A characterization and representation of the generalized inverse $A_{T, S}^{(2)}$ and its applications Yimin Wei ${ }^{1}$

Department of Mathematics, Fudan University, Shanghai 200433, People's Republic of China
Received 15 November 1996; accepted 12 October 1997
Submitted by H. Schneider

Abstract

This paper presents an explicit expression for the generalized inverse $A_{T, S}^{(2)}$. Based on this, we established the characterization, the representation theorem and the limiting process for $A_{T, S}^{(2)}$. As an application, we estimate the error bound of the iterative method for approximating $A_{T S}^{(2)}$. © 1998 Elsevier Science Inc. All rights reserved.

1. Introduction

It is a well-known fact that the common important six kinds of generalized inverse: the Moore Penrose inverse Λ^{+}, the weighted Moore-Penrose inverse $A_{M, N}^{+}$, the Drazin inverse A^{D}, the group inverse A_{g}, the Bott-Duffin inverse $A_{(L)}^{(-1)}$ and the generalized Bott-Duffin inverse $A_{(L)}^{(+)}$are all generalized inverse $A_{T . S}^{(2)}$, which having the prescribed range T and null space S of [2]-(or outer) inverse of A.

The [2]-inverse has many applications, for example, the application in the iterative methods for solving the nonlinear equations $[2,19]$ and the applications to statistics [10,14,16]. In particular, [2]-inverse play an important role in stable approximations of ill-posed problems and in linear and nonlinear problems involving rank-deficient generalized inverse [17,21].

[^0]This paper presents an explicit expression for the generalized inverse $A_{T, S}^{(2)}$. Based on this, we established the characterization, the representation theorem and the limiting process for $A_{T, S}^{(2)}$. As an application, we estimate the error bound of the iterative method for computing $A_{T, S}^{(2)}$.

Finally, we point out the links between $A_{T . S}^{(2)}$ and the W-weighted Drazin inverse $A_{d . w}$. These results extend the earlier work by various authors [1,5,9,11,13,24,26-28]. As usual, $R(A)$ and $N(A)$ denote the range and null space of A, respectively. The following lemmata are needed in what follows.

Lemma 1.1 ([2], p. 61). Let $A \in \mathbb{C}^{m \times n}$ be of rank r, let T be a subspace of \mathbb{C}^{n} of dimension $s \leqslant r$, and let S be a subspace of \mathbb{C}^{m} of dimension $m-s$. Then A has a [2]-inverse X such that $R(X)=T$ and $N(X)=S$ if and only if

$$
\begin{equation*}
A T \oplus S=\mathbb{C}^{m} \tag{1.1}
\end{equation*}
$$

in which case X is unique. This X is denoted by $A_{T, S}^{(2)}$.
The next lemma shows that the common six kinds of generalized inverse: $A^{+}, A_{M, N}^{+}, A^{D}, A_{g}, A_{(L)}^{(-1)}$ and $A_{(L)}^{(+)}$are all generalized inverse $A_{T, S}^{(2)}$ (for which exists a matrix G such that $R(G)=T$ and $N(G)=S$).

Lemma 1.2. (1) Let $A \in \mathbb{C}^{m \times n}$. Then, for the Moore-Penrose inverse A^{+}, the weighted Moore Penrose inverse A_{M}^{+}, , one has
(a) [2] $A^{+}=A_{R\left(A^{*}\right), N\left(A^{*}\right)}^{(2)}=\left(A^{*} A\right)^{+} A^{*}=A^{*}\left(A A^{*}\right)^{+}$,
(b) $[20] A_{M, N}^{+}=A_{R\left(A^{\#}\right), N\left(A^{\#}\right)}^{(2)}=\left(A^{\#} A\right)_{N, N}^{+} A^{\#}=A^{\#}\left(A A^{\#}\right)_{M, M}^{+}$, where M and N are Hermitian positive definite matrices of order m and n, respectively. In addition, $A^{\#}=N^{-1} A^{*} M$.
(2) Let $A \in \mathbb{C}^{n \times n}$. Then, for the Drazin inverse A^{D}, the group inverse A_{g}, the Bott-Duffin inverse $A_{(L)}^{(-1)}$ and the generalized Bott-Duffin inverse $A_{(L)}^{(+)}$, one has
(c) [4] $A^{D}=A_{R\left(A^{K}\right), N\left(A^{K}\right)}^{(2)}=\left(A^{k+1}\right)_{g} A^{k}=A^{k}\left(A^{k+1}\right)_{g}$, where $k=\operatorname{Ind}(A)$; in particular, $\operatorname{Ind}(A)=1$,

$$
A_{g}=A_{R(A), N(A)}^{(2)}=\left(A^{2}\right)_{g} A=A\left(A^{2}\right)_{g}
$$

