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Abstract

The coarse geometric Novikov conjecture provides an algorithm to determine when the higher
index of an elliptic operator on a noncompact space is nonzero. The purpose of this paper is
to prove the coarse geometric Novikov conjecture for spaces which admit a (coarse) uniform
embedding into a uniformly convex Banach space.
© 2005 Elsevier Inc. All rights reserved.
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1. Introduction

The classic Atiyah–Singer index theory of elliptic operators on compact manifolds
has been vastly generalized to higher index theories of elliptic operators on noncom-
pact spaces in the framework of noncommutative geometry [4] by Connes–Moscovici
for covering spaces [8], Baum–Connes for spaces with proper and cocompact discrete
group actions [2], Connes–Skandalis for foliated manifolds [9], and Roe for noncom-
pact complete Riemannian manifolds [33]. These higher index theories have important
applications to geometry and topology.
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In the case of a noncompact complete Riemannian manifold, the coarse geometric
Novikov conjecture provides an algorithm to determine when the higher index of an
elliptic operator on the noncompact complete Riemannian manifold is nonzero. The
purpose of this paper is to prove the coarse geometric Novikov conjecture under a
certain mild geometric condition suggested by Gromov [16].

Let � be a metric space; let X be a Banach space. A map f : � → X is said to be
a (coarse) uniform embedding [15] if there exist non-decreasing functions �1 and �2
from R+ = [0, ∞) to R such that

(1) �1(d(x, y))�‖f (x) − f (y)‖��2(d(x, y)) for all x, y ∈ �;
(2) limr→+∞ �i (r) = +∞ for i = 1, 2.

In this paper, we prove the following result:

Theorem 1.1. Let � be a discrete metric space with bounded geometry. If � is uni-
formly embeddable into a uniformly convex Banach space, then the coarse geomet-
ric Novikov conjecture holds for �, i.e., the index map from limd→∞ K∗ (Pd (�)) to
K∗ (C∗(�)) is injective, where Pd(�) is the Rips complex of � and C∗(�) is the Roe
algebra associated to �.

Recall that a discrete metric space � is said to have bounded geometry if ∀ r > 0,
∃ N(r) > 0 such that the number of elements in B(x, r) is at most N(r) for all x ∈ �,
where B(x, r) = {y ∈ � : d(y, x)�r}. A Banach space X is called uniformly convex
if ∀ ε > 0, ∃ � > 0 such that if x, y ∈ S(X) and ‖x − y‖�ε, then

∥∥ x+y
2

∥∥ < 1 − �,
where S(X) = {x ∈ X, ‖x‖ = 1}.

The coarse geometric Novikov conjecture implies that the higher index of the Dirac
operator on a uniformly contractible Riemannian manifold is nonzero (recall that a
Riemannian manifold is said to be uniformly contractible if for every r > 0, there
exists R�r such that every ball with radius r can be contracted to a point in a ball
with radius R). By Proposition 4.33 of [33] and the Lichnerowicz argument, Theorem
1.1 implies the following result:

Corollary 1.2. Let M be a Riemannian manifold with bounded geometry. If M admits a
uniform embedding into a uniformly convex Banach space and is uniformly contractible,
then M cannot have uniformly positive scalar curvature.

In general, Gromov conjectures that a uniformly contractible Riemannian manifold
with bounded geometry cannot have uniformly positive scalar curvature [16].

The possibility of using a uniform embedding into a uniformly convex Banach space
in order to study the Novikov conjecture was suggested by Gromov [16]. The main new
ideas in the proof of Theorem 1.1 consist of a construction of a family of uniformly
almost flat Bott vector bundles over the uniformly convex Banach space and a K-
theoretic finitization technique. The uniform convexity condition is used in a crucial
way to construct this family of uniformly almost flat Bott vector bundles.

The coarse geometric Novikov conjecture is false if the bounded geometry condition
is removed [39]. The coarse geometric Novikov conjecture for bounded geometry spaces
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uniformly embeddable into Hilbert space was proved in [40]. The proof of the Hilbert
space case makes the use of an algebra of the Hilbert space introduced in [21–23].

W. B. Johnson and N. L. Randrianarivony showed that lp (p > 2) does not admit
a (coarse) uniform embedding into a Hilbert space [27]. More recently, M. Mendel
and A. Naor proved that lp does not admit a (coarse) uniform embedding into lq if
p > q �2 [31]. N. Brown and E. Guentner proved that every bounded geometry space
admits a (coarse) uniform embedding into a strictly convex and reflexive Banach space
[3] (recall that a Banach space X is said to be strictly convex if

∥∥ x+y
2

∥∥ < 1 for any
two distinct unit vectors x and y in X). It is an open question whether every separable
metric space admits a (coarse) uniform embedding into some uniformly convex Banach
space. N. Ozawa proved that expanders do not admit a (coarse) uniform embedding
into a uniformly convex Banach space with an unconditional basis [32]. We also would
like to mention the conjecture that if M is a compact smooth manifold, then any
countable subgroup of the diffeomorphism group Diff(M) of M admits a (coarse)
uniform embedding into Cp for some p > 1, where Cp is the Banach space of all
Schatten-p class operators on a Hilbert space (recall that Cp is uniformly convex for
all p > 1).

We remark that the K-theory for complex Banach algebras throughout this paper is
the 2-periodic complex topological K-theory.

This paper is organized as follows: In Section 2, we collect a few facts about uniform
convexity which will be used later in this paper. In Section 3, we introduce (Banach)
Clifford algebras over a Banach space. In the case of a uniformly convex Banach
space, we use the (Banach) Clifford algebras to construct a certain Bott vector bundles
over the Banach space and show that the Bott vector bundles are uniformly almost
flat in a certain Banach sense. As suggested by Misha Gromov, Section 3 might be of
independent interest to experts in Banach space theory. In Section 4, we briefly recall
the coarse geometric Novikov conjecture and the K-theoretic localization technique.
Section 5, we introduce a K-theoretic finitization technique. In Section 6, we use the
Bott vector bundles to construct Bott maps in K-theory. Finally in Section 7, we prove
the main result of this paper.

In a separate paper, we will show how uniform convexity can be used to study
K-theory for C∗-algebras associated to discrete groups. In particular, we shall prove
the Novikov conjecture for groups uniformly embeddable into uniformly convex Banach
spaces.

2. Uniform convexity of Banach spaces

In this section, we collect a few facts about uniformly convex Banach spaces which
will be used in this paper. A beautiful account of the theory of uniformly convex
Banach space can be found in Diestel’s book [10].

For convenience of the readers, we give a proof of the following classic result in
the theory of Banach spaces.

Proposition 2.1. Let X be a Banach space (over R). Assume that X∗ is uniformly
convex.
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(1) ∀ x ∈ S(X), ∃ a unique x∗ ∈ S(X∗) such that x∗(x) = 1.
(2) The map: x → x∗, from S(X) to S(X∗) is uniformly continuous.

Proof. Let us first prove part (1) of Proposition 2.1 . Existence of x∗ follows from the
Hahn–Banach theorem. Let g be another element in S(X∗) satisfying g(x) = 1. We
have x∗+g

2 (x) = 1. This implies that ‖ x∗+g
2 ‖ = 1. Uniform convexity of X∗ implies

g = x∗.
Next we shall prove part (2) of the proposition. Given ε > 0, let � > 0 be as in the

definition of uniform convexity of X∗. Assume that a pair of vectors x and y ∈ S(X)

satisfies ‖x − y‖ < �. We have x∗+y∗
2 (x) > 1 − �. This implies that ‖ x∗+y∗

2 ‖ > 1 − �.
By uniform convexity of X∗, we have ‖x∗ − y∗‖ < ε. �

We remark that part (1) of Proposition 2.1 is still true under the weaker condition
that X∗ is strictly convex.

For any x ∈ X, we define x∗ ∈ X∗ by

x∗ =
{

‖x‖
(

x
‖x‖
)∗

if x �= 0 ,

0 otherwise .

