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a b s t r a c t

An interpolation matched interface and boundary (IMIB) method with second-order
accuracy is developed for elliptic interface problems on Cartesian grids, based on original
MIB method proposed by Zhou et al. [Y. Zhou, G. Wei, On the fictious-domain and
interpolation formulations of thematched interface and boundarymethod, J. Comput. Phys.
219 (2006) 228–246]. Explicit and symmetric finite difference formulas at irregular grid
points are derived by virtue of the level set function. The difference scheme using IMIB
method is shown to satisfy the discrete maximum principle for a certain class of problems.
Rigorous error analyses are given for the IMIB method applied to one-dimensional (1D)
problems with piecewise constant coefficients and two-dimensional (2D) problems with
singular sources. Comparison functions are constructed to obtain a sharp error bound for 1D
approximate solutions. Furthermore,we compare the ghost fluidmethod (GFM), immersed
interface method (IIM), MIB and IMIB methods for 1D problems. Finally, numerical
examples are provided to show the efficiency and robustness of the proposed method.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

Consider the elliptic equation

∇ ·
(
β(x)∇u(x)

)
= f (x) x ∈ Ω = Ω+ ∪Ω− (1.1)

with a Dirichlet, Neumann or mixed boundary condition prescribed on ∂Ω . For simplicity, Ω is assumed to be a regular
domain, such as rectangle in two-dimensions (2D) or cuboid in three-dimensions (3D). Across some smooth interface Γ in
domain Ω , the coefficient function β(x) of the elliptic equation is discontinuous, while the source term f (x) may be even
singular. Depending on the properties of f (x), we usually have jump conditions across the interface Γ :

[u]Γ = u+(x)− u−(x) = a(x), [βun]Γ = β+(x)u+n (x)− β
−(x)u−n (x) = b(x) (1.2)

where x is a point on the interface Γ , n is the unit outer normal direction. The superscript− or+, denotes the limiting value
of a function from one side or the other of the interface.
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Such elliptic interface problems often arise in fluid dynamics, molecular biology, electromagnetics and material science,
and many efficient numerical methods for these problems have been developed. The discussion of existence and regularity
of the solution to the interface problem can be found in [1,2]. There is also a vast amount of literature on numerical schemes
and error analysis for the problem (1.1) and (1.2), such as Peskin’s immersed boundary method (IBM) [3–8], the IIM [9–19],
the GFM [20–22], the MIB method [23–27], finite element method (FEM) [1,28,2,29–32] and some other body-fitting
approaches [33,34]. For certain geometrically complex domain, the consumption of a good body-fitting mesh remains
a nontrivial and time-consuming task, even though considerable progress has been made. Furthermore, a considerable
increase of the computational difficulty will be encountered for free interface problems, where a moving mesh method
is required to regenerate the grid during the simulation. However, sharp interface methods such as the IIM, GFM and MIB
method use fixed Cartesian grids, thus they can easily be used to simulate dynamical problems in conjunction with the level
set function, which describes the motion of the interface in an elegant and simple way. Therefore, sharp interface methods
are more suitable and promising than body-fitting approaches for such interface problems.
For this class of problems, apart from the pioneer work of Peskin [5] in 1977, a number of other elegant methods have

been proposed. Among them, the IIM proposed by Leveque and Li [12] is one of the most popular and powerful methods
which are designed to preserve interface jumps in solving elliptic equations. The IIM is the first sharp interface method
and is the first second-order method, although its local truncation error at irregular points is of O(h). The IIM uses local
Taylor expansions around a set of control points on the interface and determines the weights of the neighboring points by
matching the interface conditions to high order. However, for 2D or 3D problems, a local coordinate is typically required
to offer a better representation of the jump conditions since they are usually given in the direction normal to the interface.
In the original IIM, the coefficients and the correction terms in the finite difference formulas at irregular points cannot
be obtained explicitly, instead, they are often computed numerically by solving a linear equations system. In addition, the
schemes in the vicinity of the interface have to vary from point to point. This complicated procedure becomes a barrier to
solving complex 2D or 3D dynamical problems.
The GFMwas originally designed to treat contact discontinuities in the inviscid Euler equations [20]. In favor of the level

set method, the interface jump conditions are captured implicitly by extending values across the interface into a ghost fluid.
In high dimensions, the jump in the normal derivative is correctly captured through a projection to Cartesian coordinate
directions, while the less important jump in the tangential directions is neglected. Such a modeling is in consistent with its
overall first-order accuracy. In the GFM, the interface jump conditions are applied on the nearest grid points of an interface,
instead of at the exact interface position. This treatment generates a symmetric matrix for the associated linear system,
and thus standard techniques of acceleration such as preconditioned conjugate gradient (PCG) and multigrid can be used to
invert the matrix. From this point of view, the GFM is very simple and easy to use for complex interface problems.
Another popular sharp interface method MIB proposed by Zhou et al. [26], which can be regarded as a higher-order

generalization of the IIM and theGFM, is quite robust and efficient, of arbitrarily high-order accuracy in principle. The earliest
version of the MIB method was proposed in [25] by Zhao and Wei. The MIB method has been developed in Wei’s group
over past few years. Most recently, Yu, Zhou and Wei generalize their original MIB method to treat geometric singularities
[23,24]. And the application of suchMIBmethod to the electrostatic analysis of biomolecules is reported elsewhere [35]. The
MIB approach makes use of fictitious domains so that standard central finite difference scheme can be applied across the
interface without loss of accuracy. The values on the fictitious domains are determined simultaneously from enforcing the
interface jump conditions at the exact position of the interface. One feature of the MIB is that it disassociates between the
discretization of the equation and the enforcement of interface jump conditions. Another feature is to just make repeated
use of the lowest-order interface jump conditions to achieve high-order accuracy.
The convergence and error estimations are also very important for sharp interface schemes. A convergence proof for

the GFM is provided in [36]. The error analysis is given for the IIM applied to 1D elliptic interface problems using both the
comparison functions and asymptotic analysis; however, no rigorous proof is given for 2D case [19]. A maximum principle
preserving immersed interface method (MIIM) [13] is second-order accurate with complete theoretical proof. However, the
use of an optimization scheme to force themaximumprinciple is somewhat complicated. And till now there is no theoretical
proof of convergence of the MIB method for elliptic interface problems.
The object of this paper is to propose a simple finite difference scheme named IMIB for solving elliptic interface problems

on Cartesian grids. The IMIBmethod is similar to the interpolation formulation in [27], which use the Lagrange polynomial to
compute the required coefficients at any given order. The IMIBmethod reformulate theMIBmethod, and result in symmetric
and explicit difference formulas at second-order accuracy,while the originalMIB formulas are not explicitly derived, instead,
they are computed by a computer program. For elliptic interface problems with constant coefficients, the resulting matrices
are just the same as the casewithout interfaces; for 1D interface problemswith piecewise constant coefficients, the resulting
matrices are symmetric and positive definite. It is easy to obtain the second-order convergence of the IMIB method applied
to 1D problems with piecewise constant coefficients and 2D problems with constant coefficients by comparison functions
technique. Because of its simplicity, it can be easily generalized to solve high-dimensional and dynamical problems.
Furthermore, it is easily seen the relation among the GFM, IIM, MIB and IMIB method in 1D from the derivation of our
method. However, in higher dimensions, these methods differ very much in many aspects; see [27] for details.
The rest of this paper is organized as follows. In Section 2,we first explain our ideas andderive the corresponding formulas

for 1D problems, then briefly explain how to solve high dimension problems. Convergence analysis for the IMIB method is
presented in Section 3. Finally, we show the numerical results of some test problems in Section 4, and formulas in Section 5.
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Fig. 1. Computational domains and interfaces with uniform Cartesian grids.

