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Abstract

Light, elementary and soft linear logics are formal systems derived from Linear Logic, enjoying
remarkable normalization properties. In this paper, we prove decidability of Elementary A%ne
Logic, EAL. The result is obtained by semantical means, 8rst de8ning a class of phase models
for EAL and then proving soundness and (strong) completeness, following Okada’s technique.
Phase models for Light A%ne Logic and Soft Linear Logic are also de8ned and shown complete.
c© 2004 Elsevier B.V. All rights reserved.

Keywords: Linear logic; Light linear logic; Soft linear logic; Optimal reduction

1. Introduction

The logical characterization of computational complexity classes has a long tradi-
tion. The most followed path has been to extensionally characterize complexity classes
as the models for certain logical theories. Logical systems, however, have a built-
in computational mechanism—normalization. The de8nition of logical systems which
could be normalized inside an interesting class, and which, at the same time, could
give extensional characterization of that same class, is a much more recent research
direction. The 8rst interesting logical system to have a polytime reduction strategy was
Bounded Linear Logic [11]. In this system, however, the bound on the resources is
explicitly present in the syntax, as a polynomial indexing the modality. A better system
is Light Linear Logic (LLL) [10], where the introduction of three modalities (and a

∗ Corresponding author.
E-mail address: martini@cs.unibo.it (S. Martini).

0304-3975/$ - see front matter c© 2004 Elsevier B.V. All rights reserved.
doi:10.1016/j.tcs.2004.02.037

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 

https://core.ac.uk/display/82651563?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:martini@cs.unibo.it


410 U. Dal Lago, S. Martini / Theoretical Computer Science 318 (2004) 409–433

suitable management of contexts) allows for a polynomial reduction strategy (in the
proof-net notation, and once the box-nesting depth is 8xed); moreover, any polynomial
time computable function can be de8ned inside LLL. In between LLL and full Linear
Logic, the same paper [10] introduced Elementary Linear Logic (ELL), a system with
a (Kalmar) elementary time normalization and de8ning all elementary time computable
functions (see [8] for an in-depth study of ELL’s expressiveness and normalization).
All these systems derive from Linear Logic—they limit the computational explosion
of normalization by controlling weakening and contraction via modalities (called expo-
nentials in the linear logic jargoon). It was 8rst observed by Asperti that these systems
maintain their main computational and expressive properties even in the presence of
full weakening. The resulting polynomial system, Light A%ne Logic (LAL) was in-
troduced in [1] and studied in depth in [4]. From the same papers it is clear how to
de8ne the a%ne version of the elementary logic, EAL. One last system to appear on
the scene is Lafont’s Soft Linear Logic (SLL) [15], a system with a simple syntax,
still enjoying polynomial normalization at 8xed depth. All these logics have been in-
troduced and justi8ed as mere formal systems, without any reference to an intended
or implied logical semantics. Okada, Kanovich, Scedrov and, later, Terui, introduced
and investigated notions of models for LLL [12] and intuitionistic LAL [21]. The
present paper builds on this previous work, de8ning classes of phase models for EAL
and SLL. Following Lafont [14]—who proved that the addition of full weakening to
Linear Logic yields the 8nite model property, and hence decidability—we prove that
EAL is decidable, by showing it enjoys the 8nite model property. This same technique,
on the other hand, cannot be applied to SLL, since it is not an a%ne logic and it can
be easily proved to be undecidable. We show, however, that even the multiplicative
fragment of SLL does not enjoy the 8nite model property.
We proceed in an incremental way, by 8rst introducing a notion of a phase model

for LAL (a variation on the one in [21]) and then showing how the same technique
can be applied to build models for EAL. After having obtained our main result, we
apply our schema to SLL, for which no semantics have been introduced so far. Our
notions are simple—and, we believe, natural—extensions of the usual de8nition used
for linear logic (they are “elementary” de8nitions, if a pun is allowed, etc.). Since our
interest here is mainly in using semantics to derive syntactical properties, we looked
for the simplest notion.

1.1. Related and previous work

The use of phase spaces as models of linear logic dates way back to the origins [9].
Lafont [14] used phase semantics to show that free weakening turns full linear logic
(which is undecidable [16]) into a decidable a%ne logic LLW. Noticeably, the same
result was previously obtained by Kopylov [13] with diLerent tools. The use of phase
semantics to deduce cut-elimination from completeness (strong completeness) is due
to Okada [17–19]. In these papers, the technique is applied and generalized to a large
number of logics. Okada and Terui [20] attack the decidability of a%ne variants of
the same systems, extending Lafont’s approach to various intuitionistic fragments of
Linear Logic, including some substructural ones. In all the logics of [17–20], however,
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the exponential is always introduced in the standard linear logic fashion— the modality
“!” is governed by an S4-like rule. This makes it di%cult to directly apply the results
of these papers to logics with restricted exponentials, like EAL, LAL, etc., where “!”
is only a functor.
The semantics for systems with restricted exponentials is studied in [12,21]. Kanovich

et al. [12] introduced the notion of phase model for LLL, extending the usual notion
of phase semantics for linear logic by the use of 8brations. They showed that their
class of models is complete for LLL, obtaining also a strong completeness result, Na la
Okada. While 8bred models provide a deep insight on LLL, they are not handy to be
used as a tool to prove decidability. Indeed, the quotient of a 8bred model modulo a
logical congruence (see Section 3) is not directly a (8bred) model. Finally, Terui [21]
gives classes of phase models for intuitionistic LAL, for which he proves the 8nite
model property and, hence, decidability. To obtain this result, though, the original
notion of a model has to be generalized, in order to allow the result of a quotient to
be a (generalized) model. See Section 4.3 for a detailed comparison.

1.2. Motivations

At the end of this introduction, it is time to mention the beginning of all of this.
The interest of EAL is not only (in our eyes: is not much) in its role in the de-
scription of complexity classes. The properties ensuring its elementary normalization
(that is, the box depth of a link never changes during proof-net normalization) have a
remarkable interpretation in the context of the optimal reduction of �-terms Na la LOevy
(see [3] as general reference). Lamping’s approach to optimal reduction of �-terms is
a graph rewriting algorithm that can be thought of as composed of two parts. The 8rst
part—the abstract algorithm—is responsible for optimal beta-reduction and incremen-
tal duplication; the second part—the oracle—allows for the presence in the graph of
enough distributed information to make the abstract algorithm correct with respect to
the usual notion of reduction. While the abstract algorithm is simple, clear and com-
pelling, the oracle is complex, heavy and, to a certain extent, debatable. There are
�-terms, however, for which the oracle is not needed, resulting in a much simpler (and
more e%cient!) graph rewriting reduction. �-terms which are typeable inside EAL form
a large class of terms with this property. This is the starting point of our interest in
EAL. In [2] we used EAL as a tool to prove a complexity result on optimal reduction
(and as a by-product we showed that EAL-typeable terms form a large and expressive
class). Then, we investigated [6] the possibility to automatically infer EAL-typeability.
Finally, Coppola and Ronchi della Rocca [7] prove the existence of principal types for
EAL. The present paper completes the picture with the semantical perspective.