The following result is a consequence of Enflo’s theorem [13] and Asplund’s aver-
aging technique [1]. (See also [10, p. 87].) It plays an important role in the proof of
the main result of this paper.

Theorem 2.2. Let � be a discrete metric space. If � admits a uniform embedding into
a uniformly convex Banach space, then � is uniformly embeddable into a uniformly
convex Banach space X such that its dual space X∗ is also uniformly convex.

3. (Banach) Clifford algebras and Bott vector bundles over Banach spaces

In this section, we shall first introduce (Banach) Clifford algebras over a Banach
space. In the case of a uniformly convex Banach space, we use the (Banach) Clifford
algebras to construct Bott vector bundles over the Banach space and show that the Bott
vector bundles are uniformly almost flat in a certain Banach sense.

Let X be a Banach space over R. Let V be a finite-dimensional subspace of X and
V ∗ its dual space. We define a pairing:

(
V �V ∗)× (

V �V ∗) → R by

q(x�g), y�h = h(x) + g(y)

for all x�g, y�h ∈ V �V ∗.
Let W = V �V ∗ be the given norm;

‖x�g‖ =
√

‖x‖2 + ‖g‖2

for all x�g ∈ W = V �V ∗.
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Let ⊗nW =
n︷ ︸︸ ︷

W ⊗ · · · ⊗ W for n�1 and ⊗0W = R.
Endow ⊗0W with the standard norm. For n�1, endow ⊗nW with the following

norm:

‖u‖ = sup{(�1 ⊗ · · · ⊗ �n)(u) : �k ∈ W ∗, ‖�k‖�1, 1�k�n}

for all u ∈ ⊗nW , where W ∗ is the dual (Banach) space of W .
Let

T (W) =
{

∞
�
n=0

an : an ∈ ⊗nW ,

∞∑
n=0

‖an‖ < +∞
}

be the tensor algebra.
Observe that T (W) is a Banach algebra over R with the following norm:

∥∥∥∥ ∞
�
n=1

an

∥∥∥∥ =
∞∑

n=0

‖an‖.

Let TC(W) be the complexification of the Banach algebra T (W). TC(W) is a Banach
algebra over C.

Let IC(W) be the closed two-sided ideal in TC(W) generated by all elements of the
form

w1 ⊗ w2 + w2 ⊗ w1 + 2q(w1, w2), w1, w2 ∈ W.

The Clifford algebra Cl(W) is defined as the quotient Banach algebra:

Cl(W) = TC(W)/IC(W).

Cl(W) is a finite-dimensional complex Banach algebra with the natural quotient
norm.

Let Cb(W, Cl(W)) be the Banach algebra of all bounded continuous functions on W

with values in Cl(W), where the norm of each element f ∈ Cb(W, Cl(W)) is defined
by

‖f ‖ = sup
w∈W

‖f (w)‖.

Let C0(W, Cl(W)) be the Banach algebra of all continuous functions on W with
values in Cl(W), vanishing at ∞, where the norm on C0(W, Cl(W)) is inherited from
the norm on Cb(W, Cl(W)).
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Throughout the rest of the paper, let X be a uniformly convex Banach space over
R such that its dual space X∗ is also uniformly convex. We shall next construct a
family of uniformly almost flat representatives of the Bott generators in the K-group
K0(C0(W, Cl(W))) for all finite-dimensional subspaces V ⊆ X.

We need to recall the concept of the index of a generalized Fredholm operator in
the context of Banach algebras.

Let B be a (Z2-)graded unital complex Banach algebra and let A be a (Z2-)graded
ideal in B. Assume that the grading on B is induced by a grading operator ε in B

satisfying ε2 = 1, ‖ε‖ = 1. We have B(0) = {b ∈ B : ε−1bε = b} and B(1) = {b ∈ B :
ε−1bε = −b}.

Let F ∈ B be an element of degree one such that F 2 − 1 ∈ A.
Write

� =
(

1 + ε

2

)
F

(
1 − ε

2

)
,

�′ =
(

1 − ε

2

)
F

(
1 + ε

2

)
.

Let

� =
(

1 �
0 1

)(
1 0

−�′ 1

)(
1 �
0 1

)(
0 −1
1 0

)
.

We have

� =
(

� + (1 − ��′)� −(1 − ��′)
1 − �′� �′

)
,

�−1 =
(

�′ 1 − �′�
−(1 − ��′) � + �(1 − �′�)

)
.

Define

index(F ) = �

(
1 0
0 0

)
�−1 .

Clearly, index(F ) is an idempotent in M2(A).
We have

index(F ) =
(

��′ + (1 − ��′)��′ �(1 − �′�) + (1 − ��′)�(1 − �′�)

(1 − �′�)�′ (1 − �′�)2

)
.
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We define

Index(F ) = [index(F )] −
[(

1 0
0 0

)]
∈ K0(A) ,

where K0(A) is the K-group of A considered as a Banach algebra without grading.
Notice that Index(F ) is an obstruction to the invertibility of F .
Let � be a continuous function on R such that 0��(t)�1, ∃ 0 < c1 < c2 satisfying

�(t) = 0 if t �c1 and �(t) = 1 if t �c2.
Note that the uniform convexity of X∗ is equivalent to the uniform smoothness of X

(see [10, p. 36]), therefore, all linear subspaces V of X have the property that both V

and V ∗ are uniformly convex. Let V be a finite-dimensional subspace of X. For any
x ∈ V , let x∗ ∈ X∗ be defined as above. The restriction of x∗ to V is still denoted by
x∗. Since V is naturally isometric to (V ∗)∗ (with its natural norm), (V ∗)∗ is uniformly
convex. For any h ∈ V ∗, we identify h∗ ∈ (V ∗)∗ with an element (still denoted by h∗)
in V .

Let FV,�, ∈ Cb(W, Cl(W)) be defined by

FV,�(0�0) = 0,

FV,�(x�h)

=
�
(√‖x‖2 + ‖h‖2

)
√‖x‖2 + ‖h‖2 + i(h(x) − x∗(h∗))

(
h∗�x∗ − x�h

2
+ i

x�h + h∗�x∗

2

)
,

for all nonzero x�h ∈ W = V �V ∗.
Note that

√‖x‖2 + ‖h‖2 + i(h(x) − x∗(h∗)) is well defined as a continuous complex-
valued function of x�h since h(x) − x∗(h∗) are real numbers.

Endow Cb(W, Cl(W)) with the grading induced by the natural grading operator ε

of Cl(W) (considered as a constant function on W ). It is not difficult to see that the
norm of the grading operator is 1.

Clearly FV,� has degree one. It is also straightforward to verify that

F 2
V,� − 1 ∈ C0(W, Cl(W)),

where 1 is the identity element of Cb(W, Cl(W)).

Lemma 3.1. Index (FV,�) is a generator for K0(C0(W, Cl(W))).

Proof. Let ‖ · ‖0 be the Euclidean norm on V . We define a homotopy of norms on V

and V ∗ by

‖ · ‖t =
√

t‖ · ‖2 + (1 − t)‖ · ‖2
0

for t ∈ [0, 1].
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For each x ∈ V , let x∗,0 ∈ V ∗ be given by x∗,0(y) =< y, x > for all y ∈ V , where
< , > is the inner product on V corresponding to the Euclidean structure. We define
x∗,t ∈ V ∗ by

x∗,t = tx∗ + (1 − t)x∗,0

for t ∈ [0, 1]. For each h ∈ V ∗, let h∗,0 ∈ V be given by h(x) =< x, h∗,0 > for all
x ∈ V . We define h∗,t ∈ V by

h∗,t = th∗ + (1 − t)h∗,0

for t ∈ [0, 1].
We can define a homotopy FV,�(t) by, respectively, replacing x∗, h∗ and ‖ · ‖ with

x∗,t , h∗,t , and ‖ · ‖t in the definition of FV,�. We have

Index(FV,�) = Index(FV,�(1)) = Index(FV,�(0))

in K0(C0(W, Cl(W))). But it is straightforward to verify that Ind(FV,�(0)) is the Bott
generator for K0(C0(W, Cl(W))). �

We have the following proposition.

