
S

A
P
V
Z
N

N
E

I
e
h
l
h
a
u
l
t
c
i
t
p
g
a

i
s

M
S
U

a

Journal of the American College of Cardiology Vol. 46, No. 6, 2005
© 2005 by the American College of Cardiology Foundation ISSN 0735-1097/05/$30.00
P

TATE-OF-THE-ART PAPER

therothrombosis and High-Risk Plaque
art I: Evolving Concepts
alentin Fuster, MD, PHD, FACC,* Pedro R. Moreno, MD, FACC,*
ahi A. Fayad, PHD, FACC,* Roberto Corti, MD, FACC,† Juan J. Badimon, PHD, FACC*
ew York, New York; and Zurich, Switzerland

Atherothrombosis is a complex disease in which cholesterol deposition, inflammation, and
thrombus formation play a major role. Rupture of high-risk, vulnerable plaques is responsible
for coronary thrombosis, the main cause of unstable angina, acute myocardial infarction, and
sudden cardiac death. In addition to rupture, plaque erosion may also lead to occlusive
thrombosis and acute coronary events. Atherothrombosis can be evaluated according to
histologic criteria, most commonly categorized by the American Heart Association (AHA)
classification. However, this classification does not include the thin cap fibroatheroma, the
most common form of high-risk, vulnerable plaque. Furthermore, the AHA classification
does not include plaque erosion. As a result, new classifications have emerged and are
reviewed in this article. The disease is asymptomatic during a long period and dramatically
changes its course when complicated by thrombosis. This is summarized in five phases, from
early lesions to plaque rupture, followed by plaque healing and fibrocalcification. For the early
phases, the role of endothelial dysfunction, cholesterol transport, high-density lipoprotein,
and proteoglycans are discussed. Furthermore, the innate and adaptive immune response to
autoantigens, the Toll-like receptors, and the mechanisms of calcification are carefully
analyzed. For the advanced phases, the role of eccentric remodeling, vasa vasorum neovas-
cularization, and mechanisms of plaque rupture are systematically evaluated. In the final
thrombosis section, focal and circulating tissue factor associated with apoptotic macrophages
and circulatory monocytes is examined, closing the link between inflammation, plaque
rupture, and blood thrombogenicity. (J Am Coll Cardiol 2005;46:937–54) © 2005 by the

ublished by Elsevier Inc. doi:10.1016/j.jacc.2005.03.074
American College of Cardiology Foundation
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OMENCLATURE AND
VOLVING ASSESSMENT OF DISEASE

n the 19th century, there were two major hypotheses to
xplain the pathogenesis of atherosclerosis: the incrustation
ypothesis, proposed by von Rokitansky in 1852, and the

ipid hypothesis, proposed by Virchow in 1856 (1,2). These
ypotheses focused on fibrin deposition, lipid accumulation,
nd extracellular matrix formation. In addition, Virchow
sed for the first time the name endarteritis deformans,
inking inflammation to the disease and forming the basis of
he response-to-injury hypothesis of Ross more than a
entury later (3–5). Lipoprotein retention (6) and chronic
nflammation are intimately related to the early phases of
he disease. Furthermore, inflammation also plays a role in
laque rupture and thrombosis (7–11). Therefore, the inte-
ration of these hypotheses can be unified under the term
therothrombosis.

Atherothrombosis is a systemic arterial disease originally
nvolving mostly the intima of large- and medium-sized
ystemic arteries including the carotid, aorta, coronary, and
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eripheral arteries. The main components of atherothrom-
otic plaques are (12–18): 1) connective tissue extracellular
atrix, including collagen, proteoglycans, and fibronectin

lastic fibers; 2) crystalline cholesterol, cholesteryl esters,
nd phospholipids; 3) cells such as monocyte-derived mac-
ophages, T-lymphocytes, and smooth-muscle cells; and 4)
hrombotic material with platelets and fibrin deposition.
arying proportions of these components occur in different
laques, thus giving rise to a heterogeneity or spectrum of

esions. These components mainly affect the intima, but
econdary changes also occur in the media and adventitia,
19) including growth of vasa vasorum (20–23). Atheroscle-
osis progresses through lipid core expansion and macro-
hage accumulation at the edges of the plaque, leading to
brous cap rupture, as shown in Figure 1.
To establish clinical risk factors for plaque rupture, Burke

t al. (24) examined 113 men with coronary artery disease
omplicated with sudden cardiac death. Plaque rupture was
ssociated with increased total cholesterol/high-density li-
oprotein (HDL) ratio, but not with smoking or hyperten-
ion. Of note, ruptured plaques showed fibrous cap thick-
ess (mean � SD) of 23 � 19 �m; 95% of ruptured caps
easured 64 �m or less. As a result, vulnerable plaque was

efined as a plaque with a fibrous cap �65 �m thick with an
nfiltrate of macrophages (�25 per high-magnification [0.3-
m diameter] field) (24), as shown in Figure 2.
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Plaque rupture is the most common substrate for coro-
ary thrombosis in humans. However, 30% to 40% of
oronary thrombosis occurs at sites at which plaque rupture
annot be identified. In a landmark publication, Farb et al.
25) described 50 consecutive cases of sudden cardiac death
ttributable to coronary thrombosis, in which 22 had super-
cial erosion of a proteoglycan-smooth muscle cell–rich
laque. No site of cap rupture could be identified. To
stablish clinical and histologic characteristics, the remain-
ng 28 cases of plaque rupture served as controls. Eroded
laques were more frequently seen in pre-menopausal
omen. Of note, eroded plaques were less stenotic, had

ower macrophage infiltration, and had a much lower
ncidence of calcification, as shown in Figure 3.