(d) $[3,6] A_{(L)}^{(-1)}=A_{L, L^{\perp}}^{(2)}=\left(A P_{L}+P_{L^{\perp}}\right)^{-1}$, where L is a subspace of \mathbb{C}^{n} and satisfies $A L \oplus L^{\perp}=\mathbb{C}^{n}$.
(e) $[6] A_{(L)}^{(+)}-A_{S, S^{+}}^{(2)}=A_{(S)}^{(-1)}$, where L is a subspace of $\mathbb{C}^{n}, \mathrm{P}_{L}$ is the orthogonal projector on $L, S=R\left(P_{L} A\right)$, and A is an L-p.s.d. matrix, i.e. A is a Hermitian matrix with the properties: $P_{L} A P_{L}$ is nonnegative definite, and $N\left(P_{L} A P_{L}\right)=N\left(A P_{L}\right)$.

Lemma 1.3. Let M be an $2 n \times 2 n$ matrix partitioned as

$$
M=\left[\begin{array}{cc}
A & A Q \\
P A & B
\end{array}\right]
$$

Then

$$
\operatorname{rank}(M)=\operatorname{rank}(A)+\operatorname{rank}(B-P A Q)
$$

Proof. Immediate from [15], Theorem 19.

2. Main results

In this section, we first give an explicit expression for the generalized inverse $A_{T . S}^{(2)}$, which reduces to the group inverse.

Theorem 2.1. Let $A \in \mathbb{C}^{m \times n}$ be of rank r, let T be a subspace of \mathbb{C}^{n} of dimension $s \leqslant r$, and let S be a subspace of \mathbb{C}^{m} of dimension $m-s$. In addition, suppose $G \in \mathbb{C}^{n \times m}$ such that $R(G)=T$ and $N(G)=S$. If, A has a [2]-inverse $A_{T, S}^{(2)}$ then

$$
\begin{equation*}
\operatorname{Ind}(A G)=\operatorname{Ind}(G A)=1 \tag{2.1}
\end{equation*}
$$

Further, we have

$$
\begin{equation*}
A_{T S}^{(2)}=G(A G)_{g}=(G A)_{g} G . \tag{2.2}
\end{equation*}
$$

Proof. It is easy to verify that $R(A G)=A R(G)=A T$,
and

$$
S-N(G) \subseteq N(A G)
$$

By the assumption of Lemma 1.1, we have $\operatorname{dim}(A T)=m-(m-s)=s$.
Now

$$
\operatorname{dim}[R(A G)]+\operatorname{dim}[N(A G)]=m,
$$

whence

$$
\operatorname{dim}[N(A G)]=m-\operatorname{dim}[R(A G)]=m-s=\operatorname{dim}(S)
$$

Thus $N(A G)=S$ so that

$$
R(A G) \oplus N(A G)=A T \oplus S=\mathbb{C}^{m}
$$

i.e.,

$$
\operatorname{Ind}(A G)=1
$$

Let $X=G(A G)_{g}$. By direct verification, we obtain

$$
X A X=G(A G)_{g} A G(A G)_{g}=G(A G)_{g}=X
$$

and

$$
R(X)=R\left[G(A G)_{g}\right] \subseteq R(G)=T
$$

or

$$
N(X)=N\left[G(A G)_{g}\right] \supseteq N\left[(A G)_{g}\right]=N(A G) \supseteq N(G)=S .
$$

Obviously, $\operatorname{rank}(X) \leqslant \operatorname{dim}(T)$. On the other hand, it holds

$$
\begin{aligned}
\operatorname{rank}(X) & =\operatorname{rank}\left[G(A G)_{g}\right] \geqslant \operatorname{rank}\left[A G(A G)_{g}\right]=\operatorname{rank}(A G) \\
& =s=\operatorname{dim}(T) .
\end{aligned}
$$

Thus, $R(X)=T$. In a similar manner giving $N(X)=S$, which is the desired result. It follows similarly that $\operatorname{Ind}(G A)=1$ and $A_{T . S}^{(2)}=(G A)_{g} G$.