Fig. 2. The local configuration near interface.

2. Numerical method

Since the interface can have a fairly complex shape, the interface location is represented by the zero level set of a signed
distance function φ. Meanwhile, the set of all points where φ < 0 and the set of all points where φ > 0 represent two
disjoint subdomains,Ω− andΩ+, respectively. For the numerical algorithm, we identify whether the point is located inΩ−
orΩ+ by considering the local sign of φ, unless φ = 0 implying that the point is located exactly on the interface.
As shown in Fig. 1, we take a uniform grid on the regular domainΩ . We define the irregular point as the one at which all

the discretization points in a standard central finite difference scheme are not on the same side of the interface. For example,
in a second-order 2D scheme, an irregular point has at least one of its nearest neighbor grid points lying on the other side
of the interface.

2.1. The 1D Poisson equation

Consider the 1D Poisson equation

uxx = f (x) (2.1)

with Dirichlet boundary conditions on ∂Ω . We notice that only irregular points necessitate special care when standard
central difference scheme is applied to the whole domain. For each regular grid point i, the standard second-order
discretization

ui+1 − 2ui + ui−1
h2

= fi (2.2)

can be used. For irregular grid points, we should modify standard difference discretization to maintain the jump conditions.
In favor of the level set function φ, we can identify the location of the interface as follow. Assume that the interface lies

between xk and xk+1, and [u]Γ = aΓ and [ux]Γ = bΓ , then

θ =
|φk|

|φk| + |φk+1|
(2.3)

can be used to estimate the interface location. That is, the interface splits this cell into two pieces with size θh on the left
and size (1− θ)h on the right. Because the derivative approximation at the irregular grid points xk and xk+1 refer to points
from the other side of the interface, two fictitious values Fk and Fk+1 in place of real ones should be supplied, as shown in
Fig. 2.
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Fig. 3. Schematic illustration of how the notation used in the Taylor weight algorithm relates to stencil shape; here shown in a staggered casewith s = 1.3,
n = 3.

Table 1
Input parameters to the Mathematics for the four cases.

Case m s n

u−Γ 0 1+ θ 2
u+Γ 0 θ 2
u′−Γ 1 1+ θ 2
u′+Γ 1 θ 2

By the use of Taylor weight algorithm (see [37]), the approximations of the values of u and its derivatives on the left and
the right side of the interface can be written as

u−Γ =
(
−
θ

2
+
θ2

2

)
uk−1 + (1− θ2)uk +

(
θ

2
+
θ2

2

)
Fk+1 (2.4)

u+Γ =
(
1−

3
2
θ +

θ2

2

)
Fk + (2θ − θ2)uk+1 +

(
−
θ

2
+
θ2

2

)
uk+2 (2.5)

and

u′−Γ =
[(
−
1
2
+ θ

)
uk−1 − 2θuk +

(
1
2
+ θ

)
Fk+1

]/
h (2.6)

u′+Γ =
[(
−
3
2
+ θ

)
Fk + (2− 2θ)uk+1 −

(
1
2
− θ

)
uk+2

]/
h (2.7)

respectively. These weights are obtained by executing the Mathematica statement

where

m order of derivative to be approximated,
s number of grid intervals in between the derivative and function entries; select the sign ‘‘+’’ if the former is to the right
of the latter, else the sign ‘‘−’’,

n number of grid intervals in between left- and rightmost function entries;

cf. Fig. 3. We choose the parameters as shown in Table 1, then obtain (2.4)–(2.7).
In order to determine two fictitious values Fk and Fk+1, we discretize two jump conditions as(
−
θ

2
+
θ2

2

)
uk−1 + (1− θ2)uk +

(
θ

2
+
θ2

2

)
Fk+1

=

(
1−

3
2
θ +

θ2

2

)
Fk + (2θ − θ2)uk+1 +

(
−
θ

2
+
θ2

2

)
uk+2 − aΓ , (2.8)(

−
1
2
+ θ

)
uk−1 − 2θuk +

(
1
2
+ θ

)
Fk+1 =

(
−
3
2
+ θ

)
Fk + (2− 2θ)uk+1 −

(
1
2
− θ

)
uk+2 − bΓ h, (2.9)

which can be rewritten as(
1−

3
2
θ +

θ2

2

)
Fk −

(
θ

2
+
θ2

2

)
Fk+1

=

(
−
θ

2
+
θ2

2

)
uk−1 + (1− θ2)uk − (2θ − θ2)uk+1 +

(
θ

2
−
θ2

2

)
uk+2 + aΓ , (2.10)(

−
3
2
+ θ

)
Fk −

(
1
2
+ θ

)
Fk+1 =

(
−
1
2
+ θ

)
uk−1 − 2θuk − (2− 2θ)uk+1 +

(
1
2
− θ

)
uk+2 + bΓ h. (2.11)
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From (2.10) and (2.11), we can easily get the explicit expressions for two unknowns Fk and Fk+1:

Fk =
−θ2uk−1 + (1+ θ)2uk − 3θ2uk+1 + θ2uk+2 + (1+ 2θ)aΓ − (θ + θ2)bΓ h

1+ 2θ − 2θ2
, (2.12)

Fk+1 =
(1− θ)2uk−1 − 3(1− θ)2uk + (2− θ)2uk+1 − (1− θ)2uk+2 − (3− 2θ)aΓ − (2− 3θ + θ2)bΓ h

1+ 2θ − 2θ2
, (2.13)

where 1+ 2θ − 2θ2 = −2(θ − 1
2 )
2
+
3
2 > 1. With these two expansions of Fk and Fk+1, we could discretize uxx at irregular

grid points xk and xk+1 as at regular point[(
Fk+1 − uk
h

)
−

(
uk − uk−1
h

)]/
h = fk, (2.14)[(

uk+2 − uk+1
h

)
−

(
uk+1 − Fk
h

)]/
h = fk+1. (2.15)

Through a perfectly simple calculation, we obtain the modified finite difference scheme

(2− θ2)uk−1 − (5− 2θ − θ2)uk + (2− θ)2uk+1 − (1− θ)2uk+2

= (3− 2θ)aΓ + (2− 3θ + θ2)bΓ h+ (1+ 2θ − 2θ2)h2fk (2.16)

and

− θ2uk−1 + (1+ θ)2uk − (2+ 4θ − θ2)uk+1 + (1+ 2θ − θ2)uk+2

= −(1+ 2θ)aΓ + (θ + θ2)bΓ h+ (1+ 2θ − 2θ2)h2fk+1 (2.17)

at irregular grid points xk and xk+1, respectively. We can rewrite (2.16) and (2.17) as

uk+1 − 2uk + uk−1
h2

= f̃k +
aΓ
h2
+
bΓ (1− θ)

h
(2.18)

and

uk+2 − 2uk+1 + uk
h2

= f̃k+1 −
aΓ
h2
+
bΓ θ
h

(2.19)

where

f̃k =
1+ 2θ − θ2

2
fk +

(1− θ)2

2
fk+1, (2.20)

f̃k+1 =
θ2

2
fk +

2− θ2

2
fk+1. (2.21)

Considering fk+1 = fk + [f ]Γ + O(h), the difference schemes above can be simplified as follows:

uk+1 − 2uk + uk−1
h2

= fk +
aΓ
h2
+
bΓ (1− θ)

h
+
[f ]Γ (1− θ)2

2
, (2.22)

and

uk+2 − 2uk+1 + uk
h2

= fk+1 −
aΓ
h2
+
bΓ θ
h
−
[f ]Γ θ2

2
, (2.23)

fromwhich we can find that the standard central difference scheme can be applied in the whole domain, the only difference
is that we need to modify the right-hand side of the resulting linear system to model the singular source.

