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1. Introduction

In recent years, frameworks of Floer homology have been providing breakthroughs in low-dimensional topology, es-
pecially in knot theory. Regarding invariants of knots in 3-sphere S3, Rasmussen introduced so-called the Rasmussen
invariant s(K ) [16] by using knot Floer homology. It is very interesting that the Milnor conjecture on the slice genus of
torus knots can be shown by using the invariant s(K ) (refer to [17]). As regards properties of the invariant s(K ), for any
alternating knot K ′ , s(K ′) is exactly half the knot signature σ(K ′), though they are not the same in general. However,
s(K ) and σ(K ) have a common property, that is, additivity under the connected sum of knots: s(K1 # K2) = s(K1) + s(K2),
σ(K1 # K2) = σ(K1) + σ(K2) for any pair of knots K1 and K2. In this paper, we would like to focus on additivity of knot
invariants related to σ(K ).

Concerned with the knot signature σ(K ), Lin constructed so-called the Casson–Lin invariant h(K ) [8] via an algebraic
subset of the SU(2)-representation space of a knot group. Moreover, he showed that for any knot K the invariant h(K ) is
half the knot signature σ(K ). Hence h(K ) is also additive under the connected sum: h(K1 # K2) = h(K1) + h(K2) for any
pair of knots K1 and K2.

Based on the Casson–Lin invariant, in the paper [11], the author studied a slice (an algebraic subset) S0(K ) of the SL2(C)-
character variety X(G K ) of a knot group G K . That is a closed algebraic subset of X(G K ) ⊂ C

N defined as the intersection
of X(G K ) with a certain hyperplane in C

N (for the precise definition, refer to Section 2). Moreover, in the paper [13], we
observed that the slice S0(K ) has a beautiful topological structure; a 2-fold branched/2-sheeted covering space structure.
In fact, this structure essentially tells that the slice S0(K ) is a very important object to understand mechanisms of the
A-polynomial AK (m, l) [2] and knot contact homology HCab∗ (K ) [14,15] from a representation theoretical viewpoint (for
more information, refer to [10–13]).

In these perspectives, we would like to observe whether or not the slice S0(K ) has similar properties to the Casson–Lin
invariant h(K ) and apply the observation to the studies of the A-polynomial and the knot contact homology. This would
give a useful tool to observe the behavior of the invariants AK (m, l) and HCab∗ (K ) under the connected sum of knots. As
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a first step, we look into the behavior of the 0-dimensional components of the slice S0(K ) under the connected sum of
knots.

Definition 1.1 (0-dimensional norm). For a knot K in S3, let ‖S0(K )‖0 denote the number of 0-dimensional irreducible
components of S0(K ) minus one.

We will mention in Section 4 the reason why we use the terminology “norm” ‖ · ‖0 for the number of 0-dimensional
irreducible components. Since for any knot K there exists a unique point p in S0(K ) coming from the abelian representa-
tions (see Remark 2.1), the norm ‖S0(K )‖0 actually counts the number of isolated points in S0(K ) except the point p. In
particular, ‖S0(K )‖0 is non-negative for any knot K (for more details, refer to the final paragraph of Section 2). In fact, the
norm ‖S0(K )‖0 has the following nice property as well as the Casson–Lin invariant h(K ) and the Rasmussen invariant s(K ).

Theorem 1.2. For any pair of knots K1 and K2 in S3 ,∥∥S0(K1 # K2)
∥∥

0 = ∥∥S0(K1)
∥∥

0 + ∥∥S0(K2)
∥∥

0.

We remark that the number of irreducible components of S0(K ) does not have additivity in general (refer to Section 4).
In this paper, we concentrate our interest on a proof of Theorem 1.2 in the following steps. In Section 2, we review

the definitions of the SL2(C)-character variety X(G K ) of a knot group and its slice S0(K ). After that, in Section 3, we give
a proof of Theorem 1.2. In Section 4, we mention further aspects of this research.