From Lemma 1.2 and Theorem 2.1, let G be equal to $A^{*}, A^{\#}, A^{k}, A, P_{L}$ and P_{S} respectively, then $A_{T, S}^{(2)}$ reduces to $A^{+}, A_{M, N}^{+}, A^{D}, A_{g}, A_{(L)}^{(-1)}$ and $A_{(L)}^{(+)}$correspondingly.

It is a well-known fact that if A is a nonsingular matrix, then the inverse of A, A^{-1}, is the unique matrix X for which

$$
\operatorname{rank}\left[\begin{array}{cc}
A & I \\
I & X
\end{array}\right]=\operatorname{rank}(A)
$$

Next, we present a generalization of this fact to singular matrix A to obtain an analogous result for the generalized inverse $A_{T, S}^{(2)}$ of A.

Theorem 2.2. Let A, T, S and G be the same as Theorem 2.1. Suppose A has a [2]inverse $A_{T, S}^{(2)}$. Then there exist a unique $n \times n$ matrix X such that

$$
\begin{equation*}
G A X=0, \quad X G A=0, \quad X^{2}=X, \quad \operatorname{rank}(X)=n-s \tag{2.3}
\end{equation*}
$$

a unique $m \times m$ matrix Y such that

$$
\begin{equation*}
Y A G=0, \quad A G Y=0, \quad Y^{2}=Y, \quad \operatorname{rank}(Y)=m-s \tag{2.4}
\end{equation*}
$$

and a unique $n \times m$ matrix Z such that

$$
\operatorname{rank}\left[\begin{array}{cc}
A & I-Y \tag{2.5}\\
I-X & Z
\end{array}\right]=\operatorname{rank}(A)
$$

The matrix Z is the generalized inverse $A_{T . S}^{(2)}$ of A. Further, we have:

$$
\begin{align*}
X & =I-A_{T, S}^{(2)} A, \tag{2.6}\\
Y & =I-A A_{T, S}^{(2)} . \tag{2.7}
\end{align*}
$$

Proof. To prove the first statement, let U be a nonsingular matrix for which

$$
G A=U\left[\begin{array}{cc}
J & 0 \\
0 & 0
\end{array}\right] U^{-1},
$$

where J is a nonsingular matrix of order s. It is easy to verify that

$$
X=U\left[\begin{array}{ll}
0 & 0 \\
0 & I
\end{array}\right] U^{-1}
$$

satisfies the condition (2.3). To show uniqueness, let X_{0} be a matrix which satisfies Eq. (2.3). Let $X_{1}=U^{-1} X_{0} U$, and let X_{1} be partitioned as

$$
X_{1}=\left[\begin{array}{ll}
E & F \\
G & H
\end{array}\right]
$$

with E being $s \times s$. By Eq. (2.3),

$$
\begin{aligned}
& {\left[\begin{array}{ll}
J & 0 \\
0 & 0
\end{array}\right]\left[\begin{array}{ll}
E & F \\
G & H
\end{array}\right]=0} \\
& {\left[\begin{array}{ll}
E & F \\
G & H
\end{array}\right] \quad\left[\begin{array}{ll}
J & 0 \\
0 & 0
\end{array}\right]=0}
\end{aligned}
$$

so that $E=0, F=0$ and $G=0$. It follows that $H=I$, since X_{1} again satisfies $X_{1}^{2}=X_{1}$ and has to have $n-s$. Thus, we obtain $X_{0}=X$.

The property (2.4) is proved in a similar manner.
Let $A_{T, S}^{(2)}$ be the [2]-generalized inverse with prescribed range T and null space S. Observe that then Eqs. (2.6) and (2.7) hold. For these X and Y, and

$$
\left[\begin{array}{cc}
A & I-Y \\
I-X & Z
\end{array}\right]=\left[\begin{array}{cc}
A & A A_{T, S}^{(2)} \\
A_{T, S}^{(2)} A & Z
\end{array}\right]
$$

Thus, by Lemma 1.3 and the condition (2.5), we have

$$
Z-A_{T, S}^{(2)} A A_{T, S}^{(2)}=0,
$$

implies $Z=A_{T, S}^{(2)}$. This completes the proof of theorem.
As we know, the important generalized inverses of matrices, for example, $A^{+}, A_{M, N}^{+}, A^{\mathrm{D}}, A_{g}, A_{(L)}^{(-1)}$ and $A_{(L)}^{(+)}$are all [2]-inverse having the corresponding range T and null space S. Therefore the results in Theorem 2.2 are applicable to these generalized inverses.