Remark 2.1. Difference schemes (2.16) and (2.17) are just the same as original second-order MIB [26] method. Difference
formulations (2.22) and (2.23) are essentially equivalent to the IIM [12] and interpolation formulation [27]. Furthermore, if
[f ]Γ = 0, difference formulations (2.22) and (2.23) are just the same as the GFM [21].

2.2. The 1D Quasi-Poisson equation

Consider the 1D variable coefficient Poisson equation

(βux)x = f (x) (2.24)
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with interface jump conditions, [u]Γ = aΓ and [βux]Γ = bΓ . The standard second-order discretization for each regular grid
point i becomes[

βi+1/2

(
ui+1 − ui
h

)
− βi−1/2

(
ui − ui−1
h

)]/
h = fi (2.25)

where βi±1/2 = β(xi±1/2). To simplify the presentationwe assume that the coefficient β is a piecewise constant, i.e., β = β−
if x ∈ Ω− and β = β+ if x ∈ Ω+, while our newmethod for general piecewise continuous β is almost identical. In practical
problems β often represents a physical quantity such as conductivity, permeability, or density and so β > 0, r = β+/β− >
0 everywhere. By discretizing the jump conditions in the same way, two fictitious values Fk and Fk+1, as shown in Fig. 2, can
be determined via(

−
θ

2
+
θ2

2

)
uk−1 + (1− θ2)uk +

(
θ

2
+
θ2

2

)
Fk+1

=

(
1−

3
2
θ +

θ2

2

)
Fk + (2θ − θ2)uk+1 +

(
−
θ

2
+
θ2

2

)
uk+2 − aΓ (2.26)

β−
((
−
1
2
+ θ

)
uk−1 − 2θuk +

(
1
2
+ θ

)
Fk+1

)
= β+

((
−
3
2
+ θ

)
Fk + (2− 2θ)uk+1 −

(
1
2
− θ

)
uk+2

)
− bΓ h (2.27)

in place of (2.8) and (2.9).
Solving (2.26) and (2.27) gives

Fk =
(
−2θ2uk−1 + 2(θ + 1)2uk + 2θ(2θ2 − 3θ − 2− 2rθ2 + 2r)uk+1 − θ(2θ2 − θ − 1− 2rθ2 − rθ + r)uk+2
+ 2(2θ + 1)aΓ − 2θ(θ + 1)bΓ h

)
/
(
(2+ θ − 5θ2 + 2θ3)+ r(3+ θ − 2θ2)θ

)
, (2.28)

Fk+1 =
(
−(θ − 1)(2θ2 − 5θ + 2− 2rθ2 + 3rθ)uk−1 + 2(θ − 1)(2θ2 − 4θ + 3r − 2rθ2 + rθ)uk
+ 2r(θ − 2)2uk+1 − 2r(θ − 1)2uk+2 + 2r(2θ − 3)aΓ − 2(θ − 1)(θ − 2)bΓ h

)
/
(
(2+ θ − 5θ2 + 2θ3)+ r(3+ θ − 2θ2)θ

)
, (2.29)

where (2 + θ − 5θ2 + 2θ3) + r(3 + θ − 2θ2)θ = (1 − θ)(2 − θ)(1 + 2θ) + r(1 + θ)(3 − 2θ) > 2r . Then, substituting
(2.28) and (2.29) into[

βk+1/2

(
Fk+1 − uk
h

)
− βk−1/2

(
uk − uk−1
h

)]/
h = fk (2.30)[

βk+3/2

(
uk+2 − uk+1

h

)
− βk+1/2

(
uk+1 − Fk
h

)]/
h = fk+1 (2.31)

leads to

(2/r + 3θ − 3θ/r − 2θ2 + θ2/r)uk−1 − (3+ 2/r + θ − 3θ/r − 2θ2 + θ2/r)uk + (2− θ)2uk+1 − (1− θ)2uk+2

= (3− 2θ)aΓ + (2− 3θ + θ2)bΓ h/β+ + (2/r + θ/r + 3θ − 5θ2/r + θ2 + 2θ3/r − 2θ3)(h)2fk/(2β−) (2.32)

and

− θ2uk−1 + (1+ θ)2uk − (2+ 3θ + rθ + rθ2 − 2θ2)uk+1 + (1+ θ + rθ + rθ2 − 2θ2)uk+2

= −(1+ 2θ)aΓ + (θ + θ2)bΓ h/β− + (2+ θ + 3rθ − 5θ2 + rθ2 + 2θ3 − 2rθ3)h2fk+1/(2β+) (2.33)

as the equations for the unknowns uk and uk+1, respectively. Setting

β̂ =
β+β−

β+θ + β−(1− θ)
, (2.34)

we can rewrite (2.32) and (2.33) as[
β̂

(
uk+1 − uk
h

)
− β−

(
uk − uk−1
h

)]/
h = f̃k +

β̂aΓ
h2
+
β̂(1− θ)bΓ

β+h
(2.35)

and [
β+

(
uk+2 − uk+1

h

)
− β̂

(
uk+1 − uk
h

)]/
h = f̃k+1 −

β̂aΓ
h2
+
β̂θbΓ
β−h

(2.36)
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to emphasize that this numerical method yields a symmetric linear system with βk+1/2 = β̂ . Here,

f̃k =
β̂

2

(
θ + θ2

β−
+
1+ θ − 2θ2

β+

)
fk +

β̂(1− θ)2

2β+
fk+1, (2.37)

f̃k+1 =
β̂θ2

2β−
fk +

β̂

2

(
2− 3θ + θ2

β+
+
3θ − 2θ2

β−

)
fk+1. (2.38)

From the fact that fk+1 = fk + [f ]Γ + O(h), the expressions above can be rewritten as

f̃k =
β̂

2

(
θ + θ2

β−
+
2− θ − θ2

β+

)
fk +

β̂(1− θ)2

2β+
[f ]Γ + O(h), (2.39)

f̃k+1 =
β̂

2

(
2− 3θ + θ2

β+
+
3θ − θ2

β−

)
fk+1 −

β̂θ2

2β−
[f ]Γ + O(h). (2.40)

Remark 2.2. Difference schemes (2.32) and (2.33) are the same as that in original second-order MIB [26] method. Substi-
tuting (2.39) and (2.40) into (2.35) and (2.36), we obtain the difference schemes essentially equivalent to the IIM [12] and
interpolation formulation [27]; see Appendix for details. Simply setting f̃k = fk, f̃k+1 = fk+1 gives the same schemes as the
GFM [21].

2.3. The 2D Poisson equation

Consider 2D Poisson equation

uxx + uyy = f (x, y) (2.41)

with interface jump conditions [u]Γ = a(x, y) and [un]Γ = b(x, y). The unit normal of the interface En = (n1, n2), can be
defined as ∇φ

|∇φ|
where the normal is computed at each grid node using central difference.