Proposition 3.2. Let

index(FV,�) = aV,� +
(

1 0
0 0

)
for some aV,� ∈ M2(C0(W, Cl(W))).

(1) Given �, there exists R > 0 such that supp(aV,�) ⊆ BW(0, R) for any finite-
dimensional subspace V ⊆ X, where supp(aV,�) = {

� ∈ W : aV,�(�) �= 0
}

(aV,�
is identified as an element of C0(W, M2(Cl(W))), and BW(0, R) = {� ∈ W :‖�‖ <

R}, (‖�‖ = √‖x‖2 + ‖h‖2 if � = x�h ∈ W = V �V ∗).
(2) There exists C > 0 such that ‖index(FV,�)‖�C for any finite dimensional subspace

V ⊆ X, where the norm of each element f ∈ Cb(W, Cl(W)) is defined by ‖f ‖ =
supw∈W ‖f (w)‖, and M2(Cb(W, Cl(W))) = Cb(W, Cl(W)) ⊗ M2(C) is endowed
with a Banach algebra tensor product norm (for example, the projective tensor
product norm).

Proof. We have the following identity:(
h∗�x∗ − x�h

2
+ i

x�h + h∗�x∗

2

)2

= ‖x‖2 + ‖h‖2 + i(h(x) − x∗(h∗))

for all x�h ∈ W = V �V ∗.
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Now part (1) of Proposition 3.2 follows from the definition of index(FV,�), the
definition of �, and the above identity.

Recall that V and V ∗ are real Banach spaces. Hence we have

|
√

‖x‖2 + ‖h‖2 + i(h(x) − x∗(h∗)) |�
√

‖x‖2 + ‖h‖2

for all x�h ∈ W = V �V ∗.
This inequality, together the definitions of FV,� and � and the norm on V �V ∗,

implies that

‖FV,�‖�2.

Now part (2) of Proposition 3.2 follows from the above inequality, the definition
of index(FV,�), and the fact that the norm of the grading operator in Cb(W, Cl(W))

is 1. �

The concept of almost flat bundles has been successfully used to study the Novikov
conjecture and positive scalar curvature problem in [6,7,17,19,26]. We shall introduce
a slight variation of almost flatness suitable for the purpose of this paper.

Given a natural number k, real numbers r > 0, � > 0 and a subspace U of
W , an idempotent p in Mk(Cb(W, Cl(W))) is said to be (r, �)-flat relative to
U if

‖p(u1) − p(u2)‖ < �

for any u1 and u2 in W satisfying u1 −u2 ∈ U and ‖u1 −u2‖�r , where p is identified
with an element in Cb(W, Mk(Cl(W))).

The following result says that the family of idempotents
{
index(FV,�)

}
V

is uniformly
almost flat.

Proposition 3.3. ∀ r > 0, � > 0, there exists � such that index(FV,�) is (r, �)-flat
relative to V �0 ⊆ W for any finite dimensional subspace V ⊆ X, where W = V �V ∗.

Proof. Given N > 0, � > 0, let � be a smooth function on R satisfying

0��(t)�1, |�′(t)| < �

for all t ∈ R, �(t) = 0 if t �N , and there exists N ′ > N such that �(t) = 1 if t > N ′.
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By Proposition 2.1, given �′ > 0, there exists N > 0 (independent of V ) such that

∥∥∥∥∥ x1�h√‖x1‖2 + ‖h‖2
− x2�h√‖x2‖2 + ‖h‖2

∥∥∥∥∥ < �′,

∥∥∥∥∥ h∗�x∗
1√‖x1‖2 + ‖h‖2

− h∗�x∗
2√‖x2‖2 + ‖h‖2

∥∥∥∥∥ < �′

for all x1, x2 ∈ V , and h ∈ V ∗ satisfying ‖x1 − x2‖ < r , ‖(x1, h)‖�N .
Write

x′ = x√‖x‖2 + ‖h‖2
,

h′ = h√‖x‖2 + ‖h‖2

for all nonzero x�h ∈ W = V �V ∗.
We have

FV,�(x�h)

=
�
(√‖x‖2 + ‖h‖2

)
√

1 + i(h′(x′) − (x′)∗((h′)∗))

(
((h′)∗�(x′)∗) − x′�h′

2

+i
x′�h′ + ((h′)∗�(x′)∗)

2

)
,

for all nonzero x�h ∈ W = V �V ∗.
By choosing �′ and � small enough, Proposition 3.3 follows from the above facts,

part (2) of Proposition 2.1, part (3) of Proposition 2.3, the definitions of �, FV,�,
index(FV,�), and straightforward estimates. �

4. The coarse geometric Novikov conjecture and localization

In this section, we shall briefly recall the coarse geometric Novikov conjecture and
the localization technique.

Let M be a locally compact metric space. Let HM be a separable Hilbert space
equipped with a faithful and nondegenerate ∗-representation of C0(M) whose range
contains no nonzero compact operator.
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Definition 4.1 (Roe [33]). (1) The support of a bounded linear operator T :HM→HM ,
denoted by supp(T ), is the complement of the set of points (m, m′) ∈ M × M for
which there exist � and 	 in C0(M) such that

	T � = 0, �(m) �= 0 and 	(m′) �= 0.

(2) The propagation of a bounded operator T :HM→HM , denoted by propagation
(T ), is defined to be

sup{d(m, m′) : (m, m′) ∈ supp (T )};

(3) A bounded operator T : HM → HM is locally compact if the operators �T and
T � are compact for all � ∈ C0(M).

Definition 4.2 (Roe [33]). The Roe algebra C∗(M) is the operator norm closure of the
∗-algebra of all locally compact, finite propagation operators acting on HM .

It should be pointed out that C∗(M) is independent of the choice of HM up to
a ∗-isomorphism (cf. [25]). Throughout the rest of this paper, we choose HM in the
definition of C∗(M) to be l2(Z) ⊗ H , where Z is a countable dense subset of M ,
H is a separable and infinite-dimensional Hilbert space, and C0(M) acts on HM by:
�(g ⊗ h) = (�g) ⊗ h for all � ∈ C0(M), g ∈ l2(Z), h ∈ H (� acts on l2(Z) by
pointwise multiplication).

Let � be a locally finite discrete metric space (a metric space is called locally finite
if every ball contains finitely many elements).

Definition 4.3. For each d �0, the Rips complex Pd(�) is the simplicial polyhedron
where the set of all vertices is �, and a finite subset {
0, . . . , 
n} ⊆ � spans a simplex
iff d(
i , 
j )�d for all 0� i, j �n.

Endow Pd(�) with the spherical metric. Recall that the spherical metric is the max-
imal metric whose restriction to each simplex is the metric obtained by identifying
the simplex with part of a unit sphere endowed with the standard Riemannian metric.
The distance of a pair of points in different connected components of Pd(�) is defined
to be infinity. The use of spherical metric is necessary to avoid certain pathological
phenomena when � does not have bounded geometry. If � has bounded geometry, one
can instead use the Euclidean/simplicial metric on Pd(�).

Conjecture 4.1 (The coarse geometric Novikov conjecture). If � is a discrete metric
space with bounded geometry, then the index map Ind from limd→∞ K∗(Pd(�)) to
limd→∞ K∗(C∗(Pd(�))) is injective, where K∗(Pd(�)) = KK∗(C0(Pd(�), C) is the
K-homology group of the locally compact space Pd(�).