On the other hand, for the generalised inverse A^{+}and A^{D} there are somewhat simpler characterizations.
Corollary 2.1 [9]. Suppose $A=\mathbb{C}^{m \times n}$ with $\operatorname{rank}(A)=r$. Then there exist a unique $n \times n$ matrix X such that

$$
\begin{equation*}
A X=0, \quad X^{*}=X, \quad X^{2}=X, \quad \operatorname{rank}(X)=n-r, \tag{2.8}
\end{equation*}
$$

a unique $m \times m$ matrix Y such that

$$
\begin{equation*}
Y A=0, \quad Y^{*}=Y, \quad Y^{2}=Y, \quad \operatorname{rank}(Y)=m-r, \tag{2.9}
\end{equation*}
$$

and a unique $n \times m$ matrix Z such that

$$
\operatorname{rank}\left[\begin{array}{cc}
A & I-Y \tag{2.10}\\
I-X & Z
\end{array}\right]=\operatorname{rank}(A) .
$$

The matrix Z is the Moore-Penrose inverse A^{+}of A. Further, we have

$$
\begin{equation*}
X=I-A^{+} A \tag{2.11}
\end{equation*}
$$

and

$$
\begin{equation*}
Y=I-A A^{+} \tag{2.12}
\end{equation*}
$$

Corollary 2.2 [24]. Suppose $A \in \mathbb{C}^{n \times n}$ with $\operatorname{Ind}(A)=k$ and $\operatorname{rank}\left(A^{k}\right)=r$. Then there exists a unique matrix X such that

$$
\begin{equation*}
A^{k} X=0, \quad X A^{k}=0, \quad X^{2}=X, \quad \operatorname{rank}(X)=n-r \tag{2.13}
\end{equation*}
$$

and a unique matrix Z such that

$$
\operatorname{rank}\left[\begin{array}{cc}
A & I-X \tag{2.14}\\
I-X & Z
\end{array}\right]=\operatorname{rank}(A)
$$

The matrix Z is the Drazin inverse A^{D} of A. Further, we have

$$
\begin{equation*}
X=I-A^{\mathrm{D}} A=I-A A^{\mathrm{D}} \tag{2.15}
\end{equation*}
$$

Based on Theorem 2.1, we shall next present representation theorem of $A_{T, S}^{(2)}$.

Theorem 2.3. Under the same hypothesis of Theorem 2.1. Then

$$
A_{T . S}^{(2)}=\left[\left.G A\right|_{R(G)}\right]^{-1} G,
$$

where $\left.G A\right|_{R(G)}$ is the restriction of $G A$ to $R(G)$.
Proof. It is a well-known fact that [18], p. 320

$$
\begin{aligned}
(G A)_{g} & =\left[\left.G A\right|_{R(G A)}\right]^{-1}\left[(G A)_{g} G A\right] \\
& =\left[\left.G A\right|_{R(G)}\right]^{-1}\left[(G A)_{g} G A\right] .
\end{aligned}
$$

It follows from Theorem 2.1 that

$$
\begin{aligned}
A_{T . S}^{(2)} & =(G A)_{g} G=(G A)_{g} G A A_{T . S}^{(2)} \\
& =\left[\left.G A\right|_{R(G)}\right]^{-1}\left[(G A)_{g} G A G A\right] A_{T . S}^{(2)} \\
& =\left[\left.G A\right|_{R(G)}\right]^{-1} G A A_{T, S}^{(2)}=\left[\left.G A\right|_{R(G)}\right]^{-1} G,
\end{aligned}
$$

which is the desired result.
Corollary 2.3 [11]. Let $A \in \mathbb{C}^{m \times n}$. Then the Moore-Penrose inverse of A can be expressed as

$$
A^{+}=\left[\left.A^{*} A\right|_{R\left(A^{*}\right)}\right]^{-1} A^{*}
$$

Corollary 2.4 [24]. Let $A \in \mathbb{C}^{n \times n}$ with $\operatorname{Ind}(A)=k$. Then the Drazin inverse of A can be characterized as

$$
\left.A^{\mathrm{D}}=\left|A^{k+1}\right|_{R\left(A^{K}\right)}\right]^{-1} A^{k}
$$

For a nonsingular matrix A, A can be characterized in terms of a wellknown limit process,

$$
A^{-1}=\lim _{\varepsilon \rightarrow 0}(A-\varepsilon I)^{-1},
$$

where in the limit, as $\varepsilon \rightarrow 0$ of the above expression involving $(A-\varepsilon I)^{-1}$, we assume that $\varepsilon \notin \sigma(A)$, the set of all eigenvalues of A. The same assumption will be used in the following.