2. SL2(CCC)-character variety of a knot group and its slice

Let G be a finitely generated and presented group. For a representation ρ : G → SL2(C), the character χρ of ρ means
a function on G defined by χρ(g) := trace(ρ(g)), g ∈ G . Note that if representations ρi : G → SL2(C) (i = 1,2) are conjugate
(namely there exists an element A ∈ SL2(C) such that A−1ρ2(g)A = ρ1(g) for any g ∈ G), then χρ1 = χρ2 . Let R(G) be the
set of representations ρ : G → SL2(C). R(G) is a non-empty set for any G because of the existence of abelian representations.
For each element g ∈ G , we can define a map tg on R(G) by tg(ρ) := trace(ρ(g)) = χρ(g). Let T denote the ring generated
by all the functions tg , g ∈ G . By Proposition 1.4.1 in [4], the ring T is finitely generated. So we can fix a finite set g1, . . . , gN

of G such that tg1 , . . . , tgN generate T . Define a map

t : R(G) → C
N , t(ρ) := (

tg1(ρ), . . . , tgN (ρ)
)
, ρ ∈ R(G).

Then the image t(R(G)) is denoted by X(G) and called the SL2(C)-character variety of G . Indeed, X(G) is a closed (in terms
of the Zariski topology) algebraic set (refer to Corollary 1.4.5 in [4]). Since tg1 (ρ), . . . , tgN (ρ) generate T , the character χρ of
a representation ρ ∈ R(G) is determined by t(ρ). So there exists a natural one-to-one correspondence between the points
of X(G) and the characters of representations in R(G) (i.e., X(G) can be identified with the set of characters of all ρ ∈ R(G)):{

χρ

∣∣ ρ ∈ R(G)
} ≡ X(G).

For a knot group G K , we may put g1 = μ, a meridional element of G K , in the above setting. Then the intersection of
the SL2(C)-character variety X(G K ) and the hyperplane tμ = 0 becomes a closed algebraic subset of X(G K ). We denote it
by S0(K ) and call it a slice of X(G K ).

Here we review some basic properties on the slice S0(K ). For a knot K in S3, let R0(G K ) be the set of representations
ρ : G K → SL2(C) satisfying trace(ρ(μ)) = χρ(μ) = 0, and R̂0(G K ) the set of conjugacy classes of all ρ in R0(G K ). In fact,
the slice S0(K ) can be identified with R̂0(G K ):

R̂0(G K ) ≡ {
χρ

∣∣ ρ ∈ R0(G K )
} ≡ S0(K ).

This can be shown as follows. Let �K (t) denote the Alexander polynomial of K . Since �K (−1) 	= 0 for any knot K in S3,
by Corollary 4.3 in [6], there do not exist reducible non-abelian representations in R0(G K ) (see also Burde [1] and de
Rham [5]). So R0(G K ) consists entirely of abelian representations and irreducible representations. Note that any abelian
representation in R0(G K ), which is determined by the image of a meridional element μ, can be conjugate to a representa-
tion ρab

0 : G K → SL2(C) defined by

ρab
0 (μ) =

[
i 0
0 −i

]
,

where i = √−1. Thus there exists only one conjugacy class [ρab
0 ] in R̂0(G K ) and only one character χρab

0
in the set of charac-

ters of all ρ ∈ R0(G K ) which come from abelian representations. Moreover, for irreducible representations ρ1,ρ2 ∈ R0(G K ),
ρ1 and ρ2 are conjugate if and only if χρ1 = χρ2 (refer to Proposition 1.5.2 in [4]). Therefore, R̂0(G K ) can be identified with
the set of characters of all ρ ∈ R0(G K ), which can be identified with the slice S0(K ).
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Let t̂ denote the identifying map:

t̂ : R̂0(G K ) → S0(K ), t̂
([ρ]) := (

tg1(ρ), . . . , tgN (ρ)
)
, ρ ∈ R0(G K ).