Abbreviations and Acronyms
ACS � acute coronary syndrome
AHA � American Heart Association
apo � apolipoprotein
CAM � cell adhesive molecule
CRP � C-reactive protein
HDL � high-density lipoprotein
IEL � internal elastic lamina
LDL � low-density lipoprotein
MMP � matrix metalloproteinase
NCP � non-collagenous bone-associated protein
OPN � osteopontin
TCFA � thin-cap fibroatheroma
TF � tissue factor
TLR � toll-like receptor

igure 1. Cross-sectioned coronary artery containing a ruptured plaque wit
brous cap is not seen in this section but is located nearby, documented by t
ngiography) in the soft, lipid-rich core just beneath the thin, inflamed fi

olorless. Adapted with permission from Falk E, Shah PK, Fuster V. Atheroge
t al., editors. McGraw-Hill, 2004:1123–39.
Therefore, two different mechanisms, plaque rupture and
rosion, can give rise to arterial thrombosis. The terms
high-risk” or “vulnerable” can be used as synonyms to
escribe plaques with an increased risk of thrombosis (26).
n addition to these terms, other terms, including culprit
esion, inflamed thin-cap fibroatheroma (TCFA), calcific
odule, thrombosed plaque, and vulnerable patient, have
een used. This multiple terminology has created confusion
nd, therefore, has required standardization. To properly
efine adequate terminology and avoid confusion, a written
onsensus from a group of experts properly standardized
hese terms, providing definitions for proper implementa-
ion (26), as summarized in Table 1.

HASES OF ATHEROTHROMBOSIS

ccording to a simplified modification of the criteria
reviously set forth by the American Heart Association
AHA) Committee on Vascular Lesions (14), and more
ecently by Stary (27), plaque progression can be subdivided
nto five pathologically/clinically relevant phases, as shown
n Figure 4.
hase 1 (early). Lesions are small, commonly seen in
oung people, and categorized into three types as follows:
ype I lesions, consisting of macrophage-derived foam cells
hat contain lipid droplets; type II lesions, consisting of both
acrophages and smooth-muscle cells and mild extracellu-

ar lipid deposits; and type III lesions, consisting of smooth-
uscle cells surrounded by extracellular connective tissue,

brils, and lipid deposits.

n-occlusive platelet-rich thrombus superimposed. The actual defect in the
sence of extravasated radiographic contrast medium (postmortem coronary
cap. Trichrome stain, rendering thrombus red, collagen blue, and lipid
h a no
he pre
brous
nesis and its determinants. In: Hursts the Heart. 11th edition. Fuster V,
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hase 2 (advanced). Lesions, although not necessarily
tenotic, may be prone to rupture because of their high lipid
ontent, increased inflammation, and thin fibrous cap.
hese plaques are categorized morphologically as one of two

ariants: type IV lesions, consisting of confluent cellular
esions with a great deal of extracellular lipid intermixed
ith normal intima, which may predominate as an outer

ayer or cap; or type Va lesions, possessing an extracellular
ipid core covered by an acquired fibrous cap. Phase 2
laques can evolve into the acute phases 3 and 4.
hase 3. These lesions are characterized by acute compli-
ated type VI lesions, originating from ruptured (type IV or
a) or eroded lesions, and leading to mural, non-obstructive

hrombosis. This process is clinically silent, but occasionally
ay lead to the onset of angina (10).
hase 4. These lesions are characterized by acute compli-
ated type VI lesions, with fixed or repetitive occlusive
hrombosis. This process becomes clinically apparent in the
orm of an acute coronary syndrome (ACS), although not
nfrequently it is silent (28,29). About two-thirds of ACS
re caused by occlusive thrombosis on a non-stenotic
laque, although in about one-third, the thrombus occurs

igure 2. Histologic example of a high-risk, vulnerable plaque. (a) Large
ipid-rich core with a thin fibrous cap. The lumen contains contrast

edium injected postmortem. (b) Higher magnification showing macro-
hages (�25 per high-power field) beneath a very thin cap (�65 �m in
hickness). Extravasated erythrocytes with plaque hemorrhage within the
ore indicate plaque rupture nearby. Trichrome stain, rendering lipid
olorless, collagen blue, and erythrocytes red. Adapted with permission
rom Schaar JA, et al. Eur Heart J 2004;25:1077–82.
n the surface of a stenotic plaque (7). In phases 3 and 4, m
hanges in the geometry of ruptured plaques, as well as
rganization of the occlusive or mural thrombus by connec-
ive tissue, can lead to the occlusive or significantly stenotic
nd fibrotic plaques.
hase 5. These lesions are characterized by type Vb (cal-
ific) or Vc (fibrotic) lesions that may cause angina; how-
ver, if preceded by stenosis or occlusion with associated
schemia, the myocardium may be protected by collateral
irculation and such lesions may then be silent or clinically
napparent (30,31).

The AHA classification falls short of identifying plaque
rosion or the TCFA. A different classification including
hese two categories has been proposed by Virmani et al.
32), as shown in Figure 5.

ARLY ATHEROTHROMBOSIS

ndothelial dysfunction. The endothelium is a dynamic
utocrine and paracrine organ that regulates anti-
nflammatory, mitogenic, and contractile activities of the
essel wall, as well as the hemostatic process within the
essel lumen (33) (Fig. 6). A single molecule, nitric oxide
NO), is responsible for these regulatory processes (34).

A dysfunctional endothelium, characterized by decreased
O synthesis, facilitates vessel wall entry and oxidation of

irculating lipoproteins, monocyte entry and internalization
r inflammation, smooth cell proliferation and extracellular
atrix deposition, vasoconstriction, as well as a pro-

hrombotic state within the vessel lumen (35,36) (Fig. 7).
Endothelial dysfunction, traditionally known as the ear-

iest manifestation of atherothrombosis, is often the result of
disturbance in the physiological pattern of blood

ow—flow reversal or oscillating shear stress—at bending
oints and near bifurcations. (37,38). In addition to biome-
hanical shear forces enhanced by hypertension (39), the
oexistence of other biohumoral risk factors such as hyper-
holesterolemia, advanced glycation end-products in diabe-
es and in elderly people, chemical irritants in tobacco
moke, circulating vasoactive amines, and immunocom-
lexes, have been associated with endothelial dysfunction
40–42) (Fig. 7).