1.3. Outline of the paper

The structure of the paper is the following. Section 2 introduces formal systems for
LAL, EAL and SLL. Section 3 recalls the standard notion of a phase space, states
some relevant properties and gives some results that are used throughout the paper.
Phase models for LAL are de8ned in Section 4; we prove strong completeness (that is
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Identity and Cut.
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Logical Rules.
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� �; A&B
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Fig. 1. Multiplicative and Additive Linear Logic, MALL.

soundness, completeness, and cut-elimination) in Section 4.1; in Section 4.2 we show
that the 8nite model property holds for LAL. The de8nition and properties of the phase
models for EAL and SLL are the subject of Sections 5 and 6, respectively; decidability
of EAL is in Section 5.2.

2. Systems

All the systems we will describe make use of subsets of the logical language gen-
erated by the grammar

A; B ::= ⊥ |⊥⊥ | � |�⊥ | 	 | 	⊥ |AoB |A⊗ B

A&B |A⊕ B | !A | ?A | §A | §A
where 	 ranges over a set L of atoms. The unary operator ⊥ is extended to the
whole language in the usual De Morgan style; in particular, the following syntactical
equivalences hold on exponential formulae:

?A⊥ ≡ (!A)⊥ (1)

!A⊥ ≡ (?A)⊥ (2)

§A⊥ ≡ (§A)⊥ (3)

§A⊥ ≡ (§A)⊥ (4)

The logics we are interested in are obtained from the core of Multiplicative and
Additive Linear Logic (MALL, Fig. 1) by adding suitable rules for the exponential
connectives.
LAL is a logical system characterizing polynomial time. The rules of the sequent

calculus GLAL for LAL are summarized in Fig. 2. Notice that we do not suppose
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Structural Rules.

� �
� �; A

WGLAL
� �; ?A; ?A
� �; ?A

CGLAL

Exponential Rule.

� A; B
�?A; !B SGLAL

� A
�!A SGLAL

� �; �; A

�?�; §�; §A
PGLAL

Fig. 2. Light A%ne Logic, LAL.

the connective § to be self-dual. We call LALS D the variant of LAL where § is
self-dual—the connective § is omitted from the language and the equivalence

§A⊥ ≡ (§A)⊥

takes the place of both (3) and (4). Moreover, the rule PGL AL becomes

� �; �; A
�?�; §�; §A PGLALS D

in the underlying sequent calculus GLALSD. It is well known that in this system the
cut rule is not eliminable, as shown by the proof:

� A; A⊥

�?A; §A⊥
� A; A⊥

� §A; ?A⊥

�?A; ?A⊥

This makes GLALSD not suitable to be studied with phase semantics, since we want
to derive cut-elimination from completeness.
If we add to MALL a functorial exponential rule with restricted contraction and

weakening, we get Elementary Linear Logic (ELL), sketched 8rst in [10] and studied
in depth in [8] (although with a slightly diLerent syntax). The key feature of ELL
is its elementary time normalization, a property which is maintained by adding a full
weakening rule. The resulting logic, Elementary A%ne Logic (EAL), is obtained from
MALL by adding the rules in Fig. 3. We already discussed in the introduction its
relevance for optimal reduction.
The last system we will consider is Soft Linear Logic [15], a system in which, at

8xed box depth, proof-nets have a polynomial reduction in their size. It is obtained
from MALL by adding the same exponential rule we used in ELL, but with a strong
restriction on contraction and weakening. The system SLL is obtained by adding to
MALL the rules of Fig. 4, where A (n) stands for

A; : : : ; A︸ ︷︷ ︸
n times

:
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Structural Rules.

� �
� �; A

WGEAL
� �; ?A; ?A
� �; ?A

CGEAL

Exponential Rule.
� �; A
�?�; !A SGEAL

Fig. 3. Elementary A%ne Logic, EAL.

Exponential Rules.

� �; A (n) n¿ 0
� �; ?A

MGSLL
� �; A
�?�; !A SGSLL

Fig. 4. Soft Linear Logic, SLL.

Given a formal system F we will use the following abbreviations:
• �F will be the set of well formed formulae which are provable in F ;
• 9(F) will be the decision problem of provability on F , which could be seen as a
language over the set of F well formed formulae.

3. Preliminaries on phase semantics

We recall in this section the basic de8nitions and properties of phase semantics for
Linear Logic, see [14]. A phase space is a pair (M; ⊥) where M is a commutative
monoid and ⊥ is a subset of M . If (M; ⊥) is a phase space and X; Y ⊆M , we will
use the following notations:

XY = {xy | x ∈ X; y ∈ Y};
X ( Y = {z ∈ M | ∀x ∈ Xxz ∈ Y}:

We write X⊥ for X ( ⊥. The following lemma establishes some basic results and
can be easily proved.

Lemma 3.1. If (M; ⊥) is a phase space and X; Y ⊆M , then:
(i) X ⊆X⊥⊥;
(ii) Y⊥ ⊆X⊥ whenever X ⊆Y ;
(iii) X ( Y⊥ = (X Y )⊥;
(iv) X⊥ ∩Y⊥ = (X ∪Y )⊥;
(v) (X⊥⊥Y⊥⊥)⊥ = (XY )⊥.
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If (M;⊥) is a phase space and X is a subset of M such that X = X⊥⊥, we say that
X is a fact. The following technical lemma is handy in proving that sets are facts.

Lemma 3.2. If (M;⊥) is a phase space and X; Y ⊆M , then:
(i) ⊥ is a fact;
(ii) X is a fact if and only if X = Z⊥ for some Z ⊆M ;
(iii) If Y is a fact, then X ( Y is a fact;
(iv) If X and Y are facts, then X ∩Y is a fact;
(v) If X is a fact, then ⊥⊥ ( X = X .

Useful properties can be extended from individual elements of a phase space to
whole subsets of the underlying monoid:

Lemma 3.3. If (M;⊥) is a phase space and X is a subset of M such that x∈{x2}⊥⊥

for every x∈X , then X ⊆ (X 2)⊥⊥.

If (M;⊥) is a phase space, then the set {x∈M | x∈{x2}⊥⊥} will be denoted as
J (M).

Lemma 3.4. If (M;⊥) is a phase space, then J (M) is a submonoid of M .

Let (M;⊥) be a phase space and let f; g⊆M ×M be binary relations. If, for every
fact X ⊆M , f(X )⊆ g(X )⊥⊥, then we say that f is bounded by g.

Lemma 3.5. Let (M;⊥) be a phase space and let f; g⊆M ×M be binary relations.
If f(x)⊆ g(x)⊥⊥ whenever x∈M , then f is bounded by g.

Proof. Suppose X ⊆M and let y∈f(X ). Then y∈f(x), where x∈X and,
by hypothesis, f(x)⊆ g(x)⊥⊥. But, clearly, g(x)⊥⊥ ⊆ g(X )⊥⊥, meaning that
y∈ g(X )⊥⊥.