It should be pointed out that limd→∞ K∗(C∗(Pd(�))) is isomorphic to K∗(C∗(�)).
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Conjecture is false if the bounded geometry condition is dropped [39]. By Proposition
4.33 in [33], the coarse geometric Novikov conjecture implies Gromov’s conjecture that
a uniformly contractible Riemannian manifold with bounded geometry cannot have
uniformly positive scalar curvature and the zero-in-the spectrum conjecture stating that
the Laplace operator acting on the space of all L2-forms of a uniformly contractible
Riemannian manifold has zero in its spectrum.

The localization algebra introduced in [38] will play an important role in the proof of
our main result. For the convenience of the readers, we shall briefly recall its definition
and its relation with K-homology.

Definition 4.4. Let M be a locally compact metric space. The localization algebra
C∗

L(M) is the norm-closure of the algebra of all uniformly bounded and uniformly
norm-continuous functions

a : [0, ∞) → C∗(M)

satisfying

propagation (a(t)) → 0

as t → ∞.

There exists a local index map [38]

IndL : K∗(M) → K∗(C∗
L(M)).

Theorem 4.5 (Yu [38]). If P is a locally compact and finite-dimensional simplicial
polyhedron endowed with the spherical metric, then the local index map IndL : K∗(P )

→K∗(C∗
L(P )) is an isomorphism.

For the convenience of readers, we give an overview of the proof of the above theo-
rem given in [38]. Given a locally compact and finite-dimensional simplicial polyhedron
P endowed with the spherical metric, let P1 and P2 be two simplicial sub-polyhedrons
of P . Endow P1, P2, P1 ∪ P2 and P1 ∩ P2 with metrics inherited from P . The lo-
cal nature of the localization algebra can be used to prove a Mayer–Vietoris for the
K-groups of the localization algebras for P1 ∪ P2, P1, P2 and P1 ∩ P2, and a certain
(strong) Lipschitz homotopy invariance of the K-theory of the localization algebra. Now
Theorem 4.5 follows from an induction argument on the dimension of skeletons of P

using the Mayer–Vietoris sequence and the (strong) Lipschitz homotopy invariance for
K-theory of localization algebras.

The evaluation homomorphism e from C∗
L(M) to C∗(M) is defined by

e(a) = a(0)

for all a ∈ C∗
L(M).
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In the definitions of C∗(Pd(�)) and C∗
L(Pd(�)), we choose a countable dense subset

�d of Pd(�) in such a way that if d ′ > d , then �d ⊆ �d ′ . Hence there are natural
inclusion homomorphisms from C∗(Pd(�)) to C∗(Pd ′(�)) and from C∗

L(Pd(�)) to
C∗

L(Pd ′(�)) when d ′ > d .
If � is a locally finite discrete metric space, we have the following commuting

diagram:

lim
d→∞ K∗(Pd(�))

IndL ↙ ↘ Ind

lim
d→∞ K∗(C∗

L(Pd(�)))
e∗−→ lim

d→∞ K∗(C∗(Pd(�))).

Theorem 4.5 implies that in order to prove the coarse geometric Novikov conjecture,
it is enough to show that

e∗ : lim
d→∞ K∗(C∗

L(Pd(�))) → lim
d→∞ K∗(C∗(Pd(�)))

is injective.
Let P be a locally compact and finite-dimensional simplicial polyhedron endowed

with the spherical metric. Let Q be a simplicial sub-polyhedron of P with the metric
inherited from P .

Let P \Q = {x ∈ P : x /∈ Q}. We define the relative K-homology group of (P, Q)

by

K∗(P, Q) = K∗(P \Q) = KK∗(C0(P \Q), C).

Endow P \Q with the metric inherited from P . We define C∗
L(�(P \Q)) to be the

closed subalgebra of C∗
L(P \Q) generated by elements a ∈ C∗

L(P \Q) such that there
exists ct > 0 (t ∈ [0, ∞)) satisfying limt→∞ ct = 0, and supp(a(t)) ⊆ {(x, y) ∈
(P \Q) × (P \Q) : d((x, y), Q × Q) < ct } for all t ∈ [0, ∞), where ct depends on a.
Notice that C∗

L(�(P \Q)) is the closed two sided ideal of C∗
L(P \Q).

Let C∗
L(Q; P) be the closed subalgebra of C∗

L(P ) generated by all elements a in
C∗

L(P ) such that there exists ct > 0 (t ∈ [0, ∞)) satisfying limt→∞ ct = 0, and
supp(a(t)) ⊆ {(x, y) ∈ P × P : d((x, y), Q × Q) < ct } for all t ∈ [0, ∞), where ct

depends on a. It is not difficult to see that C∗
L(Q; P) is a closed two-sided ideal of

C∗
L(P ).
Observe that C∗

L(P )/C∗
L(Q, P ) is naturally isomorphic to C∗

L(P \Q)/C∗
L(�(Q\P)).

Next we shall define a local index map

IndL : K∗(P, Q) → K∗(C∗
L(P )/C∗

L(Q, P ))�K∗(C∗
L(P \Q)/C∗

L(�(Q\P))).
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Recall that if M is a locally compact topological space, the K-homology groups
Ki(M) = KKi(C0(M), C) (i = 0, 1) are generated by the following cycles modulo a
certain equivalence relation [28]:

(1) a cycle for K0(M) is a pair (HM, F ), where HM is a Hilbert space with a
∗-representation of C0(M) and F is a bounded linear operator acting on HM such
that F ∗F − I and FF ∗ − I are locally compact, and �F − F� is compact for all
� ∈ C0(M);

(2) a cycle for K1(M) is a pair (HM, F ), where HM is a Hilbert space with a
∗-representation of C0(M) and F is a self-adjoint operator acting on HM such that
F 2 − I is locally compact, and �F − F� is compact for all � ∈ C0(M).

Let (HP \Q, F ) be a cycle for K0(P ; Q) = K0(C0(P \Q)). Without loss of generality,
we can assume that HP \Q is a nondegenerate ∗-representation of C0(P \Q) whose range
contains no nonzero compact operator.

For each positive integer n, there exists a locally finite open cover {Un,i}i for P \Q
such that diameter(Un,i) < 1/n for all i. Let {�n,i}i be a continuous partition of unity
subordinate to {Un,i}i . Define a family of operators F(t) (t ∈ [0, ∞)) acting on HP \Q
by

F(t) =
∑

i

((n − t)�
1
2
n,iF�

1
2
n,i + (t − n + 1)�

1
2
n+1,iF�

1
2
n+1,i )

for all positive integer n and t ∈ [n − 1, n], where the infinite sum converges in strong
topology. Lemma 2.6 of [39] implies that F(t) is a bounded and uniformly norm-
continuous function from [0, ∞) to the C∗-algebra of all bounded operators acting on
HP \Q. Note that

propagation(F (t)) → 0 as t → ∞.

Using the above facts it is not difficult to see that F(t) is a multiplier of C∗
L(P \Q)/C∗

L

(�(Q\P)) and F(t) is a unitary modulo C∗
L(P \Q)/C∗

L(�(Q\P)). Hence F(t) gives
rise to an element

[F(t)] ∈ K0(C
∗
L(P )/C∗

L(Q, P ))�K0(C
∗
L(P \Q)/C∗

L(�(Q\P))).

We define the local index of the cycle (HP \Q, F ) to be [F(t)].
Similarly we can define the local index map

IndL : K1(P ; Q) → K1(C
∗
L(P )/C∗

L(Q, P ))�K1(C
∗
L(P \Q)/C∗

L(�(Q\P))).

Proposition 4.6. IndL is an isomorphism from K∗(P, Q) to K∗(C∗
L(P )/C∗

L(Q; P)).
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Proof. We have the following commutative diagram:

→ K∗(Q) → K∗(P ) → K∗(P, Q) →
↓ ↓ ↓

→ K∗(C∗
L(Q; P)) → K∗(C∗

L(P )) → K∗(C∗
L(P )/C∗

L(Q; P)) →
→ K∗+1(Q) → K∗+1(Q) → · · ·

↓ ↓
→ K∗+1(C

∗
L(Q; P)) → K∗+1(C

∗
L(P )) → · · ·,

where the vertical map from K∗(Q) to K∗(C∗
L(Q; P)) is the composition of the local

index map with the homomorphism from K∗(C∗
L(Q)) to K∗(C∗

L(Q; P)) induced by
the inclusion homomorphism from C∗

L(Q) to C∗
L(Q; P).

