is a 
subtree of D. This trivially holds for ID’1 = 1. 

Suppose D” is a subtree of D, and it induces connected subgraph T” in qua1 tree 
T for D. We must show that if D’ = D” u (R) is connected, then D’ is a subtree of 
D. Consider any R in D -D” connected to D”, i.e., R has nonempty intersection 
with some relation schema in D”. Let S be the node in T” such that the path in T 
from R to S contains no edges in T”. (See Fig. 8. Here, we identify the nodes and 
their corresponding relation schemes.) If R is adjacent in T to S, then T” plus the 
edge {R, S} is the required T’ (Fig. 8a). 

In R is not adjacent in T to S, let X= R n S. Since R is connected to D” and T is 
a qua1 tree, X# (21 (attribute connectivity). Furthermore, every node along the path 

a 
ef-e 

/ 
fi-fd 

\ /b\ 

“\dAbd-’ 

b 
ef - ae 

/ \ 

fi -“\ ab,/ab‘b-g 

a 

FIG. 7. Deleting the intersection of the supersets in D of R and S does not disconnect those super- 
sets: Consider the Aring and Aclique in Fig. 2. (a) Let R = cd and S = ce in the Aring. They have super- 
sets cdu and ace, respectively. Deleting ac does not disconnect d and e; (b) Let R = bed and S = cda in 
the Aclique. They have supersets bed and C&I, respectively. Deleting cd does not disconnect b and a. 
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(a) R adjacent in T to S 

- is T” 

- and ---is T 

- is T’ representing 

D” IJ a> 

- ond --- is T 

(b) R not adjacent in T to S 

Let XI ,Xp be the intersections 

of adjacent nodes along the 

path from R to s. 

Then XsXi for i = I, 2. 

Furthermore, X=Xi for some i, 

soy i=2. 

- is T’ representing 

e” u Q 1 

- and --- is new T 
representing Q 

FIG. 8. Constructing T to represent D’=D”u {R} 

from R to S contains X, so any pair of adjacent nodes along the path in T between 
R and S must have intersection containing X. One of these intersections must be 
equal to X; otherwise, deleting R n S does not disconnect R and S. By joining R 
and S via an edge and deleting that edge along the path with intersection exactly A’, 
we have a new qua1 tree for D and a connected subgraph T representing D” u {R} 
(see 8b). This completes the induction. 

(iii) G+ (ii) Let R, SE D, R n S # 0, comprise a connected schema D’. Then 
there is a subtree T representing D such that ‘R and S are adjacent in T. Deleting 
R n S obviously disconnects R - (R n S) and S - (R n S). 1 

In the above theorem, (i) o (iii) can be proved easily using Corollary 5.2 and 
Fagin’s result (*). The proof above, however, is by qua1 graph techniques and 
independent of (*). Fagin’s result can now be obtained as part of the following 
corollary: 

COROLLARY 5.3. The following are equivalent: 
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(i) D is y-acyclic. 

(ii) For all connected D’ E D, GR(D, u (D’)) E D’. 

(iii) For all connected D’ E D, CC(D, IJ (D’)) E D’. 

(iv) For all connected D’ ED, w D k w D’. 

Proof. (i)* (ii) By Theorem 5.3 ((i)* (iii)), D is a tree schema and every 
connected D’ E D is a subtree of D. Hence, GR(D, lJ (D’)) E D’ (Theorem 3.l(ii)). 

(ii) Z= (i) Let R E D. Since GR(D, R) E (R), we have GR(D) = 0. Hence D is a 
tree schema (Corollary 3.1). By Theorem 3.l(ii), every connected D’ c D is a sub- 
tree of D, so D is y-acyclic (Theorem ‘5.3(iii) + (i)). 

(ii) * (iii) By Theorem 3.3(iii), since GR(D, lJ (D’)) z D’, we have 
CC(D, U (D’)) = GR(D, U (D’)). H ence, CC(D, lJ (D’)) z D’ for all connected 
D’cD. 

(iii) * (ii) Suppose D is an Aring (or Aclique). Let D’ = D - {R} for any R E D. 
Then (iii) would not be true since CC(D, lJ (D’)) = D. It is straightforward to prove 
that a general cyclic schema cannot satisfy (iii). Hence, (iii) implies that D is a tree 
schema. By Theorem 3.3(ii), we have CC(D, lJ (D’)) = GR(D, lJ(D’)), so (ii) 
follows from (iii). 