If (M;⊥) is a phase space, a relational monoid homomorphism is a binary relation
f⊆M ×M such that 1M ∈f(1M ) and f(x)f(y)⊆f(xy) for every x and y in M .

Lemma 3.6. If (M;⊥) is a phase space, f⊆M × M is a relational monoid homo-
morphism and A; B⊆M , then f(A( B)⊆f(A)( f(B).

Proof. If x∈f(A ( B), then x∈f(y), where y∈A ( B. Now, if z ∈f(A), then
z ∈f(w) where w∈A, and then xz ∈f(y)f(w)⊆f(yw)⊆f(B), because yw∈B.

If (M;⊥) is a phase space, a logical congruence on (M;⊥) is an equivalence relation
∼ on M such that:
(i) xz ∼ yw whenever x ∼ y and z ∼ w;
(ii) ⊥ is closed with respect to ∼.
If M is a set and ∼ is an equivalence on M , then � :M →M=∼ is the ∼ canonical map,
that is the function which maps every element of M to its equivalence class; moreover,
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[x]∼ will be the equivalence class modulo ∼ containing x. A logical congruence ∼ is
said to have :nite index if M=∼ is a 8nite set.

Lemma 3.7. If (M;⊥) is a phase space, ∼ is a logical congruence on M and A⊆M
is a fact, then A is closed under ∼.

Lemma 3.8. If (M;⊥) is a phase space and ∼ is a logical congruence on (M;⊥),
then J (M) is closed under ∼.

Proof. If x∈ J (M) and x ∼ y, then {x}⊥ = {y}⊥. But

{x}⊥ = {y}⊥ ⇒{x}⊥⊥ = {y}⊥⊥

⇒ ({x}⊥⊥{x}⊥⊥)⊥⊥ = ({y}⊥⊥{y}⊥⊥)⊥⊥

⇒ ({x}{x})⊥⊥ = ({y}{y})⊥⊥

⇒{x2}⊥⊥ = {y2}⊥⊥:

By Lemma 3.7, y must be in {x2}⊥⊥, and the thesis easily follows.

Lemma 3.9. If (M;⊥) is a phase space and ∼ is a logical congruence on (M;⊥),
then �(XY )= �(X )�(Y ) and �(X ( Y )= �(X )( �(Y ).

If (M;⊥) is a phase space, f⊆M ×M is a binary relation, and ∼ is a logical con-
gruence, then f∼ ⊆ (M=∼)× (M=∼) is de8ned by letting ([x]∼; [y]∼) ∈ f∼ whenever
(x; y)∈f.

Lemma 3.10. If (M;⊥) is a phase space, ∼ is a logical congruence on (M;⊥),
f⊆M ×M is a binary relation and X ⊆M , then:
(i) �(f(X ))⊆f∼(�(X ));
(ii) �(f(X ))=f∼(�(X )) whenever X is closed on ∼;
(iii) �(f(�−1(X )))=f∼(X ) whenever X is closed ∼.

Proof. Easy, from the de8nition of f∼.

If M is monoid, an ideal for M is a set X ⊆M such that XM ⊆X .

Lemma 3.11. Let M be a commutative monoid. Then:
(i) If Y ⊆M is an ideal, then X ( Y is an ideal;
(ii) Every :nite union of ideals is an ideal.

Proof. (i) If Y is an ideal, then YM =Y because, obviously, Y ⊆YM . Let then x be
an element of (X ( Y )M ; this means that x=yz with y∈X ( Y and z ∈M . Let then
w be an element of X ; it is clear that xw=(yz)w=(yw)z ∈Y and that x∈X ( Y .
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(ii) It su%ces to observe that if X1; : : : ; Xn⊆M are ideals, then

(X1 ∪ · · · ∪ Xn)M = X1M ∪ · · · ∪ XnM = X1 ∪ : : : ∪ Xn

which is the thesis.

An ideal of M is a principal ideal if it can be written as xM , for x in M . An ideal
is said to have :nite type if it is a 8nite union of principal ideals. A monoid M is
noetherian if all its ideals have 8nite type. The following classical result will be useful
later.

Lemma 3.12. A free, :nitely generated, commutative monoid is noetherian.

If (M;⊥) is a phase space, we denote as ≡ the logical congruence de8ned by letting
x≡y iL {x}⊥ = {y}⊥.

Lemma 3.13. Let (M;⊥) be a phase space, where M is a free and :nitely generated
monoid such that every fact is an ideal. Then M=≡ is :nite.

Proof. We can assume, without losing generality, that M is Nk and that the operation
which makes M a monoid is the addition. From the hypothesis, ⊥ is an ideal and, by
Lemma 3.12, we can conclude that

⊥ =
n⋃

i=1
uiNk =

n⋃
i=1

{x ∈ Nk | x ¿ ui}

for u1; : : : ; un ∈Nk . But it is now clear that there can be only 8nitely many subsets of
Nk in the form {x}⊥, simply because {x}⊥ = {inf {x; sup{u1; : : : ; un}}}⊥ for every x.
This, by de8nition of ≡, yields the thesis.

4. Light a*ne logic

A light a;ne phase space is a quintuple (M;⊥; !; ") where:
• (M;⊥) is a phase space;
• "⊆M ×M is a relational monoid homomorphism;
• !⊆M ×M is bounded by ", includes (1M ; 1M ) and !(M)⊆ J (M);
• ⊥⊆M⊥.
Light a%ne phase spaces form the algebraic structure of the models we are proposing.
They can be seen as ordinary phase spaces with the additional structure (namely, "
and !) needed to model exponentials.

Proposition 4.1. If (M;⊥; !; ") is a light a;ne phase space and X ⊆M is a fact, then
⊥⊆X .

Proof. Since X is a fact, by 3.2 X =Y⊥ for some Y ⊆M . By Lemma 3.1, M⊥ ⊆
Y⊥ =X , which yields the thesis.
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A phase model for LAL is a light a%ne phase space, enriched with an interpretation
for atoms, that is a tuple (M;⊥; !; "; #) where (M;⊥; !; ") is a light a%ne phase space
and # :L→P(M) maps every atom to a fact.
Given a phase model M for LAL, we can associate a fact <A=M to every formula

A in the usual way. Nonexponential formulae can be treated as in MALL:

<⊥=M =⊥
<⊥⊥=M =⊥⊥

<�=M =M

<�⊥=M =M⊥

<	=M = #(	)

<	⊥=M = #(	)⊥

<AoB=M = (<A=⊥M<B=⊥M)⊥

<A⊗ B=M = (<A=M<B=M)⊥⊥

<A&B=M = <A=M ∩ <B=M
<A⊕ B=M = (<A=M ∪ <B=M)⊥⊥

The semantics for the exponentials is the following:

<!A=M = (!(<A=M))⊥⊥

<?A=M = (!(<A=⊥M))⊥

<§A=M = ("(<A=M))⊥⊥

<§A=M = ("(<A=⊥M))⊥

This de8nition can be easily extended to sequents, allowing to de8ne that a GLAL
sequent �� is veri:ed in a phase model M for LAL if and only if 1∈ <��=M.