Endothelial cells respond to changes in local shear rates
y modulating the induction and/or repression of several
enes. A common mechanism of action of the gene mod-
lation in part seems to be mediated via shear stress
esponding elements located in the genes (43). Thus, as a
esponse to reversal or oscillatory shear stress, endothelial
ell activation is characterized by the expression of cell
dhesive molecules (CAMs) (Fig. 7) from the selectin
uperfamily (E- and P-selectins). These proteins facilitate
he homing (margination and adhesion) of the circulating
onocytes to the activated endothelial cells. The expression

f the selectins is regulated by the transcriptional nuclear
actor (NF)-kappa-B (44) and is followed by the expression
f other CAMs (i.e., intercellular and vascular adhesive

olecules-1). These proteins will facilitate the internaliza-
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ion of the adhered monocytes into the arterial wall,
ontributing to atherogenesis. Furthermore, clinical studies
ave associated high plasma levels of these proteins with an

ncreased risk for coronary events (45–48).
ipoprotein transport and proteoglycans. Low-density

ipoproteins (LDLs) infiltrate through the arterial endothe-
ium into the intima (49) (Fig. 7). This binding seems to
elate to an ionic interaction of apolipoprotein (apo) B with
atrix proteins including proteoglycans, collagen, and fi-

ronectin (50). Proteoglycans are macromolecules com-
osed of a core protein and long-chain carbohydrates called
lycosaminoglycans. Proteoglycans along with other extra-
ellular matrix proteins are located between the basement
embrane of the endothelial cell and the internal elastic

amina (IEL). The interactions between oxidized LDL and
roteoglycans are crucial in early atherosclerosis, mostly
elated to lipoprotein retention (6), intravascular aggrega-
ion of LDL leading to chemical modification, and induc-
ion of inflammation (50).

Another important feature of lipoprotein transport is
elated to the effect of HDL. Classically known as the
ntiatherogenic lipoprotein, HDL promotes reverse choles-
erol transport from the arterial wall, specifically from
ipid-laden macrophages (51–55). The first experimental
vidence supporting this theory was reported by our group
n the hypercholesterolemic rabbit model. Once-per-week
dministration of HDL inhibited progression and induced
egression of macrophage-rich aortic lesions (56,57). Fur-
her inhibition of atherosclerosis was then obtained in
poE-null mice using the Apo A-I (Apo A-IMilano) complex
58–60). These beneficial effects were recently reproduced
n human coronary lesions using once-per-week adminis-
ration of synthetic HDL made from Apo A-IMilano in
atients with symptomatic coronary artery disease (61). The

igure 3. Plaque erosion. Cross section of a coronary artery containing a s
ndothelium is missing at the plaque-thrombus interface, but the plaque sur
nd lipid colorless. Courtesy of Dr. Erling Falk, Aarhus, Denmark.
DL sub-fractions may play a role in these beneficial g
ffects, with HDL2 being the most important for reverse
ipid transport. Despite its protective effects, patients with
igh HDL plasma levels still can present with ACS,
robably related to elevations in HDL3 rather than in
DL2 (62). Furthermore, the concomitant use of antioxi-

ant supplements blocks the beneficial effects of niacin and
tatins and may play a role in recurrent symptoms in patients
ith high HDL levels and coronary artery disease (63).

nnate and adaptive immune response to auto-antigens.
he important role of inflammation in atherothrombosis
as focused attention on the immune system. Development
f atherosclerosis is influenced by innate and adaptive
mmune responses (64,65). Innate immunity represents the
rst inflammatory response to microorganisms and patho-
ens. It is based on detection by pattern recognition on
acrophages and dendritic cells (66). Several pattern

ecognition receptors bind a wide range of proteins,
arbohydrates, lipids, and nucleic acids. The most impor-
ant receptors for innate immunity in atherothrombosis
re the scavenger receptors and the toll-like receptors
TLRs) (67).

In the first line of innate immunity, the scavenger
eceptors SR-A and CD-36 are responsible for the uptake
f oxidized LDL, transforming the macrophage into a foam
ell. (68,69). Furthermore, this pathway activates the NF-
appa-B nuclear transcriptional factor, triggering a potent
hemoattractant cycle of monocyte migration and macro-
hage/foam cell formation (i.e., monocyte chemoattractant
rotein [MCP]-1, leukotriene LTB4, and monocyte-colony
timulating factor [M-CSF]) (68 –70). Macrophage/foam
ells produce cytokines that activate neighboring smooth-
uscle cells, resulting in extracellular formation and

brosis (18).
The second line of innate immunity, the TLRs, has

ic atherosclerotic plaque with an occlusive thrombosis superimposed. The
otherwise intact. Trichrome stain, rendering thrombus red, collagen blue,
tenot
ained significant recognition recently. For example, the
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eceptor for bacterial lipopolysaccharides, TLR4, is known
o recognize cellular fibronectin and heat shock proteins,
ndogenous peptides produced during tissue injury that may
ct as auto-antigens early in the disease (71–73). The TLR4
o-localizes with fibroblasts and macrophages in the adven-
itia and the intima of human coronary atherothrombosis.
timulation of TLR4-induced activation of NF-kappa-B
nd increased mRNAs of various cytokines (74). Further-
ore, adventitial TLR4 activation augmented neointima

igure 4. Clinicopathologic correlation of asymptomatic atherosclerosis

Table 1. Definitions for Terminology Commo
Coronary Symdromes

Culprit lesion A lesion in a
autopsy, or
In unstable
death, the
thrombosis

Eroded plaque A plaque wit
leading to
in the plaq
proteoglyca

High-risk, vulnerable, and
thrombosis-prone plaque

These terms
increased r

Inflamed thin-cap fibroatheroma An inflamed
core. An in
high-risk/v

Plaque with a calcified nodule A heavily calc
endothelial
cap, that m
common o
plaques.

Ruptured plaque A plaque wit
that had se
flowing blo
plaque. Th

Thrombosed plaque A plaque wit
vessel. The

Vulnerable patient A patient at h
cardiovascu
high-risk v

Adapted with permission from Schaar JA, et al. Eur Heart
eading to symptomatic atherothrombosis. Modified from Corti R, Fuster
. J Thromb Thrombolysis 2004;17:35–44.

p
2

ormation in a mouse model, suggesting a link between the
mmune receptor TLR4 and intimal lesion formation (74).

ore recently, TLR4 has been shown to be involved not
nly in the initiation but also in progression and expansive
emodeling of atherothrombosis (75,76).