Before proceeding to the construction of the numerical scheme for uxx or uyy at irregular grid points, we first rewrite the
interface jump conditions as two separate conditions for [ux]Γ and [uy]Γ , then apply our method to 2D problems dimension
by dimension.
Differentiating interface jump condition [u]Γ = a along the tangential direction of the interface, we obtain one more

condition

[uτ ]Γ = aτ (2.42)

where uτ is the derivative in the tangential direction Eτ = (−n2, n1). Hence, the derivation jump conditions can be reformu-
lated as

[uτ ]Γ = (u+y n1 − u
+

x n2)− (u
−

y n1 − u
−

x n2) = [uy]Γ n1 − [ux]Γ n2 = aτ , (2.43)

[un]Γ = (u+x n1 + u
+

y n2)− (u
−

x n1 + u
−

y n2) = [ux]Γ n1 + [uy]Γ n2 = b. (2.44)

Then

[ux]Γ = bn1 − aτn2 , bx (2.45)

[uy]Γ = aτn1 + bn2 , by (2.46)

follow directly from (2.43) and (2.44).
In this case, we can directly apply the general 1D formulas at irregular pints to [ux]Γ and [uy]Γ . Discretization from (2.22)

and (2.23) is called Scheme 1, discretization from (2.16) and (2.17) is called Scheme 2. To explain it more clearly, we consider
three typical irregular points shown in Fig. 4.
Case a. Irregular point in ij-direction.
Define

θx =
|φi+1,j|

|φi,j| + |φi+1,j|
, θy =

|φi,j+1|

|φi,j| + |φi,j+1|
, (2.47)

then

axΓ = θxai,j + (1− θx)ai+1,j, (2.48)

ayΓ = θyai,j + (1− θy)ai,j+1, (2.49)

bxΓ = θxbxi,j + (1− θx)bxi+1,j, (2.50)

byΓ = θybyi,j + (1− θy)byi,j+1. (2.51)
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Fig. 4. Three typical situations for an interface crossing the mesh lines.

Scheme 1 is as follows:

uxx =
ui+1,j − 2ui,j + ui−1,j

∆x2
+ sign(φi,j)

(
axΓ
∆x2
+
bxΓ θx
∆x
+
[f ]Aθ2x
2

)
, (2.52)

uyy =
ui,j+1 − 2ui,j + ui,j−1

∆y2
+ sign(φi,j)

(
ayΓ
∆y2
+
byΓ θy
∆y
+
[f ]Bθ2y
2

)
. (2.53)

Scheme 2 is as follows:

uxx =
1

(1+ 2θx − 2θ2x )∆x2
[
(1+ 2θx − θ2x )ui−1,j − (2+ 4θx − θ

2
x )ui,j

+ (1+ θx)2ui+1,j − θ2x ui+2,j + sign(φi,j)((1+ 2θx)axΓ + (θx + θ
2
x )bxΓ∆x)

]
, (2.54)

uyy =
1

(1+ 2θy − 2θ2y )∆y2
[
(1+ 2θy − θ2y )ui,j−1 − (2+ 4θy − θ

2
y )ui,j

+ (1+ θy)2ui,j+1 − θ2y ui,j+2 + sign(φi,j)((1+ 2θy)ayΓ + (θy + θ
2
y )byΓ∆y)

]
. (2.55)

Case b. Irregular point in i-direction.
Define

θx =
|φi−1,j|

|φi−1,j| + |φi,j|
, (2.56)

then

axΓ = θxai,j + (1− θx)ai−1,j, (2.57)

bxΓ = θxbxi,j + (1− θx)bxi−1,j. (2.58)

Scheme 1 is as follows:

uxx =
ui+1,j − 2ui,j + ui−1,j

∆x2
+ sign(φi,j)

(
axΓ
∆x2
−
bxΓ θx
∆x
+
[f ]Aθ2x
2

)
, (2.59)

uyy =
1
∆y2

(ui,j+1 − 2ui,j + ui,j−1). (2.60)

Scheme 2 is as follows:

uxx =
1

(1+ 2θx − 2θ2x )(∆x)2
[
(1+ 2θx − θ2x )ui+1,j − (2+ 4θx − θ

2
x )ui,j

+ (1+ θx)2ui−1,j − θ2x ui−2,j + sign(φi,j)((1+ 2θx)axΓ − (θx + θ
2
x )bxΓ∆x)

]
, (2.61)

uyy =
1
∆y2

(ui,j+1 − 2ui,j + ui,j−1). (2.62)

Case c. Irregular point in j-direction.
Define

θy =
|φi,j−1|

|φi,j−1| + |φi,j|
, (2.63)
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then

ayΓ = θyai,j + (1− θy)ai,j−1, (2.64)

byΓ = θybyi,j + (1− θy)byi,j−1. (2.65)

Scheme 1 is as follows:

uxx =
1
∆x2

(ui+1,j − 2ui,j + ui−1,j), (2.66)

uyy =
ui,j+1 − 2ui,j + ui,j−1

∆y2
+ sign(φi,j)

(
ayΓ
∆y2
−
byΓ θy
∆y
+
[f ]Bθ2y
2

)
. (2.67)

Scheme 2 is as follows:

uxx =
1
∆x2

(ui+1,j − 2ui,j + ui−1,j), (2.68)

uyy =
1

(1+ 2θy − 2θ2y )∆y2
[
(1+ 2θy − θ2y )ui,j+1 − (2+ 4θy − θ

2
y )ui,j

+ (1+ θy)2ui,j−1 − θ2y ui,j−2 + sign(φi,j)((1+ 2θy)ayΓ − (θy + θ
2
y )byΓ∆y)

]
. (2.69)

Finally, combining the above expressions of uxx, uyy and (2.41) gives the finite difference scheme for irregular grid point (i, j).
It will be shown in Table 3 that both Scheme 1 and Scheme 2 are converge well for such 2D interface problems. Scheme

1 yields a linear systemwith a coefficient matrix just the same as that produced from standard discrete Laplace operator, so
it is simpler than Scheme 2; but Scheme 2 performs is more effective than Scheme 1, and can be easily generalized to solve
problems with variable coefficients.

2.4. The 2D Quasi-Poisson equation

Consider the 2D variable coefficient Poisson equation

(βux)x + (βuy)y = f (x, y) (2.70)

with interface jump conditions, [u]Γ = a(x, y) and [βun]Γ = b(x, y).
In order to apply the IMIB method in a grid direction, it is necessary to derive interface jump conditions for ux or uy only.
Differentiating interface jump condition [u]Γ = a along the tangential direction of the interface, we obtain

[uτ ]Γ = aτ (2.71)

where uτ is the derivative in the tangential direction Eτ = (−n2, n1). Considering these relations, the interface jump
conditions can be reformulated as

[uτ ]Γ = −[ux]Γ n2 + [uy]Γ n1 = aτ , (2.72)

[βun]Γ = [βux]Γ n1 + [βuy]Γ n2 = b. (2.73)

Then, combining (2.72) multiplied by−n2 with (2.73) multiplied by n1 gives

[β̃ux]Γ = bx (2.74)

where

β̃ = βn21 + n
2
2, (2.75)

bx = bn1 − aτn2 − [(β − 1)n1n2uy]. (2.76)

For finite difference approximation of derivatives with respect to x at an irregular point, the jump condition (2.74) is used.
And uy on the right-hand side of (2.76) is evaluated by one-sided second-order difference formulas. Similarly, for finite
difference approximation of derivatives with respect to y, the following jump condition is used:

[β̃uy]Γ = by (2.77)

where

β̃ = βn22 + n
2
1, (2.78)

by = bn2 + aτn1 − [(β − 1)n1n2ux]. (2.79)

Again, the partial derivative ux on the right-hand side of (2.79) is evaluated by one-sided second-order difference formulas.
A straightforward extension of the 2D discretization will enable us to solve 3D elliptic interface problems.
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3. Convergence analysis