Now Proposition 4.6 follows from the five lemma, Theorem 4.5, and the fact that
the inclusion homomorphism from K∗(C∗

L(Q)) to K∗(C∗
L(Q; P)) is an isomorphism

(cf. Lemma 3.10 in [38]). �

5. Finitization of K-theory

In this section, we introduce algebras associated to a sequence of finite metric spaces.
The new algebras allow us to localize K-theory of the Roe algebra associated to an
infinite metric space to its finite metric subspaces (we call this process finitization).

Let � be a discrete metric space with bounded geometry, let {Fn}∞n=1 be a sequence
of finite metric subspaces of �.

We define C∗
alg ({Fn}n) to be the algebra{ ∞

�
n=1

an : an ∈ C∗(Fn), sup
n

‖an‖ < +∞, sup
n

(propagation(an)) < +∞
}

.

Endow C∗
alg ({Fn}n) with the following norm:∥∥∥∥ ∞

�
n=1

an

∥∥∥∥ = sup
n

‖an‖ .

Definition 5.1. The C∗-algebra C∗ ({Fn}n) is defined to be the norm completion of
C∗

alg ({Fn}n).

Definition 5.2. The C∗-algebra C∗(
{
��Fn

}
n
) is defined to be the closed subalgebra of

C∗ ({Fn}n) generated by elements
∞
�
n=1

an such that there exists r > 0 satisfying

supp(an) ⊆ (Fn ∩ B�(� − Fn, r)) × (Fn ∩ B�(� − Fn, r))

for all n, where B�(� − Fn, r) = {x ∈ � : d(x, � − Fn) < r} if � − Fn �= ∅, and
B�(� − Fn, r) = ∅ if � − Fn = ∅.

It is easy to see that C∗(
{
��Fn

}
n
) is a two-sided ideal in C∗ ({Fn}n).



16 G. Kasparov, G. Yu / Advances in Mathematics 206 (2006) 1–56

Definition 5.3. We define the C∗-algebra C∗(
{
Fn, ��Fn

}
n
) to be the quotient algebra

C∗ ({Fn}n) /C∗(
{
��Fn

}
n
).

Throughout the rest of this paper, let �n ∈ l∞(�) be the characteristic function of
Fn.

Define a homomorphism

S : C∗ ({Fn, ��Fn

}
n

) → C∗ ({Fn, ��Fn

}
n

)
by

S[a1�a2�a3� . . .] = [�1a2�1��2a3�2��3a4�3� . . .]

for all [a1�a2�a3� . . .] ∈ C∗ ({Fn, ��Fn

}
n

)
.

Denote by C∗ ([0, 1], {Fn, ��Fn

}
n

)
the C∗-algebra of all continuous functions on

[0, 1] with values in C∗ ({Fn, ��Fn

}
n

)
.

Definition 5.4. We define the C∗-algebra C∗
S(�) to be

{
a ∈ C∗([0, 1], {Fn, ��Fn

}
n
) : a(1) = S(a(0))

}
.

Define a ∗-homomorphism j : C∗
S(�) → C∗(

{
Fn, ��Fn

}
n
) by

j (a) = a(0)

for every a ∈ C∗
S(�).

Proposition 5.5. We have the following exact sequence:

· · · → K∗+1(C
∗(
{
Fn, ��Fn

}
n
))

(Id−S)∗−−−−−→ K∗+1(C
∗(
{
Fn, ��Fn

}
n
)) → K∗(C∗

S(�))

j∗−−−−−→ K∗(C∗(
{
Fn, ��Fn

}
n
))

(Id−S)∗−−−−−→ K∗(C∗(
{
Fn, ��Fn

}
n
)) → · · · ,

where Id is the identity homomorphism.

Proof. Let A1 = C∗([0, 1], {Fn, ��Fn

}
n odd) be the algebra of all continuous functions

on the unit interval [0, 1] with values in C∗ ({Fn, ��Fn

}
n odd

)
, let A2 = C∗ ( [0, 1],{

Fn, ��Fn

}
n even

)
be the algebra of all continuous functions on the unit interval [0, 1]

with values in C∗ ({Fn, ��Fn

}
n even

)
, and B = C∗ ({Fn, ��Fn

}
n

)
.
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Define f1 : A1 → B and f2 : A2 → B by

f1[a1�a3�a5�a7� . . .)]=[a1(1)��2a3(0)�2�a3(1)��4a5(0)�4�a5(1)� . . .)] ,

f2[b2�b4�b6� . . .)] = [�1b2(0)�1�b2(1)��3b4(0)�3�b4(1)� . . .)] .

Let P = {(a, b) | f1(a) = f2(b)} ⊆ A1�A2. It is not difficult to see that P is isomor-
phic to C∗

S(�). Note that f1 and f2 are surjective ∗-homomorphisms. By the Mayer–
Vietoris sequence [36], we have the following exact sequence:

· · · −−−−−→ K∗+1(A1)�K∗+1(A2) −−−−−→ K∗+1(B) −−−−−→ K∗(P )

(g1∗, g2∗)−−−−−→ K∗(A1)�K∗(A2)
f2∗−f1∗−−−−−→ K∗(B) −−−−−→ · · · ,

where g1(a, b) = a, g2(a, b) = b. This implies Proposition 5.5. �

We define a map

� : C∗(�) → C∗
S(�)

by

�(a) =
[ ∞

�
n=1

�na�n

]

for all a ∈ C∗(�), where �(a) is viewed as a constant function on [0, 1].
It is not difficult to prove the following lemma.

Lemma 5.6. � is a ∗-homomorphism.

Proposition 5.5 allows us to localize �∗(K∗(C∗(�))) to finite subspaces of �. It is
not known if �∗ is an isomorphism.

Next, we shall introduce twisted versions of the algebras of Definitions 5.1–5.3.
Let f : � → X be a uniform embedding. For each n ∈ N (the set of all natural

numbers), let Vn ⊆ X be a finite-dimensional subspace such that f (Fn) ⊆ Vn. Let
Wn = Vn�V ∗

n .
Let H be an infinite-dimensional separable Hilbert space, and let HFn = l2(Fn)⊗H

be the Hilbert space as in the definition of C∗(Fn).
Recall that, for each m�1, we define a norm on ⊗mWn by

‖u‖ = sup{(�1 ⊗ · · · �m)(u) : �k ∈ W ∗
n , ‖�k‖�1, 1�k�m}

for all u ∈ ⊗mWn, where W ∗
n is the dual (Banach) space of Wn.
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We define T (Wn) to be the Banach space{
∞
�

m=0
um : um ∈ ⊗mWn,

∞∑
m=0

‖um‖ < ∞
}

endowed with the norm ∥∥∥∥ ∞
�

m=0
um

∥∥∥∥ =
∞∑

m=0

‖um‖.

Let TC(Wn) be the complexification of T (Wn).
For each m�1, we define a norm on HFn ⊗ (⊗mWn) by

‖u‖
= sup{(�0 ⊗ �1 ⊗ · · · �m)(u) : �0 ∈ (HFn)

∗,

‖�0‖ = 1, �k ∈ W ∗
n , ‖�k‖�1, 1�k�m}

for all u ∈ HFn ⊗ (⊗mWn), where (HFn)
∗ is the dual (Hilbert) space of HFn , and W ∗

n

is the dual (Banach) space of Wn.
We define HFn ⊗ T (Wn) to be the Banach space{

∞
�

m=0
um : um ∈ HFn ⊗ (⊗mWn),

∞∑
m=0

‖um‖ < ∞
}

endowed with the norm ∥∥∥∥ ∞
�

m=0
um

∥∥∥∥ =
∞∑

m=0

‖um‖.