By the above argument, R̂0(G K ) is described as a union of R̂ab
0 (G K ) and R̂ irr

0 (G K ), where

R̂ab
0 (G K ) := {[

ρab
0

]}
,

R̂ irr
0 (G K ) := {[ρ] ∈ R̂0(G K )

∣∣ ρ: irreducible
}
.

(Furthermore, this is a disjoint union by Proposition 1.5.2 in [4].) Then S0(K ) is described by

S0(K ) = t̂
(

R̂ab
0 (G K )

) � t̂
(

R̂ irr
0 (G K )

)
.

Remark 2.1. t̂([ρab
0 ]) is an isolated point in S0(K ) for any knot K in S3.

This can be checked as follows. Suppose that t̂([ρab
0 ]) is not isolated in S0(K ). Then there exists an irreducible compo-

nent C0 of S0(K ) such that C0 contains t̂([ρab
0 ]) and C0 − t̂([ρab

0 ]) is not empty. (Note that C0 − t̂([ρab
0 ]) consists entirely

of (points coming from) irreducible characters by the argument given in the last paragraph.) Since S0(K ) is an algebraic
subset of X(G K ), there exists an irreducible component C of X(G K ) that contains C0. The component C0 contains (points
coming from) irreducible characters, hence C is an irreducible component containing t̂([ρab

0 ]) other than the irreducible
component consisting entirely of (points coming from) all abelian characters. This is a contradiction to Theorem 1.2 in [6]
with �K (−1) 	= 0 (see also Corollary 4.3 in [6]).

Remark 2.1 shows that t̂(R̂ irr
0 (G K )) is a closed algebraic subset. We denote by S irr

0 (K ) the algebraic set t̂(R̂ irr
0 (G K )) and

call it the irreducible part of S0(K ). Note that the norm ‖S0(K )‖0 actually counts the number of isolated points in S irr
0 (K ).

In the next section, we focus on S irr
0 (K ).

3. Proof of Theorem 1.2

The proof of Theorem 1.2 is essentially due to Klassen’s method used in the proof of Proposition 12 in [7]. Here we show
how to calculate the number of 0-dimensional (irreducible) components of the slice S0(K ) by using Klassen’s method.

For a knot K1 (resp. K2) in S3, we fix a meridional element μ1 (resp. μ2). By the van Kampen theorem, the knot
group G K1#K2 of the connected sum K1 # K2 can be described by the amalgamated free product G K1 ∗ f G K2 of G K1

and G K2 given by the homomorphism f : 〈μ1〉 → 〈μ2〉 defined by f (μ1) = μ2. This fact induces the following descrip-
tion of R0(G K1#K2 ):

R0(G K1#K2) = Rab
0 ∪ R1

0 ∪ R2
0 ∪ R12

0 ,

where

Rab
0 := {

ρ1 ∗ ρ2 ∈ R0(G K1#K2)
∣∣ ρ1: abelian, ρ2: abelian

}
,

R1
0 := {

ρ1 ∗ ρ2 ∈ R0(G K1#K2)
∣∣ ρ1: irreducible, ρ2: abelian

}
,

R2
0 := {

ρ1 ∗ ρ2 ∈ R0(G K1#K2)
∣∣ ρ1: abelian, ρ2: irreducible

}
,

R12
0 := {

ρ1 ∗ ρ2 ∈ R0(G K1#K2)
∣∣ ρ1: irreducible, ρ2: irreducible

}
.