3.1. Preliminaries

Let us first introduce some notations. Given h as a parameter(e.g., h is the maximummesh size), two finite and mutually
disjoint sets of mesh points are constructed. One of these sets, calledΩh, consists of points inΩ , and the other one consists
points of ∂Ω called ∂Ωh. For convenience, we denote Ω̄h = Ωh ∪ ∂Ωh.
For simplicity, we assume that the discrete scheme for the approximation solution of (1.1) and (1.2) with the Dirichlet

boundary condition u(x)|∂Ω = g(x) is of the form

Lhu(P) = f h(P)+ ah(Γ , P)+ bh(Γ , P), P ∈ Ωh (3.1)

u(P) = gh(P), P ∈ ∂Ωh (3.2)

where ah(Γ , P) and bh(Γ , P) are ‘‘approximations’’ to the jump condition (1.2).
Since u is usually piecewise smooth in Ω , the points in Ωh may be subdivided into k(k ≥ 1) mutually disjoint subsets

{Ωhi }
k
i=1, with k independent of h, depending upon the order of approximation, i.e.,∣∣Lhuh(P)− Lhu(P)∣∣ ≤ Kihαi , ∀P ∈ Ωhi , 1 ≤ i ≤ k, (3.3)

the constants Ki, as well as the exponents αi ≥ 0, depending upon the smoothness of u, but independent of h.
To prove the convergence of our method, we first give the following lemma which is a generalization of Theorem 5 of

[38] for elliptic interface problems.

Lemma 3.1. Assume that the operator Lh satisfies the discrete maximum principle [38], and truncation error estimate (3.3) holds.
Furthermore, for each i(1 ≤ i ≤ k) and h, there exists a functionwh such that (letting ‖u‖Ω̄h = sup{|u(x)|; x ∈ Ω̄

h
})

Lhwh(P) ≥ h−βi , P ∈ Ωhi
Lhwh(P) ≥ 0, P ∈ Ωhj , j 6= i, 1 ≤ j ≤ k

wh(P) ≥ 0, P ∈ Ω̄h,
‖wh‖Ω̄h ≤ Hi.

Then the global error of the approximation solution uh from (3.1) and (3.2) is bounded by

‖u− uh‖Ω̄h ≤
k∑
i=1

KiHihαi+βi ≤ Chmin{αi+βi;1≤i≤k}

for some constant C, depending only upon the constants Ki and Hi.

3.2. One-dimensional problems

Consider the 1D elliptic model problem

(βux)x = f (x), 0 < x < 1, (3.4)
u(0) = u0, u(1) = u1,

with jump conditions

[ux]x=α = aΓ , [βux]x=α = bΓ , (3.5)

where α is the exact interface location. Without loss of generality, we assume that β = β− if x < α and β = β+ if x > α,
and denote max{β+, β−},min{β+, β−}, β+/β− and max{β+/β−, β−/β+} by βmax, βmin, r and rmax, respectively.
We can then give the error estimate for the above model problem as stated in the following theorem:

Theorem 3.2. Let u(x) be the exact solution to (3.4) and (3.5). Assume u(x) is piecewisely continuous at least until fourth order.
Then we have the following error estimate for the approximation solution uh

‖u− uh‖Ω̄h ≤
{
Mxxxxrmax
24

max{α2, (1− α)2} +
Mxxx(2+ rmax)βmax

6
max

{
α

β−
,
1− α
β+

}}
h2

where

Mxxx = max
{
sup
0<x<α

|u′′′(x)|, sup
α<x<1

|u′′′(x)|
}
,

Mxxxx = max
{
sup
0<x<α

|u′′′′(x)|, sup
α<x<1

|u′′′′(x)|
}
.
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Proof 3.3. Without loss of generality, we assume xk ≤ α ≤ xk+1 with a uniform grid, xi = ih, i = 0, 1, . . . , n + 1 where
h = 1/(n+ 1). From Section 2.2, we know that the operator Lh is defined by:

(Lhuh)i = −
[
βi+1/2

(
ui+1 − ui
h

)
− βi−1/2

(
ui − ui−1
h

)]/
h (3.6)

where

βi+1/2 =


β−, i < k,
β̂, i = k,
β+, i > k.

(3.7)

Obviously, the difference operator Lh satisfies the discrete maximum principle from Theorem 3 in [38]. Using the jump
conditions and Taylor expansions of uk−1, uk, uk+1, uk+2 at the interface, we obtain∣∣Lhuh(xk)− Lhu(xk)∣∣ =

∣∣∣∣∣ β̂(1− θ)(r + θ + θ2 − 3rθ2)h6
u−xxx +

β̂(1− θ)3h
3

u+xxx + O(h
2)

∣∣∣∣∣
≤

(
|1/r + θ + θ2 − 3θ2/r|(1− θ)

6
+
(1− θ)3

3

)
Mxxxβ̂h+ O(h2)

<
(2+ rmax)βmax

6
Mxxxh+ O(h2)

∣∣Lhuh(xk+1)− Lhu(xk+1)∣∣ =
∣∣∣∣∣ β̂θ3h3 u−xxx +

β̂((1− 3r)θ2 + (6r − 3)θ + 2− 2r)θ2h
6

u+xxx + O(h
2)

∣∣∣∣∣
≤

(
θ3

3
+
|(1− 3r)θ2 + (6r − 3)θ + 2− 2r|θ2

6

)
Mxxxβ̂h+ O(h2)

<
(2+ rmax)βmax

6
Mxxxh+ O(h2).

Thus, we have the following truncation error estimate:∣∣Lhuh(P)− Lhu(P)∣∣ ≤ (2+ rmax)βmax
6

Mxxxh, P ∈ Ωh1 = {xk} ∪ {xk+1}, (3.8)∣∣Lhuh(P)− Lhu(P)∣∣ = βmax

12
Mxxxxh2 + O(h4), P ∈ Ωh2 = ∪

n
i=1{xi} \Ω

h
1 . (3.9)

Now, we introduce the functionswh1 andw
h
2 defined as follows:

wh1(xi) =
i
k
· E1, 0 ≤ i ≤ k, (3.10)

wh1(xi) =
n+ 1− i
n− k

· E2, k+ 1 ≤ i ≤ n+ 1 (3.11)

and

wh2(xi) =
1
βmin

(
max{α2, (1− α)2}

2
−
1
2
(xi − α)2

)
, 1 ≤ i ≤ n+ 1, (3.12)

where

E1 =
α(2β̂(1− α)+ β+h)

β̂(β+α + β−(1− α))+ β+β−h
(3.13)

E2 =
(1− α)(2β̂α + β−h)

β̂(β+α + β−(1− α))+ β+β−h
(3.14)

are the solutions of −β̂ β̂ + β+
h

1− α
β̂ + β−

h
α

−β̂

 · [E1E2
]
=

[
h
h

]
. (3.15)

Then a simple computation shows that
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Lhwh1(P) = 0, P ∈ Ωh2 , (3.16)

Lhwh2(P) ≥ 0, P ∈ Ωh1 , (3.17)

Lhwh2(P) ≥ 1, P ∈ Ωh2 . (3.18)

To obtain the upper bound for ‖wh1‖Ω̄h , we discuss it in two different cases:

Case 1. α ≤ β−

β++β−

E1 ≤ E2 ≤
(1− α)(2β̂α + β−h)

β̂(2β+α)+ β+β−h
≤
1− α
β+

.

Case 2. α > β−

β++β−

E2 ≤ E1 ≤
α(2β̂(1− α)+ β+h)

β̂(2β−(1− α))+ β+β−h
≤

α

β−
.