Adaptive immunity is much more specific than innate
mmunity but may take several days or even weeks to be fully

obilized. It involves an organized immune response lead-
ng to generation of T and B cell receptors and immuno-
lobulins, which can recognize foreign antigens. This type

igure 5. Simplified scheme representing seven categories of lesions.
ashed lines reflect controversy regarding etiology. The processes leading

o lesion progression are listed between categories. Reproduced with

sed in Atherothrombosis and Acute

ary artery considered, on the basis of angiographic,
r findings, to be responsible for the clinical event.
na, myocardial infarction, and sudden coronary
t lesion is often a plaque complicated by
ding into the lumen.
and/or dysfunction of the lumenal endothelial cells
bosis. There is usually no additional defect or gap
hich is often rich in smooth muscle cells and

e used as synonyms to describe a plaque that is at
thrombosis and rapid stenosis progression.

e with a thin cap covering a lipid-rich, necrotic
d thin-cap fibroatheroma is suspected to be a
ble plaque.
plaque with the loss and/or dysfunction of
over a calcified nodule, resulting in loss of fibrous
the plaque at high-risk/vulnerable. This is the least
three types of suspected high-risk/vulnerable

p injury with a real defect or gap in the fibrous cap
ed its lipid-rich atheromatous core from the
ereby exposing the thrombogenic core of the

he most common cause of thrombosis.
verlying thrombus extending into the lumen of the
bus may be occlusive or non-occlusive.

isk (vulnerable, prone) for experiencing a
chemic event due to a high atherosclerotic burden,
ble plaques, and/or thrombogenic blood.

;25:1077–82.
nly U

coron
othe
angi

culpri
exten

h loss
throm
ue, w
ns.
can b
isk of
plaqu
flame
ulnera
ified
cells
akes

f the

h dee
parat
od, th
is is t
h an o

throm
igh r
lar is
ulnera
ermission from Virmani R, et al. Arterioscler Thromb Vasc Biol 2000;
0:1262.
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f immunity may provide the basis for great advances in the
ear future, such as immunization and immunosuppressive
rugs, which usually target adaptive immune responses.
here is certainly a long way to go, but current efforts are

etting the foundation to one day produce a vaccine against
therothrombosis (77).

echanisms of calcification. In addition to immunity, the
echanisms of atherosclerotic calcification have gained

ignificant relevance within the last few years. Coronary
alcification is composed of both hydroxyapatite and organic
atrix, including type I collagen and non-collagenous

one-associated proteins (NCPs) (78). Collagen-associated
rystal deposition initiates mineralization within matrix
esicles, leading to the concept that dystrophic calcification
s an active, regulated process rather than passive accumu-
ation of mineral. In addition to collagen, NCPs also play a

ajor role. The most relevant NCPs associated with
ascular calcification include osteopontin (OPN), os-

igure 6. Healthy endothelium under laminar flow conditions and no risk
actors. A single molecule, nitric oxide (NO), is involved in multifactorial
athways preventing monocyte adhesion, platelet aggregation, and smooth
uscle cell proliferation. PGI2 � prostacyclin 2; SMC � smooth muscle

ell; tPA � tissue plasminogen activator.

igure 7. Diseased endothelium with non-laminar flow, low-density li-
oprotein (LDL) deposition, cell adhesion molecule (CAM) expression,
acrophage migration, tissue factor (TF), and matrix metalloproteinase

MMP) expression leading to smooth muscle cell (SMC) proliferation and
(
asa vasorum neovascularization. PDGF � platelet-derived growth factor;
AI-1 � plasminogen activator inhibitor-1; TXA2 � thromboxane A2.
eonectin, osteoprotegerin, and matrix Gla protein, as
hown in Table 2.

The most studied NCP in atherothrombosis is osteopon-
in, which was identified by immunohistochemistry in
therosclerotic plaques (79) and is highly expressed by
acrophages in the intima of human arteries (80). The role

f OPN mRNA is up-regulated in calcific aortas of LDL
eceptor-deficient mice fed either high-fat diabetogenic diet
81). Osteopontin expression was detected in peri-aortic
dventitial cells, aortic vascular smooth muscle cells, and
acrophages of the intimal atheroma. This suggests that
PN-mediated vascular calcification can occur indepen-

ently of atheroma formation, and that vascular calcification
an originate from an osteoprogenitor cell population in the
dventitia. Hence, the identification of vascular calcification
oes not necessarily imply growing atheroma. On the other
and, the functional role of OPN after vascular injury was
ested in the rat carotid model two weeks after catheter
enudation. The use of anti-OPN antibody decreased
ntimal areas and cell numbers by 33% and 31%, respectively
82). The OPN promotes vascular cell adhesion and is
hemotactic for smooth muscle cells (83). Furthermore,
PN expression is up-regulated by glucose levels, sug-

esting an active role for OPN in diabetic vasculopathy
84,85).

As it relates to calcification of human atheroma, early
icrocalcifications can be observed in transitional lesions

able 2. Non-Collagenous Proteins Associated With
ystrophic Calcification

Non-Collagenous
Proteins

Mechanism of
Action Expression

steopontin ● Bone formation and
calcification

● Intimal
macrophages

● Increases cell
adhesion

● Smooth muscle
cells

● Chemotactic for ● Adventitial cells
smooth muscle cells ● Increased in

diabetes
steonectin
(secretory protein
acidic and rich in
cysteine)

● Bone mineralization
● Increases

plasminogen
activator inhibitor
in endothelial cells

● Intimal
macrophages

● Platelets

● Increases matrix
metalloproteinases
in macrophages

● Fibroblasts

● Colocalizes with
fibrin

steoprotegrin ● Inhibits osteoclast
formation

● Vascular tissue

atrix glycoproteins ● Inhibits dystrophic
calcification

● Vascular smooth
muscle cells

● Chondrocytes

eproduced with permission from Moreno PR. Calcium deposition in vulnerable
therosclerotic plaques: pathophysiologic mechanisms and implications for acute
oronary syndromes. In: Assessing and Modifying the Vulnerable Atherosclerotic
laque. Fuster V, editor. American Heart Association, Futura Publishing Company,
002:347–64.
AHA classification III and IV), as shown in Figure 8A. As
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esions fibrose, calcification becomes dense, as seen in
dvanced atherosclerosis, seen in Figure 8B.