Rab
0 is the abelian part, the others are irreducible parts. Note that the notation ∗ means the decomposition of a rep-

resentation derived from the amalgamation G K1#K2 = G K1 ∗ f G K2 . More precisely, for any representation ρ ∈ R(G K1#K2 )

the restriction ρi := ρ|G Ki
is an element of R(G Ki ). Then we write ρ1 ∗ ρ2. Conversely, given representations ρi ∈ R(G Ki )

(i = 1,2), we can form ρ = ρ1 ∗ ρ2 ∈ R(G K1#K2 ) if and only if ρ1(μ1) = ρ2(μ2). This description of R0(G K1#K2 ) naturally
induces the following decomposition of R̂0(G K1#K2 ):

R̂0(G K1#K2) = R̂ab
0 � R̂1

0 � R̂2
0 � R̂12

0 ,

where

R̂ab
0 := {[ρ1 ∗ ρ2] ∈ R̂0(G K1#K2)

∣∣ ρ1: abelian, ρ2: abelian
}
,

R̂1
0 := {[ρ1 ∗ ρ2] ∈ R̂0(G K1#K2)

∣∣ ρ1: irreducible, ρ2: abelian
}
,

R̂2
0 := {[ρ1 ∗ ρ2] ∈ R̂0(G K1#K2)

∣∣ ρ1: abelian, ρ2: irreducible
}
,

R̂12 := {[ρ1 ∗ ρ2] ∈ R̂0(G K1#K2)
∣∣ ρ1: irreducible, ρ2: irreducible

}
.
0
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Here we can check that R̂ab
0 � R̂1

0 � R̂2
0 � R̂12

0 is a disjoint union as follows. It follows from the argument in Section 2 that
the component R̂ab

0 is disjoint from the others. So we focus on the remaining components R̂ irr
0 (G K1#K2 ) = R̂1

0 � R̂2
0 � R̂12

0 .

Consider maps pi : R̂ irr
0 (G K1#K2 ) → R̂0(G Ki ) (i = 1,2) defined by [ρ1 ∗ ρ2] → [ρi]. Then the images of R̂1

0 and R̂2
0 under the

map p1 are R̂ irr
0 (G K1 ) and R̂ab

0 (G K1 ), respectively. Since R̂ irr
0 (G K1 ) and R̂ab

0 (G K1 ) are disjoint from each other in R̂0(G K1 ) (by

the argument in Section 2), so are R̂1
0 and R̂2

0. Similarly, we can check that R̂1
0 (resp. R̂2

0) is disjoint from R̂12
0 by using the

maps p2 (resp. p1).
By the argument in Section 2, there exists an identifying map

t̂ : R̂0(G K1#K2) → S0(K1 # K2).

Then we obtain

S0(K1 # K2) = t̂
(

R̂0(G K1#K2)
) = t̂

(
R̂ab

0

) � t̂
(

R̂1
0

) � t̂
(

R̂2
0

) � t̂
(

R̂12
0

)
.

By Remark 2.1, t̂(R̂ab
0 ) consists of an isolated point t̂([ρab

0 ]) in S0(K1 # K2). The irreducible part S irr
0 (K1 # K2) consists of

the others t̂(R̂1
0) � t̂(R̂2

0) � t̂(R̂12
0 ). It is easy to check that t̂(R̂1

0) (resp. t̂(R̂2
0)) is isomorphic to S irr

0 (K1) (resp. S irr
0 (K2)) as

algebraic set. For example, given an irreducible representation ρ1 ∈ R0(G K1 ), there exists a unique abelian representation
ρ2 ∈ R0(G K2 ) satisfying ρ1(μ1) = ρ2(μ2). Namely, the map p1 defined above gives a bijection between R̂1

0 and R̂ irr
0 (G K1 ).

The bijection naturally induces a bijective polynomial map from t̂(R̂1
0) to t̂(R̂ irr

0 (G K1 )) = S irr
0 (G K1 ) so that the following

diagram becomes commutative:

R̂1
0

�

[ρ1∗ρ2]→[ρ1]

t̂

R̂ irr
0 (G K1)

t̂

t̂(R̂1
0) bijective

t̂(R̂ irr
0 (G K1)).