Let HFn ⊗ TC(Wn) be the complexification of the Banach space HFn ⊗ T (Wn).
Let HFn ⊗ IC(Wn) be the closed (complex) Banach subspace of HFn ⊗ TC(Wn)

spanned by all elements of the form

h ⊗ (v1 ⊗ ((w1 ⊗ w2) + (w2 ⊗ w1) + 2q(w1, w2)) ⊗ v2),

where h ∈ HFn , w1 ∈ Wn, w2 ∈ Wn, v1 ∈ ⊗mWn for some m, v2 ∈ ⊗lWn for some l,
q is the quadratic form on Wn defined in Section 3, and IC(Wn) is as in Section 3.

Now we define the Banach space HFn ⊗ Cl(Wn) to be quotient Banach space:

HFn ⊗ Cl(Wn) = (HFn ⊗ TC(Wn))/(HFn ⊗ IC(Wn)),

where Cl(Wn) is as in Section 3.
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Let C0(Wn, HFn ⊗ Cl(Wn)) be the Banach space of all continuous functions on
Wn with values in HFn ⊗ Cl(Wn), vanishing at ∞, where the norm of each element
� ∈ C0(Wn, HFn ⊗ Cl(Wn)) is defined by

‖�‖ = sup
w∈Wn

‖�(w)‖.

Let C∗(Fn) ⊗alg C0(Wn, Cl(Wn)) be the algebraic tensor product of C∗(Fn) with
C0(Wn, Cl(Wn)). We shall construct a representation of the algebra C∗(Fn)⊗alg C0(Wn,

Cl(Wn)) on the Banach space C0(Wn, HFn ⊗ Cl(Wn)) as follows.
For each T ∈ C∗(Fn), let T ⊗ 1 be the bounded operator on HFn ⊗ Cl(Wn) defined

by

(T ⊗ 1)(h ⊗ �) = (T h) ⊗ �

for all h ∈ HFn and � ∈ Cl(Wn).
We define a bounded operator 	(T ) on C0(Wn, HFn ⊗ Cl(Wn)) by

((	(T ))(�))(w) = (T ⊗ 1)(�(w))

for all � ∈ C0(Wn, HFn ⊗ Cl(Wn)) and w ∈ Wn.
For every element v ∈ Cl(Wn), let 1 ⊗ v be the bounded operator on HFn ⊗ Cl(Wn)

defined by

(1 ⊗ v)(h ⊗ �) = h ⊗ (v�)

for all h ∈ HFn and � ∈ Cl(Wn), where v� is the product of v with � in Cl(Wn).
For every g ∈ C0(Wn, Cl(Wn)), we define a bounded operator Mg on C0(Wn, HFn ⊗

Cl(Wn)) by

(Mg(�))(w) = (1 ⊗ g(w))(�(w))

for all � ∈ C0(Wn, HFn ⊗ Cl(Wn)) and w ∈ Wn.
We now construct a representation of the algebra C∗(Fn) ⊗alg C0(Wn, Cl(Wn)) on

the Banach space C0(Wn, HFn ⊗ Cl(Wn)) by

(T ⊗ g)� = 	(T )(Mg�)

for all T ∈ C∗(Fn), g ∈ C0(Wn, Cl(Wn)), and � ∈ C0(Wn, HFn ⊗ Cl(Wn)).
By the definitions of the operators 	(T ), Mg and the Banach space norm on

C0(Wn, HFn ⊗ Cl(Wn)), it is not difficult to verify

‖T ⊗ g‖�‖T ‖ ‖g‖.
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We now define the Banach algebra C∗(Fn, Vn) to be the closure of algebraic ten-
sor product of C∗(Fn) ⊗alg C0(Wn, Cl(Wn)) under the operator norm given by the
above representation of the algebra C∗(Fn) ⊗alg C0(Wn, Cl(Wn)) on the Banach space
C0(Wn, HFn ⊗ Cl(Wn)).

We remark that C∗(Fn, Vn) is carefully defined for the purpose of constructing the
Bott map later on (cf. the definition of the Bott map before Lemma 6.1).

We define the Banach space C0(Wn, H ⊗ Cl(Wn)) in a way similar to the above
definition of the Banach space C0(Wn, HFn ⊗ Cl(Wn)). Let K be the C∗-algebra of all
compact operators on the Hilbert space H , let K ⊗alg C0(Wn, Cl(Wn)) be the algebraic
tensor product of K with C0(Wn, Cl(Wn)). We can construct a representation of the
algebra K ⊗alg C0(Wn, Cl(Wn)) on the Banach space C0(Wn, H ⊗ Cl(Wn)) in way
similar to the construction of the above representation of the algebra C∗(Fn) ⊗alg
C0(Wn, Cl(Wn)) on the Banach space C0(Wn, HFn ⊗ Cl(Wn)).

We define K ⊗ C0(Wn, Cl(Wn)) to be operator norm closure of the algebra K ⊗alg
C0(Wn, Cl(Wn)), where the operator norm is given by a representation of the algebra
K ⊗alg C0(Wn, Cl(Wn)) on the Banach space C0(Wn, H ⊗ Cl(Wn)).

We can identify C∗(Fn, Vn) with the algebra of all functions on Fn ×Fn with values
in K ⊗ C0(Wn, Cl(Wn)) with the following convolution product:

(a · b)(x, y) =
∑
z∈Fn

a(x, z) b(z, y)

for all a and b in C∗(Fn, Vn), and (x, y) ∈ Fn × Fn.
For any a ∈ C∗(Fn, Vn), we define

supp(a) = {(x, y) ∈ Fn × Fn : a(x, y) �= 0},

propagation(a) = sup{d(x, y) : (x, y) ∈ supp(a)}.

For any a ∈ C∗(Fn, Vn) and (x, y) ∈ Fn × Fn, we can identify a(x, y) as a function
from Wn to K ⊗ Cl(Wn) and define

support(a(x, y)) = {� ∈ Wn : (a(x, y))(�) �= 0},

where K ⊗Cl(Wn) is the operator norm closure of K ⊗alg Cl(Wn) (the operator norm is
given by the natural representation of K⊗algCl(Wn) on the Banach space H ⊗Cl(Wn)).

Let

C∗
alg ({Fn, Vn}n) =

{ ∞
�
n=1

an : an ∈ C∗(Fn, Vn), sup
n

‖an‖ < +∞, ∃ r > 0

such that propagation(an) < r for all n, and ∃ R > 0

such that support(an(x, y)) ⊆ BWn(f (x)�0, R) for all n

}
.
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Endow C∗
alg({Fn, Vn}n) with the norm

∥∥∥∥ ∞
�
n=1

an

∥∥∥∥ = sup
n

‖an‖.

Definition 5.7. We define the Banach algebra C∗({Fn, Vn}n) to be the norm completion
of C∗

alg({Fn, Vn}n).

Definition 5.8. C∗(
{
��Fn,Vn

}
n
) is defined to be the closed subalgebra of C∗({Fn,Vn}n)

generated by elements �∞
n=1an such that ∃ r > 0 satisfying

supp(an) ⊆ (Fn ∩ B�(� − Fn, r)) × (Fn ∩ B�(� − Fn, r)) .

Note that C∗(
{
��Fn, Vn

}
n
) is a closed two sided ideal of C∗({Fn, Vn}n).

Definition 5.9. We define C∗(
{
Fn, ��Fn, Vn

}
n
) to be the quotient algebra

C∗({Fn, Vn}n)/C∗(
{
��Fn, Vn

}
n
).

6. The Bott maps

In this section, we use the family of uniformly almost flat vector bundles introduced
in Section 3 to construct certain Bott maps. These Bott maps play a crucial role in the
proof of the main result of this paper.