DVANCED ATHEROTHROMBOSIS

ontinuous exposure to the systemic, pro-atherogenic mi-
ieu will increase chemotaxis of monocytes leading to lipid
ccumulation, necrotic core, and fibrous cap formation,
volving into advanced atherosclerosis. Well-established
atterns of inflammation and metalloproteinase expression
xtensively described within the last decade leads to plaque
upture, often found at the shoulder of large lipid-rich
laques (9–11). More recently, new structural and func-
ional features characterizing these lesions have been iden-
ified, including eccentric plaque growth with compensatory
nlargement of the vessel wall, also known as vascular
emodeling, and vasa vasorum neovascularization leading to
ipid core expansion and intra-plaque hemorrhage, and lipid
ore expansion.
ccentric vascular remodeling. Eccentric growth of ath-

roma involving the inner components of the vessel wall
efore obstructing the lumen is also known as vascular
emodeling. Described by Glagov et al. in 1987 (86),
emodeling has been consistently identified in atheroscle-
otic lesions responsible for unstable coronary syndromes.
urthermore, atherosclerotic plaques undergoing remodel-

ng are characterized by a larger lipid core, fewer smooth
uscle cells, and increased macrophage infiltration (87). As

he plaque grows eccentrically within the vessel wall rather
han concentrically into the lumen, remodeling triggers

igure 8. Examples of human atherosclerotic calcification. (A) Microcalcifi
V) coronary plaque (black arrows). (B) Coarse calcification seen in an adv

Slide Atlas of Atherosclerosis Progression and Regression. New York,
rucial changes within the tunica media and the adventitia. t
everal studies have shown increased macrophage-derived
atrix metalloproteinase-2 and -9 expression within the

ntimomedial interface of remodeled plaques (88). The
ncreased activity of metalloproteinases digests the IEL,

odulating the process of remodeling. More recently, our
roup identified disruption of the IEL as an independent
redictor of plaque rupture (19). A strong association
etween the histologic evidence of IEL disruption and
brous cap rupture was identified in 598 human aortic
laques. In addition, increased inflammation, fibrosis, and
trophy within the tunica media were documented. Further-
ore, adventitial inflammation was increased in ruptured

laques when compared with non-ruptured plaques (19).
oncordantly, Burke et al. (89) showed that marked expan-

ion of the IEL occurred in plaque hemorrhage with or
ithout rupture. On the contrary, shrinkage of the IEL was

ound in plaque erosion and total occlusions. Using multi-
ariate analysis, the plaque components most strongly asso-
iated with eccentric remodeling were macrophage infiltra-
ion, calcification, and lipid core area, linking the concept of
emodeling with plaque vulnerability. Therefore, structures
uch as the IEL, tunica media, and adventitia, involved in
he process of eccentric remodeling and historically consid-
red inactive structures in the pathogenesis of atherothrom-
osis, seem to be actively involved in the development and
omplications of atherosclerotic disease and may even play a
ole in precipitating acute coronary syndromes.
asa vasorum neovascularization. Nourishment of nor-
al blood vessels is accomplished by oxygen diffusion from

s identified by light microscopy within the lipid core of a transitional (type
(type Vb) coronary plaque. Reproduced with permission from Stary HC.
arthenon Publisher Group Inc., 1999.
cation
he lumen of the vessel or from adventitial vasa vasorum.
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hen vessel wall thickness exceeds the effective diffusion
istance of oxygen, vasa vasorum proliferates in the inner

ayers of the vessel wall, where it is normally absent.
acrophages, attracted by oxidized LDL, are responsible

or cytokine production driving neovessel growth (90,91).
herefore, intimal disease is considered a prerequisite for

essel wall and plaque neovascularization. Recent observa-
ions have identified increased neovessel density in the outer
ayers of the artery as the vessel wall undergoes eccentric
emodeling. In the Glagov et al. (86) seminal work, the first
tep of remodeling was characterized by overexpansion of
he vessel wall in preparation for plaque growth. This crucial
bservation received almost no attention until recently,
hen experimental studies documented extensive coronary
asa vasorum neovascularization simultaneously with over-
xpansion of the vessel wall within the first two to four
eeks of a hypercholesterolemic diet in the swine model

92). Of note, increased neovascularization was present in
nimals with normal endothelial-dependent vasodilation,
hich became impaired only after 6 to 12 weeks of a
igh-cholesterol diet (92). Therefore, vasa vasorum neovas-
ularization may play a crucial role in the pathogenesis of
therosclerosis (93–101).

Vasa vasorum surrounds and penetrates the adventitia
nd outer media of large vessels, including the aorta and the
oronary, femoral, and carotid arteries (102). Vasa vasorum
an originate from several different sites. In the coronary
rteries, vasa vasorum originates from bifurcation segments
f epicardial vessels; in the ascending aorta, vasa vasorum
riginates from coronary and brachiocephalic arteries; in the
escending thoracic aorta, vasa vasorum originates from

ntercostal arteries; and in the abdominal aorta, vasa vaso-

igure 9. Coronary neovessels from adventitial vasa vasorum nurture the
essel wall through the first order (parallel) and the second order (perpen-
o
icular). Reproduced with permission from Kwon HM, et al. J Clin Invest
998;101:1551–6.
um arises from the lumbar and mesenteric arteries (95).
here are two anatomically distinct patterns of vasa vaso-

um; first-order vasa vasorum run longitudinally to the
umen of the host vessel, whereas second-order vasa vaso-
um are arranged circumferentially around the host vessel
Fig. 9). Their main function is to nurture the vessel wall
ith a number that remains constant throughout life (103).
owever, atherosclerotic vasa vasorum can proliferate, lead-

ng to extensive neovascularization involving the tunica
edia and directed towards lipid-rich atheroma (104,105).
Our group evaluated the role of vasa vasorum in complex

therothrombosis comparing neovessel content in ruptured
nd non-ruptured plaques. Double immunohistochemistry
as used to identify neovessels, macrophages, and T cells

Fig. 10). Neovessel content was significantly increased in
uptured plaques when compared with non-ruptured
laques in the human aorta (20). We identified neovascu-

arization with monocyte-rich inflammation and disruption
f the IEL (presumably as a result of monocyte-released
MPs), as significant contributors to plaque rupture.
More recently we have identified increased microvessel

ontent in atherothrombotic lesions from patients with
iabetes mellitus (106). Furthermore, ruptured plaques from
atients with diabetes mellitus have increased neovascular-
zation when compared with ruptured plaques from patients
ithout diabetes (107). Of note, microvessels are associated
ith macrophages and T cell lymphocytes (108). When

nalyzing diabetes neovascularization, microvessel morphol-
gy is characterized by a complex morphology including
prouting, red blood cell and monocyte extravasation with
acrophage erythrophagocytosis (109). Furthermore, histo-

ogic evidence for atherothrombotic neovascularization as a
athway for macrophage infiltration was documented (110),
s shown in Figure 11.