Regarding t̂(R̂12
0 ), there exists a surjective polynomial map

ϕ : t̂
(

R̂12
0

) → t̂
(

R̂ irr
0 (G K1)

) × t̂
(

R̂ irr
0 (G K2)

)
induced by a surjection

ψ : R̂12
0 → R̂ irr

0 (G K1) × R̂ irr
0 (G K2), ψ

([ρ1 ∗ ρ2]
) := ([ρ1], [ρ2]

)
.

More precisely, the following diagram becomes commutative:

R̂12
0

�

ψ

t̂

R̂ irr
0 (G K1) × R̂ irr

0 (G K2)

t̂×t̂

t̂(R̂12
0 ) ϕ t̂(R̂ irr

0 (G K1)) × t̂(R̂ irr
0 (G K2)),

where t̂ × t̂([ρ1], [ρ2]) := (t̂([ρ1]), t̂([ρ2])). In the following, we show that for any pair ([ρ1], [ρ2]) ∈ R̂ irr
0 (G K1 ) × R̂ irr

0 (G K2 ),
the preimage ψ−1(([ρ1], [ρ2])) is a 1-parameter family parametrized by λ ∈ C − {0}. Let ([ρ1], [ρ2]) be an element of
R̂0(G K1 ) × R̂0(G K2 ). We may assume without loss of generality that ρ1 and ρ2 satisfy

ρ1(μ) =
[

i 0
0 −i

]
= ρ2(μ).

Then the preimage ψ−1(([ρ1], [ρ2])) can be described as a set{[
ρ1 ∗ Aρ2 A−1] ∣∣ A ∈ Stab

(
ρ2(μ)

)}
,

where Stab(ρ2(μ)) is the stabilizer subgroup of ρ2(μ) in SL2(C). Since ρ2(μ) is in the maximal abelian subgroup H

H :=
{

Aλ :=
[

λ 0
0 λ−1

]
∈ SL2(C)

∣∣∣ λ ∈ C − {0}
}
,

Stab(ρ2(μ)) is exactly the subgroup H . As ρ2 is irreducible, Aρ2 A−1 is conjugate to ρ2 itself if and only if A = ±E , where E
is the identity matrix. This shows the desired fact.

By the definition of t̂ , for any pair ([ρ1], [ρ2]) ∈ R̂ irr
0 (G K1 ) × R̂ irr

0 (G K2 ), the image t̂(ψ−1(([ρ1], [ρ2]))) has no isolated
points (because the image is a 1-parameter family parametrized by λ). Hence t̂(R̂12

0 ) has no 0-dimensional irreducible
components. These results show that the 0-dimensional part of S irr

0 (K1 # K2) is the union of the 0-dimensional parts of t̂(R̂1
0)

and t̂(R̂2
0). This gives the desired equation∥∥S0(K1 # K2)

∥∥
0 = ∥∥S0(K1)

∥∥
0 + ∥∥S0(K2)

∥∥
0.
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4. Remarks on differences between the 0-dimensional part of S0(K ) and S0(K ) itself

We remark that the equation as in Theorem 1.2 does not hold for the number of irreducible components of S0(K ).
Remember the following decomposition given in the proof of Theorem 1.2:

S0(K1 # K2) = t̂
(

R̂0(G K1#K2)
) = t̂

(
R̂ab

0

) � t̂
(

R̂1
0

) � t̂
(

R̂2
0

) � t̂
(

R̂12
0

)
.

Namely, S0(K1 # K2) consists of irreducible components t̂(R̂ab
0 ) (an isolated point), t̂(R̂1

0) � t̂(R̂2
0) corresponding to

S irr
0 (K1) � S irr

0 (K2) and some extra irreducible components t̂(R̂12
0 ). If |�Ki (−1)| > 1 (i = 1,2), where �K (t) is the Alexan-

der polynomial, then the component t̂(R̂12
0 ) is non-empty. Indeed, if |�Ki (−1)| > 1, there exists an irreducible metabelian

representation in R0(G Ki ) (see [11,7,9]). By Klassen’s method demonstrated in Section 3 (see also [7]), this gives rise to an
irreducible component in t̂(R̂12

0 ). Note that its dimension is at least one. Here we restate these facts as a remark:

Remark 4.1. For any pair of knots K1 and K2 in S3 satisfying |�Ki (−1)| > 1 (i = 1,2), t̂(R̂12
0 ) contains an irreducible

component of more than 0-dimension. In particular, t̂(R̂12
0 ) is non-empty with the condition.