Based on the above representation Theorem 2.3, we can present an alternative proof for the limiting expression for $A_{T, S}^{(2)}[23,26]$.

Theorem 2.4. Under the same hypothesis of Theorem 2.1. Then

$$
\begin{equation*}
A_{T . S}^{(2)}=\lim _{\varepsilon \rightarrow 0}(G A-\varepsilon I)^{-1} G=\lim _{\varepsilon \rightarrow 0} G(A G-\varepsilon I)^{-1} . \tag{2.16}
\end{equation*}
$$

Proof. Ben-Israel [1] obtained the limiting process of matrices with index one, i.e.,

$$
(G A)_{g}(G A)=\lim _{\varepsilon \rightarrow 0}(G A-\varepsilon I)^{-1} G A .
$$

From Theorem 2.1, we have

$$
\begin{aligned}
A_{T S}^{(2)} & =(G A)_{g} G=\left[(G A)_{g} G A\right] A_{T, S}^{(2)}=\lim _{\varepsilon \rightarrow 0}(G A-\varepsilon I)^{-1} G A A_{T S}^{(2)} \\
& =\lim _{\varepsilon \rightarrow 0}(G A-\varepsilon I)^{-1} G .
\end{aligned}
$$

The proof of the remaining part of Eq. (2.16) is similar.
By Theorem 2.1 and Lemma 1.2, we can arrive at the limiting formulas for $A^{+}, A_{M . N}^{+}, A^{\mathrm{D}}, A_{g}, A_{(L)}^{(-1)}$ and $A_{(L)}^{(+)}$immediately (see $[2,4,23,26]$).

3. Applications

In this section, from Theorem 2.1 and Lemma 1.2, we derive an iterative scheme to compute the generalized inverse $A_{T, S}^{(2)}$, which give a unified treatment of the common important six generalized inverse (see [2,26,27]).

Since $G A A_{T . S}^{(2)}=G$, we have

$$
A_{T, S}^{(2)}=A_{T, S}^{(2)}-\beta\left(G A A_{T, S}^{(2)}-G\right)=(I-\beta G A) A_{T S}^{(2)}+\beta G,
$$

where β is a relaxation parameter.

Let $P=I-\beta G A$ and $Q=\beta G$, the solution $A_{T, S}^{(2)}$ of matrix equation $X=P X+Q$ can be approximated by the following iterative scheme

$$
\begin{equation*}
X_{1}=Q, X_{m+1}=P X_{m}+Q \tag{3.1}
\end{equation*}
$$

The following theorem presents the sufficient conditions for the iterative algorithm (3.1) to converge to $A_{T S}^{(2)}$ in terms of the matrix V-norm, V-norm is defined as $\|B\|_{V}=\|B V\|_{2}$ for any $B \in \mathbb{C}^{n \times m}$, and V is invertible such that

$$
V^{-1} A G V=\left[\begin{array}{ccccc}
J_{t} & & & & \\
& \ddots & & & \\
& & J_{t} & & \\
& & & \ddots & \\
& & & & 0
\end{array}\right] \text { is the Jordan form of } A G
$$

Theorem 3.1. The sequences of approximations

$$
\begin{equation*}
X_{2^{m}}=\sum_{i=0}^{2^{m}-1}(I-\beta G A)^{i} \beta G \tag{3.2}
\end{equation*}
$$

defined by the iterative algorithm (3.1) converge to the generalized inverse $A_{T, S}^{(2)}$ in the matrix form V-norm, if β is a fixed real number such that $\max _{1 \leqslant i \leqslant s}\left|1-\beta \lambda_{i}\right|<1$ where $\lambda_{i}, i=1,2, \ldots$, s are the nonzero eigenvalues of $A G$.