We shall first describe a difference construction in K-theory of Banach algebras. Let
B be a unital Banach algebra, let A be a closed two sided ideal in B. Let p and
q be idempotents in B such that p − q ∈ A. We shall define a difference element
D(p, q) ∈ K0(A) associated to the pair p and q. When A and B are C∗-algebras, the
difference construction described here is compatible with the difference construction in
KK-theory (as explained below).

Let

Z(p, q) =

⎛⎜⎜⎝
q 0 1 − q 0

1 − q 0 0 q

0 0 q 1 − q

0 1 0 0

⎞⎟⎟⎠ .
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We have

(Z(p, q))−1 =

⎛⎜⎜⎝
q 1 − q 0 0
0 0 0 1

1 − q 0 q 0
0 q 1 − q 0

⎞⎟⎟⎠ .

Define

D0(p, q) = (Z(p, q))−1

⎛⎜⎜⎝
p 0 0 0
0 1 − q 0 0
0 0 0 0
0 0 0 0

⎞⎟⎟⎠Z(p, q) .

Let

p1 =

⎛⎜⎜⎝
1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

⎞⎟⎟⎠ .

Note that D0(p, q) is an element in M4(A
+) and D0(p, q) = p1 modulo M4(A).

We define

D(p, q) = [D0(p, q)] − [p1]

in K0(A).
Next we shall explain that, when A and B are C∗-algebras, the difference construction

described above is compatible with the difference construction in KK-theory.
Recall that the difference element in KK(C, A)�K0(A) is represented by the KK

module (E, �, F ), where E = A�A is the Hilbert module over A with the inner
product:

< (a0�a1), (b0�b1) >= a∗
0b0�a∗

1b1

for all a0�a1 and b0�b1 in A�A, � = �0��1 is the homomorphism from C to
B(E) defined by

(�0(c))a = cpa,

(�1(c))a = cqa
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for all c ∈ C and a ∈ A, and F is the operator acting on E defined by

F =
(

0 1
1 0

)
.

Let E′
0 = E′

1 = A�A�A�A be the Hilbert module over A with the inner product

< a1�a2�a3�a4, b1�b2�b3�b4 >= a∗
1b1�a∗

2b2�a∗
3b3�a∗

4b4

for all a1�a2�a3�a4 and b1�b2�b3�b4 in A�A�A�A.
Let E′ = E′

0�E′
1 and F ′ be the operator acting on E′ defined by

F ′ =
(

0 I

I 0

)
,

where I is the identity element in M4(C).
Let �′

0 and �′
1 be, respectively, homomorphisms from C to B(E′

0) and B(E′
1) defined

by

(�′
0(c))v0 = c

⎛⎜⎜⎝
p 0 0 0
0 1 − q 0 0
0 0 0 0
0 0 0 0

⎞⎟⎟⎠ v0

for all c ∈ C and v0 ∈ E′
0, and

(�′
1(c))v1 = c

⎛⎜⎜⎝
q 0 0 0
0 1 − q 0 0
0 0 0 0
0 0 0 0

⎞⎟⎟⎠ v1

for all c ∈ C and v1 ∈ E′
1.

Let �′ = �′
0��′

1. It is not difficult to see that (E, �, F ) is equivalent to (E′, �′, F ′)
as KK modules in KK(C, A). This, together with identity (Z(p, q)−1�Z(p, q)−1)

F ′(Z(p, q)�Z(p, q)) = F ′, implies that (E, �, F ) is equivalent to (E′, (Z(p, q))−1�
(Z(p, q))−1)�′(Z(p, q)�Z(p, q)), F ′) as Kasparov modules in KK(C, A), where
Z(p, q) is defined as above.

By the formula of (Z(p, q))−1 as described above, we can verify

p1 = Z(p, q))−1

⎛⎜⎜⎝
q 0 0 0
0 1 − q 0 0
0 0 0 0
0 0 0 0

⎞⎟⎟⎠Z(p, q) ,

where p1 is defined as above.
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It follows that (E, �, F ) is equivalent to D(p, q) in KK(C, A)�K0(A).
Let C∗(Fn) ⊗alg C0(Wn, Cl(Wn))

+ be the algebraic tensor product of C∗(Fn) with
C0(Wn, Cl(Wn))

+, where C0(Wn, Cl(Wn))
+ is obtained from C0(Wn, Cl(Wn)) by ad-

joining the identity.
We can construct a representation of the algebra C∗(Fn)⊗algC0(Wn, Cl(Wn))

+ on the
Banach space C0(Wn, HFn ⊗Cl(Wn)) exactly in the same way as the representation of
the algebra C∗(Fn) ⊗alg C0(Wn, Cl(Wn)) on the Banach space C0(Wn, HFn ⊗ Cl(Wn)).
We define the Banach algebra C∗(Fn, V

+
n ) to be the closure of the algebra C∗(Fn)⊗alg

C0(Wn, Cl(Wn)) under the operator norm given by the representation of the algebra
C∗(Fn) ⊗alg C0(Wn, Cl(Wn))

+ on the Banach space C0(Wn, HFn ⊗ Cl(Wn)).

We define

C∗
alg(
{
Fn, V

+
n

}
n
) =

{ ∞
�
n=1

an : an ∈ C∗(Fn, V
+
n ), sup

n
‖an‖ < +∞,

∃ r > 0 such that propagation(an) < r for all n,

∃ R > 0 such that an(x, y) = cnI + bn(x, y)

for some cn ∈ C, bn ∈ C∗(Fn, Vn)

satisfying support (bn(x, y)) ⊆ BWn(f (x)�0, R)

}
,

where I is the identity element in C0(Wn, Cl(Wn))
+.

Endow C∗
alg(
{
Fn, V

+
n

}
n
) with the norm

∥∥∥∥ ∞
�
n=1

an

∥∥∥∥ = sup
n

‖an‖.

Let C∗(
{
Fn, V

+
n

}
n
) be the norm completion of C∗

alg

({
Fn, V

+
n

}
n

)
. Note that C∗({Fn,

Vn}n) is a closed two sided ideal of C∗ ({Fn, V
+
n

}
n

)
.

We can similarly define C∗(
{
��Fn, V

+
n

}
n
) and C∗ ({Fn, ��Fn, V

+
n

}
n

)
.

Next, we shall define a Bott map

{Vn} : K0(C
∗({Fn}n)) → K0(C

∗({Fn, Vn}n)) .

Let e = ∞
�
n=1

en ∈ C∗({Fn}n) be an idempotent representing an element in K0(C
∗

({Fn}n)). Given any � > 0, ∃ e′ = ∞
�
n=1

e′
n ∈ C∗

alg({Fn}n) such that ‖e′ − e‖ < �.

Define

p0(e
′) = ∞

�
n=1

an ∈ C∗
alg(
{
Fn, V

+
n

}
) ⊗ M2(C)
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by

(an(x, y))(v�h) = e′
n(x, y) ⊗ (index(FVn,�))((v + f (x))�h)

for all x, y ∈ Fn and v�h ∈ Wn = Vn�V ∗
n , where index(FVn,�) is defined as in

Proposition 3.3. Note that p0(e
′) depends on �.

The finiteness of supn ‖an‖ follows from part (1) of Lemma 6.1 below. This, together
with Proposition 3.2, implies that p0(e

′) is an element in C∗
alg(
{
Fn, V

+
n

}
) ⊗ M2(C).

Lemma 6.1. (1) Let b = ∞
�
n=1

bn ∈ C∗
alg({Fn}n), � ∈ C0(Wn, Cl(Wn))

+. Let cn(b, �) =
∞
�
n=1

cn ∈ C∗
alg(
{
Fn, V

+
n

}
n
) be defined by

(cn(x, y))(v�h) = bn(x, y) ⊗ �((v + f (x))�h)

for all x, y ∈ Fn and v�h ∈ Wn = Vn�V ∗
n , where � is identified with a function

on Wn with values in Cl(Wn). We have

‖c(b, �)‖�‖b‖ ‖�‖.