We denote by ‖S0(K )‖ the number of irreducible components of S irr
0 (K ) (including components of more than

0-dimension). Since S irr
0 (K1 # K2) contains irreducible components t̂(R̂1

0) � t̂(R̂2
0) corresponding to S irr

0 (K1) � S irr
0 (K2), we

obtain the following inequality:∥∥S0(K1 # K2)
∥∥ �

∥∥S0(K1)
∥∥ + ∥∥S0(K2)

∥∥.

Then Remark 4.1 is showing that for any pair of knots Ki (i = 1,2) in S3 satisfying |�Ki (−1)| > 1 (i = 1,2), t̂(R̂1
0) � t̂(R̂2

0) is
a proper algebraic subset of S irr

0 (K1 # K2). So the following strict inequality holds:∥∥S0(K1 # K2)
∥∥ >

∥∥S0(K1)
∥∥ + ∥∥S0(K2)

∥∥. (1)

Therefore, Theorem 1.2 does not hold for ‖S0(K )‖.
As regards knots satisfying the strict inequality (1), for example, we can consider small knots. A knot is said to be small

if its exterior contains no closed essential surfaces. For example, any torus knot is small. By Remark 4.1, ‖S0(K1 # K2)‖ >

‖S0(K1 # K2)‖0 holds for any pair of knots Ki (i = 1,2) in S3 satisfying |�Ki (−1)| > 1 (i = 1,2). In fact, for any small
knot K the slice S0(K ) is 0-dimensional and thus ‖S0(K )‖ is exactly ‖S0(K )‖0. (Note that K1 # K2 is not small for any
pair of knots K1 and K2.) Combining these facts and Theorem 1.2, we obtain the strict inequality (1) for any pair of small
knots Ki (i = 1,2) satisfying |�Ki (−1)| > 1. (For instance, a pair of trefoils satisfies the strict inequality (1).)

The equality ‖S0(K )‖ = ‖S0(K )‖0 mentioned above is essentially due to the following facts:

• for any small knot K , the character variety X(G K ) is 1-dimensional (refer to Proposition 2.4 in [2]);
• any small knot is meridionally small (refer to Theorem 2.0.3 in [3]).

In this situation, we can observe a relationship between the maximal degree of the A-polynomial AK (m, l) in terms of l and
the 0-dimensional norm ‖S0(K )‖0 (for 2-bridge knot cases, refer to [11], for more general cases, refer to [12]).

At the end of this paper, we mention a background of the notation ‖S0(K )‖0. Actually, for any small knot K , ‖S0(K )‖0
satisfies properties similar to a norm on a vector space as follows:

(A) ‖S0(K )‖0 � 0;
(B) ‖S0(K )‖0 = 0 ⇔ K is the unknot;
(C) ‖S0(K1 # K2)‖0 = ‖S0(K1)‖0 + ‖S0(K2)‖0.

(A) was shown in Section 2. (C), which can be thought of as a special case of the triangle inequality, is the consequence
of Theorem 1.2. The remaining (B) will be proved in the paper [12]. These are the reason why we use the terminology
“norm” ‖ · ‖0 for the number of 0-dimensional irreducible components. Regarding ‖S0(K )‖, we remark that (A) clearly holds
for any knot, however, (C) does not hold in general as shown in (1). At the present moment, we do not know whether or
not (B) for ‖S0(K )‖ holds for any knot.
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