In the case of convergence we obtain the error estimates

$$
\frac{\left\|A_{T, S}^{(2)}-X_{2^{n}}\right\|_{V}}{\left\|A_{T, S}^{(2)}\right\|_{V}} \leqslant \max _{1 \leqslant i \leqslant s}\left|1-\beta \lambda_{i}\right|^{2^{m}}+o(\varepsilon) \quad \text { for } \varepsilon>0
$$

Proof. We know that

$$
A_{T, S}^{(2)} A A_{T, S}^{(2)}=A_{T, S}^{(2)}, \quad A_{T, S}^{(2)} A X_{2^{m}}=X_{2^{m}},
$$

since

$$
A_{T, S}^{(2)} A=P_{T\left(A^{*} S^{\perp}\right)^{\perp}} \quad \text { and } \quad X_{2^{m}} \in R(G)=T
$$

Therefore,

$$
\begin{aligned}
\left\|A_{T, S}^{(2)}-X_{2^{m}}\right\|_{V} & =\left\|\left[A_{T, S}^{(2)} A A_{T, S}^{(2)}-A_{T, S}^{(2)} A X_{2^{m}}\right] V\right\|_{2} \\
& =\|\left[A_{T, S}^{(2)} V V^{-1}\left[A A_{T, S}^{(2)}-A X_{2^{m}}\right] V \|_{2}\right. \\
& \leqslant\left\|A_{T, S}^{(2)}\right\|_{V}\left\|V^{-1}\left[A A_{T, S}^{(2)}-A X_{2^{m}}\right] V\right\|_{2}
\end{aligned}
$$

$$
\begin{aligned}
\frac{\left\|A_{T, S}^{(2)}-X_{2^{m}}\right\|_{V}}{\left\|A_{T, S}^{(2)}\right\|_{V}} & \leqslant\left\|V^{-1} A A_{T, S}^{(2)} V-V^{-1} A X_{2^{m}} V\right\|_{2} \\
& \leqslant\left\|V^{-1} A G(A G)_{g} V-V^{-1} A X_{1} V\right\|_{2}^{2^{m}} \\
& =\left\|\left[\begin{array}{ll}
I_{s} & 0 \\
0 & 0
\end{array}\right]-\beta V^{-1} A G V\right\|_{2}^{2^{m}} \\
& =\|\left[\begin{array}{ll}
I_{s} & 0 \\
0 & 0
\end{array}\right]-\beta\left[\begin{array}{cccc}
J_{1} & & \\
& \ddots & & \\
& \leqslant & J_{t} & \\
& \leqslant\left(\max _{1 \leqslant i \leqslant s}\left|1-\beta \hat{\lambda}_{i}\right|+\varepsilon\right)^{2^{m}}=\left(\max _{1 \leqslant i \leqslant s}\left|1-\beta \hat{\lambda}_{i}\right|\right)^{2^{m m}}+o(\varepsilon)
\end{array}\right.
\end{aligned}
$$

which concludes the proof.

4. Concluding remarks

It was shown in [7] that for any complex matrices B and W, m by n and n by m, respectively, $X=B\left[(W B)^{\mathrm{D}}\right]^{2}$ is the unique solution to the equations

$$
\begin{align*}
& (B W)^{k}=(B W)^{k+1} X W, \quad X=X W B W X \\
& B W X=X W B, \quad \text { for some integer } k \tag{4.1}
\end{align*}
$$

The matrix X is called the W-weighted Drazin inverse of B and is written as $X=B_{d, w}$. Interchanging the roles of B and W, then $W_{d, B}=W\left[(B W)^{\mathrm{D}}\right]^{2}$ is the B-weighted Drazin inverse of W. It has shown, moreover, that $X=W_{d, B}$ satisfies $X B X=X$ if and only if

$$
\begin{equation*}
W_{d, W}=W(B W)^{\mathrm{D}} \tag{4.2}
\end{equation*}
$$

The above expression coincides with Theorem 2.1 when $\operatorname{Ind}(B W)=1$ in Eq. (4.2). For matrices over complex field, therefore, that $A^{\mathrm{D}}=\left(A^{k}\right)_{g . A}$, when A is square, and $A^{+}=\left(A^{*}\right)_{g, A}$, by Lemma 1.2.