Thus we have

‖wh1‖Ω̄h = max{E1, E2} ≤ max
{
α

β−
,
1− α
β+

}
. (3.19)

Noticing that kh+ θh = α, (n− k)h+ (1− θ)h = 1− α, we can obtain

1
k
=

h
α − θh

≥
h
α
, (3.20)

1
n− k

=
h

1− α − (1− θ)h
≥

h
1− α

. (3.21)

Then, substituting (3.10) and (3.11) into (3.6) gives

Lhwh1(xk) = −
β̂(E2 − E1)− β−E1/k

h2

=
1
h2

((
β̂ +

β−

k

)
E1 − β̂E2

)
≥
1
h2

((
β̂ +

β−h
α

)
E1 − β̂E2

)
= h−1 (3.22)

and

Lhwh1(xk+1) = −
−β+E2/(n− k)− β̂(E2 − E1)

h2

=
1
h2

(
−β̂E1 +

(
β̂ +

β+

n− k

)
E2

)
≥
1
h2

(
−β̂E1 +

(
β̂ +

β+h
1− α

)
E2

)
= h−1. (3.23)

Sincewh1 ≥ 0, andw
h
2 ≥ 0, ‖w

h
2‖Ω̄h ≤

max{α2,(1−α)2}
2βmin

, we may conclude that

‖u− uh‖Ω̄h ≤
{
Mxxxxrmax
24

max{α2, (1− α)2} +
Mxxx(2+ rmax)βmax

6
max

{
α

β−
,
1− α
β+

}}
h2.

from Lemma 3.1. �

Remark 3.4. In the particular case when β+ = β− ≡ 1, set wh2(xi) =
1
8 −

1
2 (xi −

1
2 )
2 in place of (3.12), we can obtain the

following simple error estimate:

‖u− uh‖Ω̄h ≤
{
1
96
Mxxxx +

max{α, 1− α}
2

Mxxx

}
h2.
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(a) Straight line. (b) Polygon.

Fig. 5. Computational domains with different interfaces.

3.3. Two-dimensional problems

We begin with the Poisson equation with singular sources. Consider the 2D elliptic model problem

uxx + uyy = f (x, y) (3.24)

with interface jump conditions, [u]Γ = a(x, y) and [un]Γ = b(x, y).
To construct comparison functions, we first consider the case when the interface in domain [0, 1] × [0, 1] is a straight

line y = kx+ b for simplicity. As shown in Fig. 5(a), the straight line y = kx+ bh1 parallel to the interface, passes the farthest
irregular point A from the interface inΩ+; the straight line y = kx+ bh2 parallel to the interface, passes the nearest regular
point B from the interface inΩ+. The straight lines y = kx+ bh3 and y = kx+ b

h
4 are determined similarly inΩ

−.
We define d∗h to be the distance

d∗h = min{b
h
3 − b

h
1, b

h
2 − b

h
4}, (3.25)

and assume that there exists a constant δ > 0, such that the inequality

d∗h ≥ δh (3.26)

holds for all h. When the interface is parallel to one of the axes, δ can be set to 1. Then, we can obtain the following lemma
for the construction of comparison functions:

Lemma 3.5. There exist nonnegative and bounded functionswh1 andw
h
2 such that

Lhwh1(P) ≥ 1/h, P ∈ Ωh1 ,

Lhwh1(P) ≥ 0, P ∈ Ωh2 ,

Lhwh2(P) ≥ 1, P ∈ Ωh = Ωh1 ∪Ω
h
2 ,

where Ωh1 and Ω
h
2 denote collections of irregular grid points and regular grid points in domain [0, 1] × [0, 1] with interface

defined by straight line y = kx+ b.

Proof 3.6. We know that the operator Lh is defined by

(Lhuh)i,j = −
(
ui+1,j − 2ui,j + ui−1,j

h
+
ui,j+1 − 2ui,j + ui,j−1

h

)/
h (3.27)

from (2.52) and (2.53). Now, we introduce the functionswh1 andw
h
2 defined as follows:

wh1(xi, yj) = w̃
h
1(yj − kxi − b) , w̃

h
1(ξi,j) =


E, bh2 − b ≤ ξi,j ≤ b

h
1 − b,

E −
ξi,j − (bh1 − b)

δ
, ξi,j > bh1 − b,

E −
(bh2 − b)− ξi,j

δ
, ξi,j < bh2 − b,
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and

wh2(xi, yj) =
1− x2i
2

(3.28)

where E is a positive constant that makeswh1 ≥ 0. From the definition ofw
h
1 (3.6) and (3.26), it follows that

wh1(P) ≤ E − h, P ∈ Ωh2 . (3.29)

Thus, we have

Lhwh1(P) ≥
−E + 2E − (E − h)

h2
=
1
h
, P ∈ Ωh1 . (3.30)

A simple computation shows that

Lhwh1(P) = 0, P ∈ Ωh2 , (3.31)

Lhwh2(P) ≥ 1, P ∈ Ωh, (3.32)

which is what we were to prove. �

Now, we can use Lemmas 3.1 and 3.5 to prove the following convergence theorem.

Theorem 3.7. Let u(x, y) be the exact solution to (3.24) in the 2D domain [0, 1]×[0, 1]with general interface. Assuming u(x, y)
has piecewisely until fourth-order continuous derivatives, thenwe have the following error estimate for the approximation solution
uh

‖u− uh‖Ω̄h ≤ C · h
2

where C is a constant independent of h.

Proof 3.8. Since arbitrarily closed curve (the interface Γ ) can be approximated by a polygon, we can assume that the
interface in computational domain is a quadrangle as shown in Fig. 5(b). We know that the operator Lh is defined by

(Lhuh)i,j = −
(
ui+1,j − 2ui,j + ui−1,j

h
+
ui,j+1 − 2ui,j + ui,j−1

h

)/
h (3.33)

from (2.52) and (2.53). It is easy to verify that the above difference operator Lh satisfies the discrete maximum principle
from Theorem 3 in [38]. By virtue of the jump conditions and Taylor expansions technique, we can obtain the following
truncation error estimate:∣∣Lhuh(P)− Lhu(P)∣∣ ≤ Kih, P ∈ Ωhi , 1 ≤ i ≤ 4 (3.34)∣∣Lhuh(P)− Lhu(P)∣∣ ≤ K5h2, P ∈ Ωh5 (3.35)

whereΩh5 is the collection of regular grid points, andΩ
h
i (1 ≤ i ≤ 4) are the collection of irregular grid points near ith edge

of the quadrangle respectively; see Fig. 5(b). With Lemma 3.5, we can introduce comparison functions whi (1 ≤ i ≤ 5) such
that

Lhwhi (P) ≥ 1/h, P ∈ Ωhi , 1 ≤ i ≤ 4 (3.36)

Lhwhi (P) ≥ 0, P ∈ Ωhj , j 6= i, 1 ≤ j ≤ 5. (3.37)

Lhwh5(P) ≥ 1, P ∈ Ωh. (3.38)

Then, we may conclude that

‖u− uh‖Ω̄h ≤ Ch
2

from Lemma 3.1. �

The convergence analysis of the IMIB method applied to 2D interface problems with variable coefficients is under our
consideration.