Vasa vasorum may also be involved in the process of
laque regression. When compared with lipid-rich plaques,
brocalcific lesions with reduced lipid area, also known as
egression type lesions, had the lowest microvessel content
111). Most importantly, fibrocalcific, regression-type le-
ions from diabetic patients are no longer vascularized,
uggesting that microvessel involution may be a marker for
laque stabilization (112). Of clinical relevance, Corti et al.
113) recently documented for the first time the morpho-
ogic pathway for plaque regression occurring from the
dventitia. Therefore, vasa vasorum may serve as a potential
athway for reverse lipid transport. As cholesterol exits the
laque, neovascularization and the outer layers of the vessel
all experience regression, as documented experimentally in
on-human atherosclerotic primates with documented
laque regression (96).

LAQUE RUPTURE

wo mechanisms independently or in conjunction trigger
laque rupture. The first one is related to physical forces and

ccurs most frequently where the fibrous cap is thinnest,
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ost heavily infiltrated by foam cells, and therefore weakest
Figs. 2 and 12).

For eccentric plaques, this is often the shoulder or
etween the plaque and the adjacent vessel wall (114).
pecifically, pathoanatomic examination and in vitro me-
hanical testing of isolated fibrous caps indicated that
ulnerability to rupture depends on several factors
7,32,114), circumferential wall stress or cap fatigue; loca-
ion, size, and consistency of the atheromatous core; and

igure 10. (A) High-power image of microvessels identified with the
igh-power image from the plaque shoulder region showing CD34-

nflammatory cells linked to a red chromogen. (C) Microvessels at the tun
brown chromogen using alpha-actin marker. (D) Corresponding high po

n purple. Reproduced with permission from Moreno PR, et al. Circulati

igure 11. Microvessels as a pathway for macrophage entry/exit to atherosc

nd intraluminal, monocyte-derived macrophages (red) circulating within the pl

ount Sinai Hospital, 2005.
lood flow characteristics, particularly the impact of flow on
he proximal aspect of the plaque (i.e., configuration and
ngulation of the plaque).

The second mechanism involves an active process within
he plaque leading to rupture. Atherectomy specimens from
atients with ACS reveal areas very rich in macrophages
11) and mast cells (115). These cells are capable of
egrading extracellular matrix by phagocytosis or secretion
f proteolytic enzymes; thus, enzymes such as plasminogen

clonal endothelial cell marker CD34 linked to a blue chromogen. (B)
ve microvessels in blue contrasting sharply with CD68/CD3-positive
edia (purple chromogen) contrasting with smooth muscle cells linked to
om C, showing disarray of smooth muscle cells in brown and microvessels
04;110:2032–8.

c plaques. High-power image showing CD34-positive microvessels (blue)
mono
positi
ica m
leroti

aque, as highlighted by the red arrows. Courtesy of Dr. Purushothaman,
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ctivators and matrix metalloproteinases (MMPs), includ-
ng collagenases, elastases, gelatinases, and stromelysins, by
egrading the components of extracellular matrix, may
eaken the fibrous cap and predispose it to rupture

116,117). In in vitro conditions, human monocyte-derived
acrophages have been observed to degrade collagen of the

brous cap while simultaneously expressing MMP-1 (inter-
titial collagenase) and inducing MMP-2 (gelatinolytic)
ctivity in the culture medium—actions that can be pre-
ented by MMP inhibitors (7,116). Certain MMPs ob-
erved in human coronary plaques and foam cells may be
articularly active in destabilizing plaques (118,119). Fur-
hermore, quantification of certain MMPs and their inhib-
tors in blood has been correlated with the degree of
therogenesis in humans (120).

The MMPs are also involved in several non-atherosclerotic
rocesses within the heart (121–126). Most importantly, as
reviously mentioned, disruption of the IEL as a result of
he adventitia/media infiltrated by monocytes, which release

MPs mostly at areas of neovascularization. This appears
o contribute significantly to plaque rupture (19,88).

The continuing entry, survival, and replication of mono-
ytes/macrophages within plaques are partly dependent on
actors such as CAMs, MCP-1, and M-CSF (48,68,127–
29). Cytokines regulate macrophage uptake of modified
ipoprotein by way of scavenger receptors. Most impor-
antly, interferon-gamma, tumor necrosis factor-alpha, and
nterleukin-1 activate macrophage apoptosis (68,130).
hus, macrophages, following what appears to be a defen-

ive mission to protect the vessel wall from lipoprotein
ccumulation, may eventually undergo apoptotic death
68,70,131). This phenomenon leads to the shedding of
embrane microparticles, causing exposure of phosphati-

ylserine on the cell surface, a major contributor for arterial

igure 12. Plaque vulnerability, disruption, and thrombosis: anatomical
hanges leading to acute coronary syndrome and subsequent plaque
emodeling. An element of vasoconstriction is usually present. Modified
ith permission from Theroux and Fuster (136).
hrombosis after plaque rupture (70,131). Recent work by
ur group seems to indicate apoptosis as the common link
etween inflammation and thrombosis. Thus, Hutter et al.
132,133) have shown an excellent correlation between
acrophage density, apoptosis markers, and tissue factor

TF) expression in human and mouse atherosclerotic lesions.
Other inflammatory cells found in intact and disrupted

laques include mast cells present in the shoulder regions
ut in fairly low densities (115). They can secrete powerful
roteolytic enzymes such as tryptase and chymase that
ubsequently activate the proenzymatic form of MMPs.
inally, the role of neutrophils is less clear (18,117,134).
hey are rare in intact plaques, and it is likely that they enter

hortly after rupture.

HROMBOTIC COMPLICATIONS

cute coronary thrombosis. Rupture of a high-risk vul-
erable plaque changes plaque geometry and triggers coro-
ary thrombosis (7). Such a rapid change in plaque geom-
try may result in acute occlusion or subocclusion with
linical manifestations of unstable angina or other ACS
135,136). More frequently, however, the rapid changes
eem to result in mural thrombus without evident clinical

able 3. The Virchow Triad of Thrombogenicity

ocal vessel wall substrates
Atherosclerosis

Degree of plaque disruption (i.e., erosion, ulceration)
Vessel wall inflammation

Components of plaque (i.e., lipid core)
Macrophages and generation of microparticles (i.e., tissue factor

content)
Post-interventional vessel wall injury

Plaque disruption after percutaneous transluminal coronary
angioplasty, atherectomy, or stenting

Injury of smooth-muscle cells (i.e., rich in thrombin)
heology
High shear stress

Severe stenosis (i.e., change in geometry with plaque disruption,
residual thrombus)

