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Abstract 

This paper presents an explicit expression for the generalized inverse A!$. Based on 
this, we established the characterization, the representation theorem and the limiting 
process for A(Ti. As an application, we estimate the error bound of the iterative method 
for approximating AFL. 0 1998 Elsevier Science Inc. All rights reserved. 

1. Introduction 

It is a well-known fact that the common important six kinds of generalized 
inverse: the Moore-Penrose inverse A +, the weighted Moore-Penrose inverse 

AG,N’ the Drazin inverse AD, the group inverse A,, the Bott-Duffin inverse 
A[,” and the generalized Bott-Duffin inverse Ai:; are all generalized inverse 

AFL, which having the prescribed range T and null space S of [2]-(or outer) in- 
verse of A. 

The [2]-inverse has many applications, for example, the application in the 
iterative methods for solving the nonlinear equations [2,19] and the applica- 
tions to statistics [10,14,16]. In particular, [2]-inverse play an important role 
in stable approximations of ill-posed problems and in linear and nonlinear 
problems involving rank-deficient generalized inverse [17,21]. 
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This paper presents an explicit expression for the generalized inverse A?;. 
Based on this, we established the characterization, the representation theorem 
and the limiting process for A!),. As an application, we estimate the error 
bound of the iterative method for computing A& 

Finally, we point out the links between AFL and the W-weighted Drazin in- 
verse Ad.w. These results extend the earlier work by various authors 
[1,5,9,11,13,24,26-281. As usual, R(A) and N(A) denote the range and null 
space of A, respectively. The following lemmata are needed in what follows. 

Lemma 1.1 ([2], p. 61). Let A E Cmxn be of rank r, let T be u subspuce of@” oj 
dimension s < r, and let S be u subspace of @” of dimension m - s. Then A has u 
[2]-inverse X such that R(X) = T and N(X) = S if and only ij 

AT@S=C” (1.1) 
in which case X is unique. This X is denoted by A$?;. 

The next lemma shows that the common six kinds of generalized inverse: 

A+, Alt;.N, AD A A(-‘) and A(+) are all generalized inverse A?& (for which exists 
a matrix G suc~~ha? R(G) =‘y and N(G) = S). 

Lemma 1.2. (1) Let A E Cm”“. Then, for the Moore-Penrose inverse A+, the 
weighted Moore-Penrose inverse AL,.,,, one has 

(a) [2] A+ = A;;~),,,CA*) = (A*A)+A* = A*(AA*)+, 

(b) POlA+ M,N = A$\,i,vCa++l = (A#A)i,,A# = A#(AA#)L,M, where M and N are 
Hermitian positive de$nite matrices of order m and n, respectively. In addition, 
A# = N-‘A’M. 
(2) Let A E C”““. Then, for the Drazin inverse AD, the group inverse A,, the 

Bott-DufJin inverse AI;;’ and the generalized Bott-DuJin inverse A[;;, one has 

(c) [4] AD = A$Kj.NCAx) = (Ak+‘)gAk = Ak(Ak+‘),, where k = Ind(A); in partic- 
ular, Ind(A) = 1, 

A, =A$:j,,jaJ = (A2),A = A(A2), 

(d) [3,61 A;“;’ = & - (2) - (Apr. + P&, where L is a subspace of @” and satis- 
fies AL@L = C”. 

(e) W4(,) (+I =Ac2) _A(-‘) .s.S~ - (S) ' where L is a subspace of C”, PL is the orthogonal 
projector on L, S= R(P,A), and A is an L-p.s.d. matrix, i.e. A is a Hermitian 
matrix with the properties: PLAPL is nonnegative dejinite, and 
N(PLAP,) = N(APL). 

Lemma 1.3. Let M be an 2n x 2n matrix partitioned as 

M= A AQ 
[ 1 PA B . 
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Then 

rank(M) = rank(A) + rank@? - PAQ). 

Proof. Immediate from [15], Theorem 19. 

2. Main results 

In this section, we first give an explicit expression for the generalized inverse 
AU’ r.s, which reduces to the group inverse. 

Theorem 2.1. Let A E Cmxn be of rank r, let T be a subspace of @” of dimension 
s < r, and let S be a subspace of @” of dimension m - s. In addition, suppose 
G E U?” such that R(G) = T and N(G) = 5’. If: A has a [2]-inverse A(T2i then 

Ind(AG) = Ind(GA) = 1. (2.1) 
Further, we have 

A:; = G(AG), = (GA&G. (2.2) 

Proof. It is easy to verify that R(AG) = AR(G) = AT, 

and 
S = N(G) C N(AG) 

By the assumption of Lemma 1.1, we have dim(AT) = m - (m - s) = s. 

Now 

dim[R(AG)] + dim[N(AG)] = m, 

whence 

dim[N(AG)] = m - dim[R(AG)] = m - s = dim(S). 

Thus N(AG) = S so that 

R(AG) @ N(AG) = AT @ S = Cm, 

i.e., 

Ind(AG) = 1. 