4. Numerical examples

In this section, we examine the performance of the IMIBmethod for 2D elliptic interface problems by considering several
case studies with different boundary and interface geometry. The tests confirm the expected second-order accuracy for the
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Table 2
Numerical convergence test for Example 4.1.

n GFM IIM IMIB
L∞ Order L∞ Order L∞ Order

10 1.07(−2) 5.71(−4) 2.42(−4)
40 2.70(−3) 0.99 3.66(−5) 1.98 1.13(−5) 2.21
160 6.91(−4) 0.98 2.30(−6) 2.00 6.40(−7) 2.07
640 1.73(−4) 1.00 1.44(−7) 2.00 3.90(−8) 2.02
2560 4.32(−5) 1.00 8.99(−9) 2.00 2.42(−9) 2.01

proposed method. Preconditioned conjugate gradient method (PCG) with the preconditioner being the diagonal part of the
discretematrix is adopted to solve symmetric positive-definite linear systems obtained from IMIB discretizations; UMFPACK
is used to solve unsymmetric cases.
In this section, the numerical errors of the computations are measured in the L∞ norm

‖En‖∞ = max
i,j
|ui,j − uhi,j|

and the discrete L2 norm

‖En‖2 =

√√√√ 1
nx · ny

nx∑
i=1

ny∑
j=1

(ui,j − uhi,j)2

given an exact solution ui,j and an approximation solution uhi,j. Here, nx and ny are the numbers of grid points in x- and
y-directions, respectively. The order of convergence is computed from

order =
log

(
‖En1‖/‖En2‖

)
log (n2/n1)

which is the solution of the equation

‖En‖ = Chorder

with two different n’s.

Example 4.1. Consider (βux)x = f (x) on [0, 1]with one interface at x = 1/3where β = 1 if x ≤ 1/3 and β = 10 if x > 1/3.
Dirichlet boundary condition, as well as the jump conditions [u] and [βux] along the interface are determined from the exact
solution

u(x) =
{
x2, x ≤ 1/3,
ex, x > 1/3.

Table 2 shows the results of the numerical accuracy tests. It is easily seen that the GFM converges with first-order accuracy,
while the IIM and IMIB methods converge well with second-order accuracy in the sense of L∞-norm. And we also see that
the results of the IMIB (columns 6, 7) method are more accurate than those of the IIM (columns 4, 5).

Example 4.2. This example is taken from [12]. Consider∆u = 0 in 2D domain [−1, 1] × [−1, 1]with the interface defined
by circle x2 + y2 = 0.52 with an outward normal vector, En = (2x, 2y). Dirichlet boundary condition, as well as the jump
conditions [u] and [un] along the interface are determined from the exact solution

u(x, y) =
{
1, r ≤ 0.5,
1+ ln(2r), r > 0.5,

where r =
√
x2 + y2. Fig. 6 shows the numerical solution with 61 grid points in each direction and Table 3 shows the results

of the numerical accuracy tests.

Example 4.3. This example is taken from [26]. Consider∇ · (β∇u) = f (x, y) in 2D domain [−1, 1]× [−1, 1]with a circular
interface x2+ y2 = 0.52 inside. Dirichlet boundary condition, as well as the jump conditions [u] and [un] along the interface
are determined from the exact solution

u(x, y) =


r2, r ≤ 0.5,
1
4

(
1−

1
8b
−
1
b

)
+

(
r4

2
+ r2

)/
b, r > 0.5,

with the diffusion coefficient

β(x, y) =
{
2, r ≤ 0.5,
b, r > 0.5.
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Table 3
Numerical convergence test for Example 4.2.

nx × ny Scheme 1 Scheme 2
L∞ Order L2 Order L∞ Order L2 Order

20× 20 3.3(−2) 1.5(−2) 7.3(−3) 3.9(−3)
40× 40 1.3(−2) 1.35 5.4(−3) 1.47 1.9(−3) 1.94 9.2(−4) 2.08
80× 80 4.9(−3) 1.40 1.9(−3) 1.51 4.1(−4) 2.21 1.6(−4) 2.50
160× 160 1.9(−3) 1.37 6.8(−4) 1.47 9.9(−5) 2.05 3.9(−5) 2.07
320× 320 7.1(−4) 1.43 2.4(−4) 1.50 2.2(−5) 2.16 8.1(−6) 2.26
640× 640 2.6(−4) 1.42 8.5(−5) 1.50 4.4(−6) 2.32 1.4(−6) 2.54

Table 4
Numerical convergence test for Example 4.3.

nx × ny L∞ Order L2 Order

20× 20 6.47(−4) 3.70(−3)
40× 40 1.89(−4) 1.77 9.00(−4) 2.04
80× 80 5.07(−5) 1.90 1.61(−4) 2.49
160× 160 1.25(−5) 2.02 3.85(−5) 2.06
320× 320 3.11(−6) 2.00 8.07(−6) 2.26
640× 640 7.98(−7) 1.96 1.39(−6) 2.54
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Fig. 6. The computed solution (left) and error (right) for Example 4.2.

The source term can be determined accordingly:

f (x, y) =
{
8, (x, y) ∈ Ω−,
8r2 + 4, (x, y) ∈ Ω+.

Fig. 7 shows the numerical solution with 61 grid points in each direction and Table 4 shows the results of the numerical
accuracy tests.

Example 4.4. This example is taken from [12]. Consider∆u = 0 in 2D domain [−1, 1] × [−1, 1]with the interface defined
by circle x2 + y2 = 0.52 with an outward normal vector, En = (2x, 2y). Dirichlet boundary condition, as well as the jump
conditions [u] and [un] along the interface are determined from the exact solution

u(x, y) =
{
ex cos y, r ≤ 0.5,
0, r > 0.5,

where r =
√
x2 + y2. Fig. 8 shows the numerical solutionwith 61 grid points in each direction and Table 5 shows the results

of the numerical accuracy tests.

Example 4.5. This example is taken from [12]. Consider∆u = 0 in 2D domain [−1, 1] × [−1, 1]with the interface defined
by circle x2 + y2 = 0.52 with an outward normal vector, En = (2x, 2y). Dirichlet boundary condition, as well as the jump
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Fig. 7. The computed solution (left) and error (right) for Example 4.3 with b = 10.
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Fig. 8. The computed solution (left) and error (right) for Example 4.4.

Table 5
Numerical convergence test for Example 4.4.

nx × ny L∞ Order L2 Order

20× 20 9.76(−4) 2.69(−4)
40× 40 3.06(−4) 1.67 7.72(−5) 1.80
80× 80 8.18(−5) 1.90 2.17(−5) 1.83
160× 160 2.44(−5) 1.75 5.66(−6) 1.94
320× 320 6.95(−6) 1.81 1.35(−6) 2.06
640× 640 1.43(−6) 2.28 3.17(−7) 2.09

conditions [u] and [un] along the interface are determined from the exact solution

u(x, y) =
{
x2 − y2, r ≤ 0.5,
0, r > 0.5,

where r =
√
x2 + y2. Fig. 9 shows the numerical solutionwith 61 grid points in each direction and Table 6 shows the results

of the numerical accuracy tests.
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Fig. 9. The computed solution (left) and error (right) for Example 4.5.