(iii) o (iv) Theorem 5.1 ((i) o (ii)). 1 

6. SOLVING QUERIES USING JOINS, SEMIJOINS, AND PROJECTS 

We are interested in solving (D, X) by translating it into a program that com- 
putes the result when applied to any UR database for D. A program is a finite 
sequence of statements. A statement is one of: 

(Join statement) Rk : = Ri KI Rj -a newly created relation R, is 
assigned the values of Ri w Rj. 

(Project statement) Rk := n, (RJ- a newly created relation R, 
is assigned the value n, (Ri). 

(Semijoin statement) R k : = Ri DC Rj- a newly created relation R, 
is assigned the value of RiD< Rj. 

P solves (D, X) if for all UR databases for D, the value produced by the last 
statement of P is the answer to (D, X). 

We can think of P as mapping the original databases schema and state into a new 
schema and state. The new schema is the original schema plus the relation schemas 
for the relations created by the statements of P. The new database state assigns to 
each original relation schema its original relation state, and to each new relation 
schema the relation produced by the appropriate statement. We use P(D) to denote 
the schema part of this mapping and P(D) for the state part. 
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Some relation states may be considered irrelevant in solving Q = (D, X) over a 
universal database. Consider the following example: Let D = (R, = ubg, R2 = beg, 
R3 = acf, R4 = ad, R5 = de, R6 = eu) and let Q = (D, abc). Clearly, to solve Q, Rq, 
R,, and R6 are irrelevant, as is the f column in R,. Hence given D = (R, ,..., R,) 
over D, we can solve (D’, abc), where D’ = (R,, R2, naC R,). 

Formally, the relations that remain correspond to elements of CC(D, X). In 
addition, columns corresponding to attributes that appear in only one such 
relation, and are not in X, are “projected out.” Thus, we basically perform tableau 
minimization and then eliminate useless columns. 

For general databases (i.e., not necessarily UR), Goodman and Shmueli [13] 
proved the following theorem (recall the definition of tree projection (TP) from 
Section 3.2). 

THEOREM 6.1 [ 133 (Tree Projection Sufficiency). rf there exists D” E TP(P(D), 
D lJ (X)), then P augmented by at most 2.1 D ( semijoins solves (D, X). 

In light of the discussion above, we immediately obtain a specialization of 
Theorem 6.1 to UR databases. 

THEOREM 6. [13] Zf there exists D”ETP(P(D), CC(D, X)u (X)), then P 
augmented by at most 2. ( CC(D, A’)[ semijoins solves (D, X) over all UR databases. 

For general databases, the following theorem characterizes the necessary actions 
P has to perform in order to solve (D, X). 

THEOREM 6.3 [ 131 (Tree Projection Necessity). Zf P solves (D, X) then there 
exists D” E TP(P(D), D u (X)). 

One may suspect that the UR property may weaken the above theorem when 
restricted to UR databases. Indeed, in light of Theorem 6.2, we know that 
D”ETP(P(D), CC(D, X)u (X)) is sufficient. However, no further weakening of 
Theorem 6.3 is possible. By tracing the proof of Theorem 6.3 with CC(D, X) replac- 
ing D, we obtained the following. 

THEOREM 6.4 [ 131 If P solves (D, X) on all UR databases, then there exists 
D” E TP(P(D), CC(D, X) u (X)). 

Theorems 6.1-6.4 are important for two reasons. First, they show that forming a 
tree projection is the crux of the query processing problem for both UR and non- 
UR databases. Second, the justaposition of the UR and non-I-JR results gives a 
clear indication of the value of the UR property for query processing. The UR 
property is helpful to the extent that CC(D, X) is smaller than D; but once 
CC(D, X) has been taken, the benefit of UR is “used up.” 
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7. CONCLUSIONS 

Recent work has tied together relational database theory and graph theory 
(especially hypergraphs). Tree and cyclic schemas, tree projections and the GYO 
reduction have proved useful in analyzing problems in query processing, schema 
design, and dependency theory. The canonical connection introduced an essential 
link between tableaux (i.e., expressions) and schemas. 

This paper presents a coherent organization of results concerning the canonical 
connection and lossless joins. Our results strengthen existing ones, and as 
corollaries we get previously known results. We exhibited a relationship between 
tree projections and canonical connections associated with query processing. In 
analyzing lossless joins, we provided a new characterization for y-acyclic databases, 
and showed how to prove some of their properties using graph techniques. 

Some new results concerning the GYO reduction were presented. In particular, 
we proved that if the addition of relation R to schema D transforms it into a tree 
schema then R 2 GR(D). Such a simple characterization was not found for the case 
where more than one relation is added; in this case we run into N&completeness. 
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