Proposition 4.2. If (M;⊥; !; ") is a light a;ne phase space and X ⊆M is a fact, then
⊥⊆X .

Proof. Since X is a fact, by 3.2 X =Y⊥ for some Y ⊆M . By Lemma 3.1, M⊥ ⊆Y⊥ =
X , which yields the thesis.

4.1. Strong completeness

In proving strong completeness for the class of models we are proposing, we follow
the usual methodology 8rst introduced in [17]. The syntactical model for LAL is the
quintuple ML =(ML;⊥L; !L; "L; #L) de8ned as follows:
• ML is the commutative monoid generated by all formulae of LAL; this structure is
isomorphic to the set of all GLAL sequents (endowed with sequent juxtaposition);
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• ⊥L is the set of all cut-free provable sequents in GLAL;
• "L is de8ned by "L(A1 : : : An)= {§A1 : : : §An} for every sequence A1 : : : An of LAL
formulae and n¿0;

• !L is de8ned by

!L(A1 : : : An) =




{1ML} if n = 0;
{?A1} if n = 1;
∅ otherwise;

• #L is de8ned by #L(	)= {	}⊥ for every a∈L.

Lemma 4.3. ML is a phase model for LAL.

Proof. The only interesting properties to be veri8ed are the ones on !L. First of all,
we show that !L is bounded by "L. Now, if A1 : : : An ∈ML, then:
• If n=0, then !L(1)= {1}⊆{1}⊥⊥ = {"L(1)}⊥⊥;
• If n=1, then !L(A1)= {?A1}⊆{§A1}⊥⊥ = {"L(A1)}⊥⊥, because, for every �

�; §A1 ∈ ⊥ ⇒ �; ?A1 ∈ ⊥

as it can be proved by an easy induction on the structures of GLAL proofs;
• If n ¿ 1, then !L(A1 : : : An)= ∅.
This means that !L(A1 : : : An)⊆{"L(A1 : : : An)}⊥⊥, which yields, by Lemma 3.5,
!L(X )⊆{"L(X )}⊥⊥ for every X ⊆ML. If �; ?A; ?A is cut-free provable, then �; ?A
is cut-free provable, too. As a consequence, !L ranges over J (M).

Lemma 4.4 (Okada). For every formula A in LAL, we have that <A=⊆{A}⊥

in ML.

Proof. We can prove this by a structural induction on A. The only interesting inductive
cases are the following:
• A= !B; by inductive hypothesis, <B=⊆{B}⊥ and so !(<B=)⊆!({B}⊥). Now, if

CB∈⊥, then, by rule SGLAL, ?C!B∈⊥; moreover, if B∈⊥ then, by rule SGLAL,
!B∈⊥. Then, we can conclude that !(<B=)⊥⊥⊆{!B}⊥, proving the inclusion
<A=⊆{A}⊥;

• A =?B; by inductive hypothesis, <B= ⊆ {B}⊥ and so <B=⊥ ⊇ {B}⊥⊥; obviously,
B∈{B}⊥⊥, and so !(<B=⊥) ⊇ {?B}, which yields <A==!(<B=⊥)⊥ ⊆{?B}⊥ = {A}⊥;

• A= §B; by inductive hypothesis, <B=⊆{B}⊥ and so "(<B=)⊆ "({B}⊥). Now, if
�B∈⊥, then, by rule PGLAL, §� §B∈⊥; this means that "({B}⊥)⊆{§B}⊥. Then,
we can conclude that "(<B=)⊥⊥ ⊆{§B}⊥, proving the inclusion <A=⊆{A}⊥;

• A= §B; by inductive hypothesis, <B=⊆{B}⊥ and so <B=⊥ ⊇{B}⊥⊥; obviously, B∈
{B}⊥⊥, and so "(<B=⊥)⊇{§B}, which yields <A== "(<B=⊥)⊥ ⊆{§B}⊥ = {A}⊥.

Lemma 4.5. If �� is provable in LAL, then �� is veri:ed in all phase models for
LAL.
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Proof. We proceed by induction on the structure of the proof � of ��:
• If the last GLAL rule used to build � is WGLAL � can be written as �; A and the
immediate premise of �� in � will be ��. It is now easy to realize that

1∈ < � �; A= ⇔ < � �=⊥<A=⊥ ⊆ ⊥
1∈ < � �= ⇔ < � �=⊥ ⊆ ⊥

Lemma 4.2 implies <A=⊥ ⊆⊥⊥ while, by inductive hypothesis, < ��=⊥ ⊆⊥. As a
consequence, < ��=⊥<A=⊥ ⊆⊥ and thus 1∈ < ��; A=, that is the thesis; here, we have
used the condition ⊥⊆M⊥;

• If the last GLAL rule used to build � is CGLAL, then � can be written as �; ?A
and the premise of �� in � can itself be written as ��; ?A; ?A. Now we can write

1 ∈ < � �; ?A=⇔ < � �=⊥<?A=⊥ ⊆ ⊥
1∈ < � �; ?A; ?A=⇔ < � �=⊥(<?A=⊥<?A=⊥)⊥⊥ ⊆ ⊥

By Lemma 3.3, it follows that !(<A=⊥)⊆ (!(<A=⊥)!(<A=⊥))⊥⊥; closing the subsets
we obtain

!(<A=⊥)⊥⊥ ⊆ ((!(<A=⊥)!(<A=⊥))⊥⊥)⊥⊥ = (!(<A=⊥)⊥⊥!(<A=⊥)⊥⊥)⊥⊥;

this yields, in particular

<?A=⊥ ⊆ (<?A=⊥<?A=⊥)⊥⊥;

as a consequence,

< � �=⊥<?A=⊥ ⊆ < � �=⊥(<?A=⊥<?A=⊥)⊥⊥

from which the thesis can be easily obtained; here we have used the conditions on
!;

• If the last rule applied in � is SGLAL, then it su%ces to notice that the following
chain of implications holds:

1 ∈ < � A; B=⇒ 1 ∈ (<A=⊥<B=⊥)⊥

⇒ 1 ∈ <A=⊥ ( <B=
⇒ <A=⊥ ⊆ <B=
⇒!(<A=⊥)⊆!(<B=)
⇒ 1 ∈ (!(<A=⊥)!(<B=)⊥)⊥

⇒ 1 ∈ (!(<A=⊥)⊥⊥!(<B=)⊥⊥⊥)⊥

⇒ 1∈ < �?A; !B=;
• If the last rule applied in � is SGLAL, then it su%ces to notice that the following
chain of implications holds:

1 ∈ < � A=⇒ 1∈!(<A=)



U. Dal Lago, S. Martini / Theoretical Computer Science 318 (2004) 409–433 421

⇒ 1 ∈ !(<A=)⊥⊥

⇒ 1 ∈ <!A=;

• If the last rule applied in � is PGLAL, then it su%ces to notice that the following
chain of implications holds:

1∈ < � A1; : : : ; An; B1; : : : ; Bm; C=
⇒ 1 ∈ (<A1=⊥ : : : <An=⊥<B1=⊥ : : : <Bm=⊥<C=⊥)⊥

⇒ 1∈ <A1=⊥ : : : <An=⊥<B1=⊥ : : : <Bm=⊥ ( <C=
⇒ <A1=⊥ : : : <An=⊥<B1=⊥ : : : <Bm=⊥ ⊆ <C=
⇒ "(<A1=⊥) : : : "(<An=⊥)"(<B1=⊥) : : : "(<Bm=⊥) ⊆ "(<C=)
⇒ ("(<A1=⊥)⊥⊥ : : : "(<An=⊥)⊥⊥"(<B1=⊥) : : : "(<Bm=⊥))⊥⊥ ⊆ "(<C=)⊥⊥

⇒ (!(<A1=⊥) : : : !(<An=⊥)"(<B1=⊥) : : : "(<Bm=⊥))⊥⊥ ⊆ "(<C=)⊥⊥

⇒ 1 ∈ ((!(<A1=⊥) : : : !(<An=⊥)"(<B1=⊥) : : : "(<Bm=⊥))⊥⊥"(<C=)⊥)⊥

⇒ 1 ∈ ((!(<A1=⊥)⊥⊥ : : : !(<An=⊥)⊥⊥"(<B1=⊥)⊥⊥ : : : "(<Bm=⊥)⊥⊥)⊥⊥"(<C=)⊥)⊥

⇒ 1 ∈ (< �?A1; : : : ; ?An; §B1; : : : ; §BM =⊥<§C=⊥)⊥
⇒ 1∈ < �?A1; : : : ; ?An; §B1; : : : ; §Bm; §C=;

we used the boundness condition on ! and ".
This concludes the proof.

Theorem 4.6 (Strong completeness). Let A be a formula. The following four condi-
tions are then equivalent:
(i) �A is provable in LAL;
(ii) Every phase model for LAL veri:es A;
(iii) ML veri:es A;
(iv) �A is cut-free provable in LAL.

4.2. Decidability

To prove that LAL is decidable, we will prove it enjoys the 8nite model property.
Following [14], we will iteratively reduce the size of the monoid underlying our syn-
tactical model until we reach a 8nite monoid; during this process, we will maintain, as
an invariant, the fact that the model we are dealing with is itself complete with respect
to GLAL.

4.2.1. Excluding useless elements from the model
If A is a LAL formula and �A is provable in GLAL with proof �, then � could,

in general, contain formulae that are not subformulae of A; due to cut elimination,
however, we can state that �A is provable if and only if there is a proof � for
�A which contains only subformulae of �A. This simple observation, known as the
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subformula property, can be exploited in the context of phase spaces to drastically
reduce the size of ML.
If A is a formula, we will denote as LALA the logic obtained by restricting our

logical language to subformulae of A; similarly we can denote the restriction of GLAL
to subformulae of A as GLALA. The notions of a phase model and of veri8ability by
a phase model can be easily extended to LALA. The syntactic model for GLALA is
the quintuple ML

A =(ML
A ;⊥L

A ; !
L
A ; "

L
A ; #

L
A ) where:

• ML
A is the free monoid generated by all the subformulae of A;

• ⊥L
A is the set of all cut-free provable GLALA sequents;

• !L
A is de8ned as follows:

!L
A (A1 : : : An) =




{1ML
A
} if n = 0

{?A1} if n = 1 and ?An is a subformula for A
∅ otherwise;

• "L
A is de8ned as follows:

"L
A (A1 : : : An) =

{ {§A1 : : : §An} if all the §Ai are subformulae of A
∅ otherwise;

• #L
A is de8ned as follows:

#L
A (	) =




{	}⊥ if 	 is a subformula of A

{	⊥}⊥⊥ if 	⊥ is a subformula of A
but 	 is not a subformula of A:

Lemma 4.7. For every formula A, we have that <A=⊆{A}⊥ in ML
A .

Lemma 4.8. If �=A1; : : : ; An, where all the Ai are subformulae of A and �� is
provable in GLAL, then all the phase models for LALA verify ��.

Proof. Assume, by way of contradiction, that a phase model for GLALA exists that
does not verify ��. Then, we could easily obtain a phase model for GLAL that does
not verify ��, too: it su%ce to extend # to atoms not in A in arbitrary way. By strong
completeness, however, �� could not be provable in GLAL, and this clearly does not
agree with the hypothesis, because if ��∈�GLALA then ��∈�GLAL.

We can then give a result that strongly links GLALA to GLAL:

Theorem 4.9. If A is a formula, then the following three conditions are equivalent:
(i) �A is provable in GLALA;
(ii) �A is provable in GLAL;
(iii) ML

A veri:es A.

4.2.2. Exploiting logical congruences
At this point, we need to analyse how our phase models for LALA behave with

respect to logical congruences on the underlying phase space.
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Given a logical congruence ∼ on the phase space (M;⊥) and a phase model M =
(M;⊥; !; "; #) for LALA, the quintuple M=∼ =(M∼;⊥∼; !∼; "∼; #∼) is de8ned as
follows:
• M∼ is the quotient monoid of M with respect to ∼;
• ⊥∼ is the subset �(⊥) of M∼;
• #∼ is de8ned from # by letting #∼(	)= �(#(	)).

Lemma 4.10. If ∼ is a logical congruence, M is a phase model for LALA, thenM=∼
is a phase model, too.

Proof. The only interesting facts to be veri8ed are the properties of "∼ and !∼. Now:

"∼([x]∼)"∼([y]∼) = {�(z)�(w) | z ∈ "([x]∼); w ∈ "([y]∼)}
= {�(v) | v ∈ "([x]∼)"([y]∼)}
⊆ {�(v) | v ∈ "([x]∼[y]∼)}
= "∼([x]∼[y]∼):

Moreover, if x∈M , then

!∼([x]∼) = !(�(�−1([x]∼)))

= �(!(�−1([x]∼)))

⊆ �("(�−1([x]∼))⊥⊥)

= �("(�−1([x]∼)))⊥⊥

= "∼([x]∼)⊥⊥:

This, by Lemma 3.5, implies that !∼ is bounded by "∼. Now, notice that

x ∈ {x2}⊥⊥ ⇒ [x]∼ ∈ �({x2}⊥⊥)

⇒ [x]∼ ∈ {�(x2)}⊥⊥

⇒ [x]∼ ∈ {[x]∼[x]∼}⊥⊥:

This means that !∼ ranges over J (M∼). All the other conditions can be trivially
veri8ed.

We can now give an essential result.