Table 6
Numerical convergence test for Example 4.5.

nx × ny L∞ Order L2 Order

20× 20 1.82(−3) 6.74(−4)
40× 40 4.51(−4) 2.02 1.03(−4) 2.71
80× 80 1.19(−4) 1.92 2.33(−5) 2.15
160× 160 3.18(−5) 1.91 7.02(−6) 1.73
320× 320 8.40(−6) 1.92 1.51(−6) 2.21
640× 640 2.27(−6) 1.89 3.69(−7) 2.03

Table 7
Numerical convergence test for Example 4.6.

nx × ny L∞ Order L2 Order

24× 24 1.69(−3) 5.71(−4)
58× 58 3.22(−4) 1.88 1.00(−4) 1.97
88× 88 1.37(−4) 2.05 3.98(−5) 2.22
157× 157 4.37(−5) 1.97 1.37(−5) 1.84
320× 320 1.05(−5) 2.01 3.09(−6) 2.09
640× 640 2.69(−6) 1.96 7.95(−7) 1.96

Example 4.6. This example is taken from [15]. Consider ∇ · (β∇u) = f (x, y) in 2D domain [−1, 1] × [−1, 1] with the
interface determined by{

x(θ) = 0.02
√
5+ (0.5+ 0.2 sin(5θ)) cos θ,

y(θ) = 0.02
√
5+ (0.5+ 0.2 sin(5θ)) sin θ,

0 ≤ θ < 2π

where β = 1 in Ω− and β = 10 in Ω+. Dirichlet boundary condition, as well as the jump conditions [u] and [βun] along
the interface are determined from the exact solution

u(x, y) =


r2

β−
, (x, y) ∈ Ω−,

r4 − 0.1 ln(2r)
β+

, (x, y) ∈ Ω+,

where r =
√
x2 + y2. The source term can be determined accordingly:

f (x, y) =
{
4, (x, y) ∈ Ω−,
16r2, (x, y) ∈ Ω+.

Fig. 10 shows the numerical solution with 59 grid points in each direction and Table 7 shows the results of the numerical
accuracy tests.
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Fig. 10. The computed solution (left) and error (right) for Example 4.6.
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Fig. 11. The computed solution (left) and error (right) for Example 4.7.

Example 4.7. This example is taken from [27]. Consider ∇ · (β∇u) = f (x, y) in 2D domain [−1, 1] × [0, 3] with a jigsaw
puzzle like interface given below{

x(θ) = 0.6 cos θ − 0.3 cos(3θ)
y(θ) = 1.5+ 0.7 sin θ − 0.07 sin(3θ)+ 0.2 sin(7θ) 0 ≤ θ < 2π

where β = 1 in Ω− and β = 10 in Ω+. Dirichlet boundary condition, as well as the jump conditions [u] and [βun] along
the interface are determined from the exact solution

u(x, y) =
{
ex(x2 sin y+ y2), (x, y) ∈ Ω−,
−(x2 + y2), (x, y) ∈ Ω+,

where r =
√
x2 + y2. The source term can be determined accordingly:

f (x, y) =
{
ex(2+ y2 + 2 sin y+ 4x sin y)β−, (x, y) ∈ Ω−,
−4β+, (x, y) ∈ Ω+.

Fig. 11 shows the numerical solution with 67 grid points in the x-direction and 100 grid points in the y-direction. Table 8
shows the results of the numerical accuracy tests.
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Table 8
Numerical convergence test for Example 4.7.

nx × ny L∞ Order L2 Order

38× 57 4.24(−3) 8.23(−4)
66× 99 1.67(−3) 1.69 2.80(−4) 1.95
118× 177 5.68(−4) 1.85 8.87(−5) 1.98
204× 306 2.05(−4) 1.86 3.29(−5) 1.81
410× 615 5.30(−5) 1.94 6.94(−6) 2.23

5. Conclusion

An IMIB method with second-order accuracy is presented for elliptic interface problems on Cartesian grids in this paper.
The original MIB method is of arbitrarily high order in principle as the jump conditions are iteratively used. However, till
now there is no theoretical proof of convergence of the MIB method for elliptic interface problems. The IMIB method we
propose here is simple and of second-order accuracy. We give explicit finite difference formulas at irregular grid points by
virtue of the level set function, and reformulate it in a symmetric form. The difference scheme using IMIB method is shown
to satisfy the discretemaximum principle for a certain class of problems. Thus, rigorous proofs of second-order convergence
of the IMIBmethod applied to 1D problemswith piecewise constant coefficients and 2D problemswith singular sources can
be obtained easily. For 1D problems, we obtain a sharp error bound for the approximate solution by comparison function
technique, while we do not get the error analysis for 2D problemswith piecewise constant coefficients. Numerical examples
in Section 4 are also given to support the analytical results.
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Appendix. The essential equivalence among the IIM, IMIB and second-order interpolation formulation in 1D

For simplicity, we only discuss the difference scheme at irregular point xk, the case for xk+1 is similar.
In the IIM [12], the difference scheme for irregular point xk can be written as

γk,1uk−1 + γk,2uk + γk,3uk+1 = fk + Ck, (A.1)

where

γk,1 =
β− − [β](xk − α)/h

Dk
, (A.2)

γk,2 =
−2β− + [β](xk−1 − α)/h

Dk
, (A.3)

γk,3 =
β+

Dk
, (A.4)

and

Dk = h2 +
[β](xk−1 − α)(xk − α)

2β−
, (A.5)

Ck =
(
aΓ + (xk+1 − α)

bΓ
β+
+
(xk+1 − α)2

2β+
[f ]
)
γk,3. (A.6)

Noting that α − xk = θh, xk+1 − α = (1− θ)h and multiplying (A.1) by β̂Dk/(β+h2), we obtain

γ̃k,1uk−1 + γ̃k,2uk + γ̃k,3uk+1 = f̃k + C̃k, (A.7)

where

γ̃k,1 =
β̂Dk
β+h2

β− − [β](xk − α)/h
Dk

=
β̂(β− + (β+ − β−)θ)

β+h2
=
β−

h2
, (A.8)

γ̃k,3 =
β̂Dk
β+h2

β+

Dk
=
β̂

h2
, (A.9)

γ̃k,2 =
β̂Dk
β+h2

−2β− + [β](xk−1 − α)/h
Dk

= −
β̂Dk
β+h2

(γk,1 + γk,3) = −
β−

h2
−
β̂

h2
, (A.10)
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and

f̃k =
β̂Dk
β+h2

fk =
β̂

β+h2

(
h2 +

(β+ − β−)θ(1+ θ)h2

2β−

)
fk =

β̂

2

(
θ + θ2

β−
+
2− θ − θ2

β+

)
fk, (A.11)

C̃k =
β̂Dk
β+h2

(
aΓ + (xk+1 − α)

bΓ
β+
+
(xk+1 − α)2

2β+
[f ]
)
γk,3 (A.12)

=
β̂

h2

(
aΓ + (xk+1 − α)

bΓ
β+
+
(xk+1 − α)2

2β+
[f ]
)

(A.13)

=
β̂aΓ
h2
+
β̂(1− θ)bΓ

β+h
+
β̂(1− θ)2

2β+
[f ]. (A.14)

Then, it is easy to see that Eq. (A.7) is just the same as (2.35).
In the interpolation formulation of theMIB [27], we know that the difference scheme for irregular point xk can bewritten

as

β−
2a−2
h2
= fk. (A.15)

The coefficient a−2 is solved by inverting the coefficient matrix of equation −1 1 0 0
0 0 1 1
−xl −x2l −xr −x2r
−β− −2β−xl β+ −2β+xr

 ·

a−1
a−2
a+1
a+2

 =
 uk−1 − uk
uk+2 − uk+1
aΓ − uk+1 + uk

h ∗ bΓ

 (A.16)

where

xl =
α − xk
h
= θ, xr =

xk+1 − α
h

= 1− θ. (A.17)

It can be solved from (A.16) that

a−2 =
1

2+ θ + 3θr − 5θ2 + θ2r + 2θ3 − 2θ3r

{
(2+ 3θr − 3θ − 2θ2r + θ2)uk−1

− (3r + 2+ θr − 3θ − 2θ2r + θ2)uk + r(2− θ)2uk+1 − r(1− θ)2uk+2 − r(3− 2θ)aΓ

− (2− 3θ + θ2)bΓ h/β−
}
. (A.18)

Substituting Eq. (A.18) into Eq. (A.15), we obtain the same difference formulation as (2.32).
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