Vasoconstriction (i.e., serotonine, thromboxane A2, thrombin,
dyfunctional endothelium)

Oscillatory shear stress
Bifurcation of arteries, plaque irregularities

Post-intervention slow blood flow/local stasis (i.e., dissecting
aneurysm)

ystemic factors of the circulating blood
Metabolic or hormonal factors

Dyslipoproteinemia [triglycerides, increased low-density lipoprotein
or oxidized low-density lipoprotein cholesterol, decreased high-
density lipoprotein cholesterol, lipoprotein(a)]

Diabetes mellitus (i.e., glycosylation)
Catecholamines (i.e., smoking, stress, cocaine use)
Renin-angiotensin system (i.e., high-renin hypertension)

Plasma variables of hemostasis
Tissue factor, factor VII, factor VII, fibrinogen, thrombin

generation (fragments 1 and 2), thrombin activity (fibrinopeptide
A), plasminogen activator inhibitor-1, tissue plasminogen
activator

Infectious (i.e., Chlamydia pneumoniae, cytomegalovirus, Helicobacter
pylori) and cellular blood elements (i.e., monocytes and white

blood cells)
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ymptoms. Thrombus organization mediated by repaired
ollagen (type III) heals the rupture site, but increases
laque volume, contributing to the progression of athero-
hrombosis (135,136). More specifically, a number of
actors—plaque-dependent thrombogenic substrate, rheol-
gy, and systemic procoagulant activity—may influence the
agnitude and stability of the resulting thrombus and thus,

he severity of the coronary syndrome (24,137), as shown in
able 3.

LAQUE-DEPENDENT THROMBOGENIC SUBSTRATE. Expo-
ure of a thrombogenic substrate is a key factor in deter-
ining thrombogenicity at the local arterial site (Table 3).
eterogeneity of plaque composition varies even within the

ame subject, as shown in Figure 13.
Data on the thrombogenicity of ruptured atherosclerotic

esions are limited. Using an original perfusion chamber, we
xposed different types of human aortic plaques to flowing
lood and their thrombogenicity was assessed. Lipid-rich
laques were by far the most thrombogenic of all, which
xplains why rupture of lipid-rich plaques is the most
requent cause of coronary thrombosis in ACS. In addition,
hrombogenicty was modulated by TF content, mostly
ocated in macrophage-rich areas. (138–140). Residual

ural thrombus in itself was also highly thrombogenic,
resumably as a result of monocyte/TF-related activation
141,142) with generation of thrombin (143,144).

Tissue factor, a small-molecular-weight glycoprotein,
nitiates the extrinsic clotting cascade and is believed to be a

ajor regulator of coagulation, hemostasis, and thrombosis
145). Tissue factor forms a high-affinity complex with
oagulation factors VII/VIIa; TF/VIIa complex activates
actors IX and X, which in turn leads to thrombin genera-
ion, as shown in Figure 14 (141,146).

igure 13. Atherothrombosis: a variable mix of chronic atherosclerosis and
blue-stained) plaque in the circumflex branch (left) and a lipid-rich and

ranch (right). C � contrast in the lumen; Ca � calcification; T � thrombosis.
irculation 1995;92:657–71.
Co-localization analysis of coronary atherectomy spec-
mens from patients with unstable angina showed a strong
elation between TF and macrophages (147). This relation
uggests a cell-mediated thrombogenicity in patients with
nstable angina and ACS. Furthermore, TF is particularly
resent in apoptotic macrophages, highlighting the role of

ocal TF in ACS (70,131,148). In addition, specific inhibi-
ion of vascular TF by the use of r-tissue factor pathway
nhibitor was associated with a significant reduction of acute
hrombus formation in human lipid-rich plaques (149) and
n pig injured plaques (150). Conversely, native tissue factor
athway inhibitor degradation after thrombolysis may en-
ance procoagulant activity at these sites of TF expression,
hus contributing to early reocclusion after thrombolysis in
yocardial infarction (151,152). Such observations docu-
ent the active role of TF in coronary thrombosis and open
new therapeutic strategy in the prevention of ACS (153).

HEOLOGY AND THROMBOSIS. The degree of stenosis
aused by the ruptured plaque and the overlying mural
hrombi are also key factors for determining thrombogenic-
ty at the local arterial site (Table 3). Specifically, shear rate
s directly related to flow velocity and inversely related to the
hird power of the lumen diameter. Thus, acute platelet
eposition after plaque rupture is highly modulated by the
egree of narrowing after rupture. Changes in geometry
ay increase platelet deposition, whereas sudden growth of

hrombus at the injury site may create further stenosis and
hrombotic occlusion. Most platelets are deposited at the
pex of a stenosis, where the highest shear rate develops
154,155). Furthermore, mural thrombus formation may
ontribute to vasoconstriction originated from platelets—
erotonin and thromboxane A2 (156)—increasing shear
orce-dependent platelet deposition (135,157,158).

thrombosis. Cross-sectioned arterial bifurcation illustrating a collagen-rich
red plaque with a non-occlusive thrombosis superimposed in the obtuse
acute
ruptu
Adapted from Falk E, Prediman S, Fuster V. Coronary plaque disruption.
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YSTEMIC PROCOAGULANT ACTIVITY. As previously dis-
ussed, 30% of coronary thrombosis occurs at sites of
uperficial erosion of a fibrotic plaque (Fig. 3) (24,25,32).
hus, complicated thrombi in such cases may well be
ependent on a hyper-thrombotic state triggered by sys-
emic factors (2). Two major pathways are deeply involved
n systemic procoagulant activity: coronary risk factors and
irculating tissue factor.