Proposition 4.11. If A is a formula in LALB (where A is a subformula of B), ∼ is
a logical congruence on (M;⊥) and M=(M;⊥; !; "; #) is a phase model for LALB,
then:
(i) �(<A=M)= <A=M=∼;
(ii) 1M ∈ <A=M ⇔ 1M∼ ∈ <A=M=∼;
(iii) M veri:es A i> M=∼ veri:es A.
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Proof. If we prove the 8rst of the three claims, the proof is 8nished, because the other
two can be easily deduced from the 8rst. We can proceed by induction on the structure
of A, and the only interesting inductive cases are those involving ! and ". But the
results on Lemmas 3.7, 3.9 and 3.10 give us exactly what we need.

At this point, we can give an essential result.

Theorem 4.12. Let ∼ be a logical congruence of :nite index on (ML
A ;⊥L

A ). Then the
following :ve conditions are equivalent:
(i) �A is provable in LAL.;
(ii) All :nite phase models for LAL verify A;
(iii) ML

A =∼ veri:es A;
(iv) ML

A veri:es A;
(v) �A is cut-free provable in LAL.

Proving that LAL enjoys the 8nite model property involves 8nding a logical con-
gruence that 8ts the conditions of the previous theorem. But, by results on Section
4.2.1, ≡ is a good candidate:

Proposition 4.13. If (ML
A ;⊥L

A ; !
L
A ; #

L
A ) is the syntactical model for LALA, then every

fact X ⊆ML
A is an ideal.

Proof. Let us suppose that X ⊆ML
A is a fact. Then X =Y⊥ for Y a subset of ML

A . Let
now x be an element of XML

A ; it is obvious that x=yz, where y∈X =Y⊥ and z ∈MA.
At this point, let w be an element of Y and let us show that xw∈⊥. By de8nition,
yw∈⊥ and then, by the de8nition of a light a%ne phase space, yw∈ (ML

A )
⊥. We can

then conclude that xw=(yz)w=(yw)z ∈⊥.

Theorem 4.14. The problem 9(GLAL) is decidable.

Proof. LAL enjoys the subformula property, in view of its cut-elimination. From this,
we obtain a semidecision procedure for 9(GLAL). On the other hand, from the 8nite
model property for LAL we obtain a semidecision procedure for the complement of
this set.

4.3. Comparison with previous work

The idea of using some kind of morphism (on the underlying monoid) to capture
the semantic of modalities goes back to [12], where it has been used to model LLL
through :bred phase spaces; note that § is not a self-dual connective in [12], too.
Our de8nition is simpler than the notion of 8bred phase spaces, in that we let the
sequence of phase spaces in a 8bred phase space collapse to just one. This choice
could be regarded as a useless restriction, but it makes easier to reach the goal of
proving decidability of LAL. From another perspective, we get more general structures
than 8bred phase spaces, since we shift from single-valued morphisms (functions) to
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multi-value morphism (binary relations). Other constraints (such as the intermediate
value property) are not needed in our de8nition, reTecting the simpler structure of
LAL with respect to LLL [1]. The strong constraint ⊥⊆M⊥ models a%nity, as in
[14] for LLW.
Our models are similar to those proposed by Terui [21] in the context of ILAL, the

intuitionistic variant of Light A%ne Logic. Terui proposed two classes of models. The
8rst one is slightly less general than ours, exponential connectives being interpreted
by way of usual morphisms on the underlying monoid. This class can be used to
prove strong completeness, but is not closed under the quotient model construction.
In particular x ∼ y does not necessarily imply "(x) ∼ "(y), meaning that "∼ can be
multi-valued even if " is a function. This problem cannot be circumvented by merely
adding additional conditions on the de8nition of a model. Indeed, even the syntactical
model ML exhibits this behaviour; as an example, A; B≡AoB, while §A; §B �≡ §(AoB).
To prove decidability of ILAL, Terui introduces generalized models, where expo-

nential connectives are interpreted by functions on P(M) (M being the underlying
monoid); these objects must satisfy a number of remarkable conditions, monotonicity
in primis. Every phase model for LAL, as we have de8ned it, is actually a generalized
model in the sense of Terui, once relations are interpreted as powerset functions. The
converse does not hold, since one can easily build a generalized model where § is
interpreted by way of a function ( :P(M)→P(M) where ((∅) �= ∅. This function is
not induced by any binary relation on M .
Our class of models is closed under the quotient construction and, at the same

time, does not involve higher-order structures, such as powerdomains. Moreover, this
de8nition smoothly scales to EAL and SLL, as we will see in the next two
sections.

5. Elementary a*ne logic

An elementary a;ne phase space is a triple (M;⊥; !) where:
• (M;⊥) is a phase space;
• !⊆M ×M is a relational monoid homomorphism such that !(M)⊆ J (M);
• ⊥⊆M⊥.

Proposition 5.1. If (M;⊥; !) is an a;ne elementary phase space and X ⊆M is a fact,
then ⊥⊆X .

A phase model for EAL is a quadruple (M;⊥; !; #), where (M;⊥; !) is an ele-
mentary a%ne phase space and the interpretation # maps every atom 	 in L to a
fact #(	)⊆M . The interpretation of non-exponential formulae (with respect to a phase
model) is de8ned as for MALL; for exponential formulae we have:

<!A=M = (!(<A=M))⊥⊥

<?A=M = (!(<A=⊥M))⊥:
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5.1. Strong completeness

The syntactical model for EAL is the quadruple MA =(MA;⊥A; !A; #A) where:
• MA is the commutative monoid generated by all formulae of EAL; this structure is
isomorphic to the set of GEAL sequents (with juxtaposition);

• ⊥A is the set of all cut-free provable sequents in GEAL;
• !A is de8ned by imposing !A(A1 : : : An)= {?A1 : : :?An} for every sequence A1; : : : ; An

of EAL formulae and n¿ 0;
• #A is de8ned by #A(a)= {a}⊥ for any a∈L.

Lemma 5.2. MA is a phase model for EAL.

Proof. We only check that ⊥⊆M⊥. If �∈⊥ then, by de8nition, �� is cut-free
provable in GEAL. If, now, �� is an arbitrary sequent in M , it is clear that ��; � is
cut-free provable in GEAL, because the following is a valid GEAL deduction

� �
� �; �

WGEAL

As an immediate consequence, ⊥⊆M⊥.

On this class of phase models, we can give soundness and completeness results in
the same way as we did for LAL.

Lemma 5.3 (Okada). For every EAL formula A, we have that <A=⊆{A}⊥ in MA.

Proof. We can prove this by a structural induction on A. The only two interesting
inductive cases are the following:
• If A= !B then, by inductive hypothesis, <B=⊆{B}⊥ and so !(<B=)⊆!({B}⊥). Now,
if �B∈⊥, then, by rule SGEAL, ?�!B∈⊥; this means that !({B}⊥)⊆{!B}⊥. Then,
we can conclude that !(<B=)⊥⊥ ⊆{!B}⊥, proving the inclusion <A=⊆{A}⊥.

• If A=?B, we can observe that, by inductive hypothesis, <B=⊆{B}⊥ and then <B=⊥ ⊇
{B}⊥⊥; this, in particular, yields !(<B=⊥)⊇!({B}⊥⊥). Obviously B∈{B}⊥⊥ and
then !({B}⊥⊥)⊇{?B}. We can then infer the inclusion !(<A=⊥)⊥ ⊆{A}⊥.