References

[1] A. Ben-Israel, On matrices of index zero or one, SIAM J. Appl. Math. 17 (1968) 1118-1125.
[2] A. Ben-Israel, T.N.E. Greville, Generalized Inverses: Theory and Applications, Wiley, New York 1974.
[3] R. Bott, R.J. Duffin, On the algebra of networks, Trans. Amer. Math. Soc. 74 (1953) 99-109.
[4] S.L. Campbell, C.D. Meyer, JR., Generalized Inverses of Linear Transformations, Pitman, London, 1979.
[5] D. Carlson, E. Haynsworth, T.L. Markham, A generalization of the Schur complement by means of the Moore-Penrose inverse, SIAM J. Appl. Math. 26 (1974) 169-175.
[6] Y. Chen, The generalized Bott-Duffin inverse and its applications, Linear Algebra Appl. 134 (1990) 71-91.
[7] R.E. Cline, T.N.E. Greville, A Drazin inverse for rectangular matrices, Linear Algebra Appl. 29 (1980) 53-62.
[8] L. Eldén, A weighted pseudoinverse, generalized singular values and constrained least squares problems, BIT 22 (1982) 487-502.
[9] M. Fiedler, T.L. Markham, A characterization of the Moore-Penrose inverse, Linear Algebra Appl. 179 (1993) 129-133.
[10] A.J. Getson, F.C. Hsuan, [2]-Inverses and their Statistical Applications, Lecture Notes in Statistics 47, Springer, Berlin, 1988.
[11] C.W. Groetsch, Representations of the generalized inverse, J. Math. Anal. Appl. 49 (1975) 154-157.
[12] M. Gulliksson, Iterative refinement for constrained and weighted linear least squares, BIT 34 (1994) 239-253.
[13] M. Hanke, M. Neumann, Preconditionings and splittings for rectangular systems, Numer. Math. 57 (1990) 85-95.
[14] F. Husen, P. Langenberg, A. Getson, The [2]-inverse with applications to satistics, Linear Algebra Appl. 70 (1985) 241-248.
[15] G. Marsaglia, G.P.H. Styan, Equalities and inequalities for ranks of matrices, Linear and Multilinear Algebra 2 (1974) 269-292.
[16] S.K. Mitra, R.E. Hartwig, Partial orders based on outer inverse, Linear Algebra Appl. 176 (1992) 3-20.
[17] M.Z. Nashed, Generalized Inverse and Applications, Academic Press, New York, 1976.
[18] M.Z. Nashed, Inner, outer, and generalized inverses in Banach and Hilbert spaces, Numer. Funct. Anal. Optim. 9 (1987) 261-325.
[19] M.Z. Nashed, X. Chen, Convergence of Newton-like methods for singular operator equations using outer inverses, Numer. Math. 66 (1993) 235-257.
[20] C.R. Rao, S.K. Mitra, Generalized Inverse of Matrices and its Applications, Wiley, New York, 1971.
[21] P.-A. Wedin, Perturbation results and condition numbers for outer inverses and especially for projections, Technical Report UMINF 124.85, S-901 87, Inst. of Info. Proc., University of Umeả, Umeå, Sweden, 1985.
[22] M. Wei, B. Zhang, Structures and the uniqueness conditions of MK-weighted pseudoinverse, BIT 34 (1994) 437-450.
[23] G. Wang, Y. Wei, Limiting expression for generalized inverse $\mathrm{A}_{\mathrm{T}, \mathrm{S}}^{(2)}$ and its corresponding projectors, Numer. Math. J. Chinese Univ. 4 (1995) 25-30.
[24] Y. Wei, A characterization and representation of the Drazin inverse, SIAM J. Matrix Anal. Appl. 17 (1996) 744-747.
[25] Y. Wei, G. Wang, The perturbation theory for the Drazin inverse and its applications, Linear Algebra Appl. 258 (1997) 179-186.
[26] Y. Wei, Perturbation and computation of the generalized inverse $A_{T . S}^{(2)}$, Master Thesis, Shanghaa Normal University, 1994.
[27] Y. Wei, Solving singular linear systems and generalized inverse, Ph.D. Thesis, Fudan University, 1997.
[28] Y. Wei, G. Wang, A survey on the generalized inverse $A_{\mathrm{T}, \mathrm{S}}^{(2)}$, Proceedings of Meeting on Matrix Analysis and Applications, Sep., 1997, pp. 421-428, Spain.

[^0]: ${ }^{1}$ Corresponding author. E-mail: ymwei@fudan.edu.cn. This research is supported by National Natural Science Foundation of China, Doctoral Point Foundation of China and Youth Science Foundation of Universities in Shanghai of China.