Let X = G(AG),. By direct verification, we obtain 

X4X = G(AG),qAG(AG), = G(AG), = X> 

and 
R(X) = R[G(AG),] 2 R(G) = T 

or 

N(X) = N[G(AG),] > N[(AG),] = N(AG) > N(G) = S. 



90 Y. Wei I Linear Algebra and its Applications 280 (1998) 87-96 

Obviously, rank(X) < dim(T). On the other hand, it holds 

rank(X) = rank[G(AG),] 3 rank[AG(AG),] = rank(AG) 

= s = dim(T). 

Thus, R(X) = T. In a similar manner giving N( 
9 

= S, which is the desired re- 
sult. It follows similarly that Ind(GA) = 1 and Ati = (GA),G. ??

From Lemma 1.2 and Theorem 2.1, let G be equal to A*, A’, Ak, A, PL and 
Ps respectively, then A$ reduces to A+, A&,,,, AD, A,, A[;;) and A&) corre- 
spondingly. 

It is a well-known fact that if A is a nonsingular matrix, then the inverse of 
A, A-‘, is the unique matrix X for which 

A I 
rank 

[ 1 I X 
= rank(A). 

Next, we present a generalization of this fact to singular matrix A to obtain 
an analogous result for the generalized inverse AFL of A. 

Theorem 2.2. Let A, T, S and G be the same as Theorem 2.1. Suppose A has a [2]- 
inverse A&. Then there exist a unique n x n matrix X such that 

GAX = 0, XGA = 0, X2 =X, rank(X) = n -s, (2.3) 

a unique m x m matrix Y such that 

YAG = 0, AGY = 0, Y2 = Y, rank(Y) = m - s, (2.4) 

and a unique n x m matrix Z such that 

A I-Y 
rank 

z-x z 1 = rank(A). 

The matrix Z is the generalized inverse 

X=I-AC2)A 
TS ) 

Y =I-AA:& 

(23) 

A?& of A. Further, we have. 

(2.6) 

(2.7) 

Proof. To prove the first statement, let U be a nonsingular matrix for which 

J 0 
GA = U 

[ 1 o o up’, 

where J is a nonsingular matrix of order s. It is easy to verify that 

0 0 
x=u 

[ 1 o I u-‘, 
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satisfies the condition (2.3). To show uniqueness, let X0 be a matrix which sat- 
isfies Eq. (2.3). Let Xi = U-‘&U, and let Xi be partitioned as 

so that E = 0, F= 0 and G = 0. It follows that H = I, since Xi again satisfies 
Xf = Xi and has to have n - s. Thus, we obtain X0 = X. 

The property (2.4) is proved in a similar manner. 
Let A$.?; be the [2]-generalized inverse with prescribed range T and null space 

S. Observe that then Eqs. (2.6) and (2.7) hold. For these X and Y, and 

[ 

A Z-Y A 

1 [, 

AA?; 

1-x 2 = A$A Z . 1 
Thus, by Lemma 1.3 and the condition (2.9, we have 

Z _ A(2)AA(2) = () 
TS T.S 7 

implies Z = A?;. This completes the proof of theorem. 0 

As we know, the important generalized inverses of matrices, for example, 
A+,A$,, AD A A(-‘) and A(+) are all [2]-inverse having the corresponding 
range ? and’ n$l s&e S. Thgefore the results in Theorem 2.2 are applicable 
to these generalized inverses. 

On the other hand, for the generalised inverse A+ and AD there are some- 
what simpler characterizations. 

Corollary 2.1 [9]. Sqpse A = Cmxn with rank(A) = r. Then there exist a unique 
n x n matrix X such that 

AX=O, X*=X, X2=X, rank(X)=n-r, (2.8) 

a unique m x m matrix Y such that 

YA = 0, Y* = Y, Y2 = Y, rank(Y) = m - r, (2.9) 

and a unique n x m matrix Z such that 

A 
rank 

I-Y 

I-X z I 
= rank(A). (2.10) 
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The matrix Z is the Moore-Penrose inverse A+ of A. Further, we have 

X=I-A+A, (2.11) 

and 

Y=I-AA+. (2.12) 

Corollary 2.2 [24]. Suppose A E Cnxn with Ind(A) = k and rank(Ak) = r. Then 
there exists a unique matrix X such that 

AkX = 0, XAk = 0, X’ =X, rank(X) = n - r, (2.13) 

and a unique matrix Z such that 

A I-X 
rank 

I-X z 1 = rank(A). (2.14) 

The matrix Z is the Drazin inverse AD of A. Further, we have 

X=I-ADA=I-AAD. (2.15) 

Based on Theorem 2.1, we shall next present representation theorem of A:;. 

Theorem 2.3. Under the same hypothesis of Theorem 2.1. Then 

A!% = [G4(,J’G, 
where GA],(,) is the restriction of GA to R(G). 

Proof. It is a well-known fact that [18], p. 320 

(GA), = [GAI,~,,~l-’ [(GA&GA1 

= P&-~ W4,GAl. 