All other cases can be proved exactly as for MALL (see, for example, [14]).

Lemma 5.4. If �� is provable in EAL, then �� is veri:ed in all phase models for
EAL.

Proof. We can proceed exactly as for GLAL (see Lemma 4.5). If � is a proof of ��
(which must exist by hypothesis), we proceed by induction on the structure of �. But
the only inductive case which asks for an argument diLerent from the ones used for
GLAL is the one involving the PGEAL rule; in this case:

1 ∈ < � A1 : : : An; B=⇒ 1 ∈ (<A1=⊥ : : : <An=⊥<B=⊥)⊥

⇒ 1 ∈ <A1=⊥ : : : <An=⊥ ( <B=
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⇒ <A1=⊥ : : : <An=⊥ ⊆ <B=
⇒!(<A1=⊥) : : : !(<An=⊥) ⊆ !(<B=)
⇒!(<A1=⊥) : : : !(<An=⊥) ⊆ !(<B=)⊥⊥

⇒ 1 ∈ (!(<A1=⊥) : : : !(<An=⊥)!(<B=)⊥)⊥

⇒ 1 ∈ (!(<A1=⊥)⊥⊥ : : : !(<An=⊥)⊥⊥!(<B=)⊥⊥⊥)⊥

⇒ 1 ∈ (<?A1=⊥ : : : <?An=⊥<!B=⊥)⊥

⇒ 1 ∈ < �?A1; : : : ; ?An; !B=:

This concludes the proof.

Theorem 5.5 (Strong completeness). Let A be a formula. The following four condi-
tions are then equivalent:
(i) �A is provable in EAL;
(ii) Every phase model for EAL veri:es A;
(iii) MA veri:es A;
(iv) �A is cut-free provable in EAL.

5.2. Decidability

Like LAL, EAL enjoys the 8nite model property. In this section, we will prove that
EAL provability is decidable, following again [14] in building a phase model whose
underlying monoid is 8nitely generated.

Remark 5.6. One referee suggested that the decidability of EAL could be obtained by
reduction to the decidability of LAL. Indeed, let [·] be the translation from EAL
formulae to LAL formulae de8ned as [!A] = §A and leaving all other connectives
(? included) unchanged. It is easy to see that a formula A is cut-free EAL-provable iL
[A] is cut-free LAL-provable, see [5]. The cut-elimination theorem (which we derived
in 5.5) allows to conclude.

If A is a formula, we will denote as EALA the logic obtained by restricting our
logical language to subformulae of A; similarly we can denote the restriction of GEAL
to subformulae of A as GEALA. The notions of a phase model and of veri8ability by
a phase model can be easily extended to EALA.
The syntactic model for GEALA is the quadruple MA

A =(MA
A ;⊥A

A ; !
A
A ; #

A
A ), where:

• MA
A is the free monoid generated by all the subformulae of A;

• ⊥A
A is the set of all cut-free provable GEALA sequents;

• !A
A is de8ned as follows:

!A
A (A1 : : : An) =

{ {?A1 : : :?An} if all the ?Ai are subformulae of A
∅ otherwise;
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• #A
A is de8ned as follows:

#A
A (	) =




{	}⊥ if 	 is a subformula of A

{	⊥}⊥⊥ if 	⊥ is a subformula of A
but 	 is not a subformula of A:

Lemma 5.7. For every formula A, we have that <A=⊆{A}⊥ in MA
A .

Lemma 5.8. If �=A1; : : : ; An, where all the Ai are subformulae of A and �� is
provable in GEAL, then all the phase models for EALA verify ��.

Proof. Assume, by way of contradiction, that a phase model for GEALA exists that
does not verify ��. Then, we could easily obtain a phase model for GEAL that does
not verify ��, too. By Theorem 5.5, �� could not be provable in GEAL, but this
clearly does not agree with the hypothesis, because if ��∈�GEALA then ��∈�GEAL.

We can then give a result that strongly links GEAL and GEALA:

Theorem 5.9. If A is a formula, then the following three conditions are equivalent:
(i) �A is provable in GEALA;
(ii) �A is provable in GEAL;
(iii) MA

A veri:es A.

Given a logical congruence ∼ on the phase space (M;⊥) and a phase model M=
(M;⊥; !; #) for EALA, the quadruple M=∼ =(M∼;⊥∼; !∼; #∼) is de8ned as follows:
• M∼ is the quotient monoid of M with respect to ∼;
• ⊥∼ is the subset �(⊥) of M∼;
• #∼ is de8ned from # by letting #∼(a)= �(#(s)).

Lemma 5.10. If M=(M;⊥; !; #) is a phase model for EALA, then M=∼ is a phase
model for EALA.

Lemma 5.11. If A is a formula in EALB (where A is a subformula of B), ∼ is a
logical congruence on (M;⊥) and M=(M;⊥; !; #) is a phase model for EALB, then:
(i) �(<A=M)= <A=M=∼;
(ii) 1M ∈ <A=M ⇔ 1M∼ ∈ <A=M=∼;
(iii) M veri:es A i> M=∼ veri:es A.

At this point, we can give a result similar to Theorem 4.12.

Theorem 5.12. Let ∼ be a logical congruence of :nite index on (MA
A ;⊥A

A ), such
that MA

A =(MA
A ;⊥A

A ; !
A
A ; #A

A ) respects ∼. Then the following :ve conditions are



U. Dal Lago, S. Martini / Theoretical Computer Science 318 (2004) 409–433 429

equivalent:
(i) �A is provable in EAL.;
(ii) All :nite phase models for EAL verify A;
(iii) MA

A =∼ veri:es A;
(iv) MA

A veri:es A;
(v) �A is cut-free provable in EAL.

Proving that EAL enjoys the 8nite model property involves 8nding a logical congru-
ence that 8ts the conditions of the previous theorem. Once again, ≡ can be fruitfully
used in this context:

Proposition 5.13. If (MA
A ;⊥A

A ; !
A
A ; #

A
A ) is the syntactical model for EALA, then every

fact X ⊆MA
A is an ideal.

Finally, we can give the result we have anticipated at the beginning of this section.

Theorem 5.14. The problem 9(GEAL) is decidable.

6. Soft linear logic

6.1. Phase semantics

A soft phase space is a triple (M;⊥; !) such that
• (M;⊥) is a phase space;
• !⊆M × M is a relational monoid homomorphism such that (X n)⊥ ⊆!(X )⊥ for
every X ⊆M and every natural number n.