Changes in lipid metabolism, cigarette smoking, hyper-
lycemia, hemostasis, and others are associated with in-
reased blood thrombogenicity (141,159–162) (Table 3).
levated LDL cholesterol levels increase blood thromboge-
icity and growth of thrombus under defined rheology
onditions (163,164). Reducing LDL cholesterol levels
sing statins decreased thrombus growth by approximately
0% (164). Smoking increases catecholamine release, po-
entiating platelet activation (165) and increasing fibrinogen
evels (166). Catecholamine-dependent effects may explain
he increased incidence of sudden death and acute cardio-
ascular events after emotional and physical stress
141,167). Patients with diabetes, especially those with
oorly controlled diabetes, have increased blood thrombo-
enicity (168–170). Platelets from patients with diabetes
ave increased reactivity and hyper-aggregability and expose
variety of activation-dependent adhesion proteins (169–

71); such abnormal platelet function is reflected by in-
reased platelet consumption and increased accumulation of
igure 14. Interactions between platelet activation, tissue factor (TF) vesicle expr
a2� � calcium; vWF � von Willebrand factor.
latelets on the altered vessel wall (171–173). Recent
bservations indicate that the thrombogenic state associated
ith high LDL cholesterol, cigarette smoking, and diabetes
ay share a common biological pathway. That is, an

ctivation of leukocyte-platelet interactions associated with
elease of TF and thrombin activation has been observed in
hese conditions (141,170), being more particularly studied
n the diabetic population (120–124), Furthermore, reversal
f such risk factors may alter such cell-cell interactions,
eing particularly studied with the statins (174–176).
Recent studies showed increased levels of circulating TF

ntigen in patients with cardiovascular disease (177) and
oagulation disorders, such as disseminated intravascular
oagulation (178,179). Circulating TF antigen has been
ssociated with increased blood thrombogenicity in patients
ith ACS (177,180) and chronic coronary artery disease

181). Furthermore, Increased TF-positive procoagulant
icroparticles are present in the circulating blood of pa-

ients under pathophysiologic conditions (182). Thus far,
he cellular origin of TF-positive microparticles in the
irculating blood has not been established. As described,
therosclerotic plaques have been shown to contain TF that
s associated with macrophages within the lesion (147).

igh levels of shed apoptotic microparticles are found in
xtracts from atherosclerotic plaques (70,131). These mi-
roparticles with increased TF activity seem to be of
onocytic origin, suggesting a causal relationship between
ession from plaque macrophages, and activation of the coagulation cascade.
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hed membrane microparticles and procoagulant activity of
laque extracts. In addition, TF has also been identified
ithin thrombi formed in coronaries (140,147). Immuno-

lectron microscopy showed TF in thrombi within 5 min of
ormation, mainly localized on membrane vesicles attached
o platelets and fibrin strands (183,184). Neutrophils and
onocytes have been isolated from the circulating blood

sing anti-TF antibodies (183). Thus, aside from apoptotic
acrophages and microparticles from atherosclerotic

laques, activated monocytes in the circulating blood seem
o be a source of TF microparticles and may represent the
esult of the activation by the aforementioned risk factors
nd others, so contributing to thrombotic events (140,141),
s shown in Figure 14. Indeed, the predictive value of
-reactive protein (CRP) and CD40L may in part be a
anifestation of such systemic phenomena; CRP, like

brinogen, is a protein of the acute-phase response and a
ensitive marker of low-grade inflammation. It is produced
n the liver as a result of mediators such as interleukin-6
enerated by inflammation in the vessel wall (i.e., macro-
hages) or extravascularly (i.e., circulating monocytes)
185). Increased levels of CRP have been reported to
ndependently predict acute coronary events (186) even in
eople whose blood lipid values are below the median levels
n the population (187,188). Furthermore, statin therapy
revented coronary events in individuals with high CRP and
elatively normal LDL cholesterol values (187). Of interest,
he lowering effect of statin on CRP values was independent
f its effect on lipid levels. Whether CRP reflects the
nflammatory component of atherosclerotic plaques or of
he circulating blood and whether it is a surrogate marker or

biologically active element in the process of plaque
evelopment or thrombus formation is not known
185,189). However, recent studies support that CRP is an
ctivator of blood monocyte and vessel wall endothelial cells
189–192). This encourages further investigation into the
ffect of certain risk factors in the activation of inflammation
f the vessel wall and circulating blood, probably leading to
n active role of TF, CRP, and perhaps CD40 (193,194) as
ocal and systemic key factors in the process of atherothrom-
osis.
cute thrombosis and emboli of non-coronary arteries

Table 4). Thrombosis and thromboemboli originated in
arotid plaques are frequently the result of rupture or
issection of a heterogenous plaque, presumably as a result

able 4. Atherothrombosis—Complicated Lesions

Location

Suggested Predominant Mechanisms

Plaque Rupture
Blood

ThrombogenicityLipid Rich Non-Lipid Rich

oronaries � � �
arotids � � �
horacic aorta � � �
eripheral � � �
Y
� predominant; � � non-predominant; � � no mechanism.
f the impact of the systemic high-energy blood flow against
he resistance offered by the plaque (195,196). Intra-plaque
emorrhage caused by the rupture of vasa vasorum may play
significant role. Plaque rupture with exposure of lipid-rich
aterial has also been documented as a common form of

troke (197–202). Thrombosis and thromboemboli from
he thoracic aorta is also a consequence of plaque rupture
114,143,144), probably related to mechanisms similar to
hose described in about two-thirds of acute coronary
hrombosis (114). Thrombosis of the peripheral arteries is
ost frequently observed in the surface of stenotic and

brotic plaques, as described in about one-third of acute
oronary thrombosis (203,204). Peripheral atherothrombo-
is is predominantly the consequence of a thrombogenic
ystemic blood associated with certain risk factors described
reviously (i.e., smoking, diabetes, hyperlipidemia)
203,205–207). Finally, acute occlusion of the peripheral
asculature frequently results from thromboemboli of car-
iac or abdominal aortic origin (203,206,207).

ONCLUSIONS

therothrombosis is a complex disease in which cholesterol
eposition, inflammation, and thrombus formation play a
ajor role. High-risk, vulnerable plaque is responsible for

cute coronary thrombosis, leading to clinical manifesta-
ions of unstable angina, acute myocardial infarction, and
udden cardiac death. Plaque rupture is the most common
rigger of thrombosis. However, plaque erosion also plays a
ignificant role. Atherothrombosis can be classified accord-
ng to histologic criteria, most commonly known as the
HA classification. However, this classification does not

nclude plaque erosion or the thin-cap fibroatheroma. As a
esult, new classifications have emerged. The disease is
symptomatic during a long period, and dramatically
hanges its course when complicated by thrombosis. This is
ummarized in five phases, from early lesions to plaque
upture, thrombosis and plaque healing, followed by fibro-
alcification. Recent studies have documented increased
eovascularization and intra-plaque hemorrhage in complex
therothrombosis. Tissue factor, the most potent trigger of
he coagulation cascade, seems to be critical for plaque
hrombogenicity. Circulating tissue factor microparticles
eem also associated with circulating monocytes, closing the
ink between inflammation, plaque rupture, and thrombo-
enicity.
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