It follows from Theorem 2.1 that 

A!; = (GA&G = (GA&GAAFi 

= Wl,~,,l~’ [(GA),GAGAlA:‘j, 
= wIR(Gjlr’GAA , ‘T’$ = PAI,c,,l-‘G 

which is the desired result. 0 

Corollary 2.3 [ll]. Let A E Cmxn. Then the Moore-Penrose inverse of A can be 
expressed as 

A+ = [A*A],&‘A*. 
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Corollary 2.4 [24]. Let A E C”” with Ind(A) = k. Then the Drazin inverse of A 
can be characterized as 

For a nonsingular matrix A, A can be characterized in terms of a well- 
known limit process, 

A-’ = lim(A - d))‘, 
i:+o 

where in the limit, as E + 0 of the above expression involving (A - EZ)~‘, we 
assume that c 6 a(A), the set of all eigenvalues of A. The same assumption will 
be used in the following. 

Based on the above representation Theorem 2.3, we can present an alterna- 
tive proof for the limiting expression for A(TZl [23,26]. 

Theorem 2.4. Under the same hypothesis of Theorem 2.1. Then 

A!; = ~~I$GA - EI)-‘G = $+~G(AG - 8~)~‘. (2.16) 

Proof. Ben-Israel [l] obtained the limiting process of matrices with index one, 
i.e., 

(GA),(GA) = ;;~III(GA - EZ)-‘GA. 

From Theorem 2.1, we have 

AFl, = (GA),G = [(GA),GA]AF$ = $i(c;-l - EZ)-‘GAA~L 

= !~~I(GA - EZ)-‘G. 

The proof of the remaining part of Eq. (2.16) is similar. 0 

By Theorem 2.1 and Lemma 1.2, we can arrive at the limiting formulas for 
A+: Ah,,,, AD. A,. AiLI’) and Ai:; immediately (see [2,4,23,26]). 

3. Applications 

In this section, from Theorem 2.1 and Lemma 1.2, we derive an iterative 
scheme to compute the generalized inverse A$?;, which give a unified treatment 
of the common important six generalized inverse (see [2,26,27]). 

Since GAA,,, - (*’ - G, we have 

A:; = A:$ - P(GAAF$ - G) = (I - pGA)A(:; + PG, 

where p is a relaxation parameter. 
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Let P= I-/?GA and Q= BG, the solution A$!$ of matrix equation 
X = PX + Q can be approximated by the following iterative scheme 

XI = Q,&+, = P-X,,, + Q. (3.1) 
The following theorem presents the sufficient conditions for the iterative al- 

gorithm (3.1) to converge to A(:L in terms of the matrix V-norm, V-norm is de- 
fined as llBllv = IIBVl12 for any B E Cnxm, and I/is invertible such that 

V-‘AGV = 

JI 

J, 

0 

is the Jordan form of AG. 

Theorem 3.1. The sequences of approximations 

2”-1 

X2m = c(Z - /?GA)$G (3.2) 
i=o 

de$ned by the iterative algorithm (3.1) converge to the generalized inverse A(Ti in 
the matrix form V-norm, if p is a fixed real number such ihat 
maxl~j,,Il-~E,,I<1where~,,i=1,2,... , s are the nonzero eigenvalues of AG. 

In the case of convergence we obtain the error estimates 

for 8 > 0. 

Proof. We know that 

AC2)AAC2) - A$, 
T.S T,S - AC2)A_X2m = X2m, 

TS 

since 

AC2)A = p TS T(A*Sl)l and X2m E R(G) = 7’. 

Therefore, 

IIAgk - X2m II y = II [A:@:; - A$4X~m]VII2 

= IIIAF$-l[AAF$ -FLY~~]VI[~ 

6 IIA’T’.$llvIlV-‘[AA(r2,k -f12mIVI127 
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6 /I J+AG(AG),V - V-‘AXI Vll;m 

1, 0 =ll[ 1 0 0 -B J, II 
2m 

2 

\ 2m 

< ,y~g - PiiI + E \, 
which concludes the proof. Cl 

4. Concluding remarks 

It was shown in [7] that for any complex matrices B and W, m by n and n by 
m, respectively, X = B[( KC?)“]’ . IS the unique solution to the equations 

(BW)k = (BI@+‘XW, X =XK!3wx, 

BJKY = XKB, for some integer k. (4.1) 

The matrix X is called the W-weighted Drazin inverse of B and is written as 
X = Bd,w. Interchanging the roles of B and W, then W,,B = W[(BFQD12 is the 
B-weighted Drazin inverse of W. It has shown, moreover, that X = II& satis- 
fies XBX= X if and only if 

W,,, = W(BW)D. (4.2) 

The above expression coincides with Theorem 2.1 when Ind(BW) = 1 in 
Eq. (4.2). For matrices over complex field, therefore, that AD = (Ak),,, when 
A is square, and A+ = (A*)gr, by Lemma 1.2. 
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