A phase model for SLL is a quadruple (M;⊥; !; #) where (M;⊥; !) is a soft phase
space and the intepretation # maps every atom 	 of L to a fact #(	)⊆M . Given a
phase model M=(M;⊥; !; #) for SLL, we can associate to every formula A in SLL
and to every sequent �� in GSLL a fact as we have previously done for EAL, with
the same interpretation for exponential formulae:

<!A=M = (!(<A=M))⊥⊥

<?A=M = (!(<A=⊥M))⊥:

The syntactical model for SLL is the quadruple MS =(MS ;⊥S ; !S ; #S) de8ned as
follows:
• MS is the commutative monoid generated by all formulae of SLL; this structure is
isomorphic to the set of all GSLL sequents (with juxtaposition);

• ⊥S is the set of all cut-free provable sequents in SLL;
• !S is de8ned by letting !S(A1 : : : An)= {?A1 : : :?An} for every sequence A1 : : : An of
formulae in SLL and n¿ 0;

• #S is de8ned, as usual, by putting #S(	)= {	}⊥ for every 	∈L.

Lemma 6.1. MS is a phase model for GSLL.
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Proof. The only interesting thing to prove is the condition on !S . But let A⊆MS

and let �∈ (An)⊥, �∈!(A); this means, in particular, that �=?*, for * being an
element of A; by de8nition, �;*n ∈⊥ and, by rule MGSLL, �; �∈⊥. This concludes the
proof.

Lemma 6.2 (Okada). For every formula A in SLL, we have that <A=⊆{A}⊥ in MS .

Proof. We can proceed exactly as for Lemma 5.3.

Lemma 6.3. If �� is provable in SLL, then every phase model for SLL veri:es ��.

Proof. We can proceed, exactly as for EAL, by induction on the structure of �. The
only interesting inductive cases are the following two:
• If the last rule applied is MGSLL, we can write

1 ∈ < � A(n); B=⇒ 1 ∈ ((<A=⊥)n<B=⊥)⊥

⇒ 1 ∈ (((<A=⊥)n)⊥⊥<B=⊥)⊥

⇒ 1 ∈ (!(<A=⊥)⊥⊥<B=⊥)⊥

⇒ 1 ∈ (<?A=⊥<B=⊥)⊥

⇒ 1∈ < �?A; B=:

• If the last rule applied is SGSLL, then it is su%cient to observe that

1 ∈ < � A1 : : : An; B=⇒ 1 ∈ (<A1=⊥ : : : <An=⊥<B=⊥)⊥

⇒ 1 ∈ <A1=⊥ : : : <An=⊥ ( <B=
⇒ <A1=⊥ : : : <An=⊥ ⊆ <B=
⇒!(<A1=⊥) : : : !(<An=⊥) ⊆ !(<B=)
⇒!(<A1=⊥) : : : !(<An=⊥) ⊆ !(<B=)⊥⊥

⇒ 1 ∈ (!(<A1=⊥) : : : !(<An=⊥)!(<B=)⊥)⊥

⇒ 1 ∈ (!(<A1=⊥)⊥⊥ : : : !(<An=⊥)⊥⊥!(<B=)⊥⊥⊥)⊥

⇒ 1 ∈ (<?A1=⊥ : : : <?An=⊥<!B=⊥)⊥

⇒ 1 ∈ < �?A1; : : : ; ?An; !B=:

All the other cases can be proved exactly as we have done for EAL.

Theorem 6.4 (Strong completeness). Let A be an SLL formula. The following four
conditions are then equivalent:
(i) �A is provable in SLL;
(ii) Every phase model for SLL veri:es A.
(iii) MS veri:es A;
(iv) �A is cut-free provable in SLL;
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6.2. Finite model property

SLL does not admit full weakening and, as a consequence, Lafont’s argument cannot
be applied to this logic. In this section, we will show that even the multiplicative
fragment of SLL (which we call MSLL) does not enjoy the 8nite model property.
Indeed, the counter example given in [14] for MELL works also for SLL. We will
not give the de8nitions of phase models for this fragment, because they can be easily
inferred from the ones for full SLL.

Proposition 6.5. If 	; +∈L, then the formula
A =?	⊥o?(	⊥o+⊥)o?(	⊗ + ⊗⊥)o+

is veri:ed by every :nite phase model for SLL but is not provable.

Proof. We can adapt the counterexample on the 8nite model property for MELL [14]
with only minor variations. In the following, we will write Bn for

B⊗ : : :⊗ B︸ ︷︷ ︸
n times

If (M;⊥; !; #) is an arbitrary 8nite phase model, then there will be a 8nite number
of subsets of M and, in particular, a 8nite number of facts; this naturally yields the
existence of two natural numbers p and q with p¡q, such that <+p== <+q=. Let now
B be the formula (+p)⊥o+q; then

<B⊥== <((+p)⊥o+q)⊥= = <+p ⊗ (+q)⊥=
= (<+p=<(+q)⊥=)⊥⊥

= (<+p=<+q=⊥)⊥⊥

⊆⊥:

But 1∈ <?B⊥=⊥, because

<B⊥= ⊆ ⊥⇒ <B⊥=⊥ ⊇ ⊥⊥

⇒!(<B⊥=⊥) ⊇ !(⊥⊥)

⇒!(<B⊥=⊥)⊥⊥ ⊇ !(⊥⊥)⊥⊥

⇔ <?B⊥=⊥ ⊇ !(⊥⊥)⊥⊥

and, obviously,

1∈!(1) ⊆ !(⊥⊥)⇒{1}⊥⊥ ⊆ !(⊥⊥)⊥⊥

⇒ 1 ∈ !(⊥⊥)⊥⊥:

On the other hand, it is clear that � ?B⊥oA∈�GELL, because

?B⊥oA ≡?(+p ⊗ (+q)⊥)o?	⊥o?(	⊥o+⊥)o?(	⊗ + ⊗⊥)o+
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and in GSLL the following three deductions are valid

� + ⊗ · · · ⊗ +︸ ︷︷ ︸
p times

; +⊥; : : : ; +⊥︸ ︷︷ ︸
p times

� +⊥; : : : ; +⊥︸ ︷︷ ︸
q times

; 	⊥; : : : ; 	⊥︸ ︷︷ ︸
q−1 times

; 	⊗ + ⊗⊥; : : : ; 	⊗ + ⊗⊥︸ ︷︷ ︸
q−1 times

; +

� +p ⊗ (

q times︷ ︸︸ ︷
+⊥o : : :o+⊥);

q−1 times︷ ︸︸ ︷
	⊥; : : : ; 	⊥;

p times︷ ︸︸ ︷
+⊥; : : : ; +⊥;

q−1 times︷ ︸︸ ︷
	⊗ + ⊗⊥; : : : ; 	⊗ + ⊗⊥; +

�?(+p ⊗ (+q)⊥)o?	⊥o?(	⊥o+⊥)o?(	⊗ + ⊗⊥)o+
By Theorem 6.4, M veri8es � ?B⊥oA and so even �A, because <�?B⊥oA= and <?B⊥=⊥
both contain 1M and, moreover, <�?B⊥oA==(<?B⊥=⊥<A=⊥)⊥ = <?B⊥=⊥ ( <A=. The only
thing that remains to be proved is the fact that �A is not provable in GSLL. But if
�A were provable, then it would we provable in the sequent calculus for MELL. By
a result given in [14], however, �A is not provable in MELL.
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