(2) Let e, e′ and � be as above. If � has bounded geometry, then ∀� > 0, ∃ � > 0
and � such that

‖(p0(e
′))2 − p0(e

′)‖ < �,

where � is as in the definition of FVn,�, both � and � are independent of n.

Proof. For each m�1, recall that the norm on ⊗mWn is defined by

‖u‖ = sup{(�1 ⊗ · · · �m)(u) : �k ∈ W ∗
n , ‖�k‖�1, 1�k�m}

for all u ∈ ⊗mWn, where W ∗
n is the dual (Banach) space of Wn.

We also recall that T (Wn) is the Banach space{
∞
�

m=0
um : um ∈ ⊗mWn,

∞∑
m=0

‖um‖ < ∞
}

endowed with the norm ∥∥∥∥ ∞
�

m=0
um

∥∥∥∥ =
∞∑

m=0

‖um‖,

and TC(Wn) is the complexification of T (Wn).
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Let HFn = l2(Fn) ⊗ H and HFn ⊗ TC(Wn) be as in the definitions of C∗(Fn, Vn) =
C∗(Fn) ⊗ C0(Wn, Cl(Wn)) and C∗(Fn, V

+
n ) = C∗(Fn) ⊗ C0(Wn, Cl(Wn))

+.
Given a collection of elements {wx}x∈Fn in TC(Wn), we define an operator A on

HFn ⊗ TC(Wn) by

A((�x ⊗ �) ⊗ �) = (�x ⊗ �) ⊗ (wx ⊗ �),

where x ∈ Fn, � ∈ H , � ∈ TC(Wn), and �x is the Dirac function at x.

Claim 1. ‖A‖� supx∈Fn
‖wx‖.

Proof. Let m�1. Given v ∈ HFn ⊗ (⊗m(Wn)), we can write

v =
∑
x∈Fn

(�x ⊗ vx),

where �x ⊗ vx is an element in the closed subspace of HFn ⊗ (⊗m(Wn)) spanned by
all vectors (�x ⊗ �) ⊗ � for all � ∈ H and � ∈ ⊗m(Wn).

By the definition of the Banach space norm on HFn ⊗ TC(Wn), we have

‖v‖ =
∥∥∥∥∥∥
∑
x∈Fn

(�x ⊗ vx)

∥∥∥∥∥∥
= sup

�x∈H ∗, ‖�x‖�1, �k∈W ∗
n , ‖�k‖�1, 1�k �m

⎛⎝∑
x∈Fn

|(�x ⊗ �1 ⊗ · · · ⊗ �m)(vx)|2
⎞⎠

1
2

,

where H ∗ is the dual (Hilbert) space of H , and W ∗
n is the dual (Banach) space of

Wn.
Claim 1 follows from the above norm formula. �

Let HFn⊗Cl(Wn) be the Banach space as in the definitions of C∗(Fn, Vn) = C∗(Fn)⊗
C0(Wn, Cl(Wn)) and C∗(Fn, V

+
n ) = C∗(Fn) ⊗ C0(Wn, Cl(Wn))

+.
Given a collection of elements {sx}x∈Fn in Cl(Wn), we define an operator B on

HFn ⊗ Cl(Wn) by

B((�x ⊗ �) ⊗ �) = (�x ⊗ �) ⊗ (sx �),

where x ∈ Fn, � ∈ H , � ∈ Cl(Wn), and �x is the Dirac function at x, and sx � is the
multiplication of sx with � in Cl(Wn).
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Claim 1, together with the definition of the norm on HFn ⊗ Cl(Wn), implies the
following:

Claim 2. ‖B‖� supx∈Fn
‖sx‖.

For each w = v�h ∈ Wn, let M�,w be the bounded linear operator on HFn ⊗Cl(Wn)

defined by

M�,w((�x ⊗ �) ⊗ �) = (�x ⊗ �) ⊗ (�x,w�),

where x ∈ Fn, � ∈ H , � ∈ Cl(Wn), �x is the Dirac function at x, �x,w is the element
in Cl(Wn) defined by �x,w = �((v + f (x))�h), and �x,w� is the multiplication of
�x,w with � in Cl(Wn).

By Claim 2 and the definition of the Banach space norm on HFn ⊗Cl(Wn), we have

‖M�,w‖�‖�‖.

Let C0(Wn, HFn ⊗ Cl(Wn)) be the Banach space in the definitions of C∗(Fn, Vn) =
C∗(Fn) ⊗ C0(Wn, Cl(Wn)) and C∗(Fn, V

+
n ) = C∗(Fn) ⊗ C0(Wn, Cl(Wn))

+.
We now define an operator T� on the Banach space C0(Wn, HFn ⊗ Cl(Wn)) by

(T��)(w) = M�,w(�(w))

for all � ∈ C0(Wn, HFn ⊗ Cl(Wn)) and w ∈ Wn.
By the above inequality, we have

‖T�‖�‖�‖.

Let 	(bn) be the operator on the Banach space C0(Wn, HFn ⊗ Cl(Wn)) defined by

(	(bn)�)(w) = (bn ⊗ 1)�(w)

for all � ∈ C0(Wn, HFn ⊗ Cl(Wn)) and w ∈ Wn.
By the definition of the norm on the Banach space C0(Wn, HFn ⊗Cl(Wn)), we have

‖	(bn)‖�‖bn‖.

Note that cn(bn, �) is the product of T� with 	(bn) as operators on the Banach
space C0(Wn, HFn ⊗ Cl(Wn)).

It follows that

‖cn(bn, �)‖�‖bn‖ ‖�‖

for all � ∈ C0(Wn, Cl(Wn))
+.
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This proves part (1) of Lemma 6.1.
Recall that index(FVn,�) is an element in C0(Wn, Cl(Wn))

+ ⊗M2(C). By part (2) of
Proposition 3.2, there exists C > 0 such that index(FVn,�)�C for all n. Now part (2)
of Lemma 6.1 follows from part (1) of Lemma 6.1, Proposition 3.3, and the bounded
geometry property of �. �

Define q0(e
′) = ∞

�
n=1

bn ∈ C∗
alg(
{
Fn, V

+
n

}
) ⊗ M2(C) by

(bn(x, y))(v�h) = e′
n(x, y) ⊗

(
1 0
0 0

)

for all x, y ∈ Fn, and v�h ∈ Wn = Vn�V ∗
n .

Let ε be as in Proposition 6.1. Choose ε to be sufficiently small. Let p(e′) and
q(e′) be idempotents in C∗({Fn, V

+
n }) ⊗ M2(C) obtained from p0(e

′) and q0(e
′) by

functional calculus. Note that p(e′) − q(e′) ∈ C∗({Fn, Vn}) ⊗ M2(C).

Definition 6.2. We define {Vn}[e] ∈ K0(C
∗({Fn, Vn})) to be the difference element

D(p(e′), q(e′)).

By suspension, we can similarly define

{Vn} : K1(C
∗({Fn})) → K1(C

∗({Fn, Vn})).

Note that the homomorphism {Vn} : K∗(C∗({Fn})) → K∗(C∗({Fn, Vn})), is inde-
pendent of the choice of �.

We can define the following Bott map by the same method:

{Vn} : K∗
(
C∗ ({Fn, ��Fn

})) → K∗
(
C∗ ({Fn, ��Fn, Vn

}
n

))
.

For any R > 0, we define C∗(Fn, Vn)R to be the closed subalgebra of C∗(Fn, Vn)

generated by elements a ∈ C∗(Fn, Vn) such that propagation (a) < R and support (a(x,

y)) ⊆ BWn(f (x)�0, R) for all x, y ∈ Fn. Note that there exists R′ > 0 such that every
element in C∗(Fn, Vn)R has propagation at most R′, where R′ does not depend on n.

Definition 6.3.

C∗ ({Fn, Vn}n)R =
{ ∞

�
n=1

an : an ∈ C∗ (Fn, Vn)R , sup
n

‖an‖ < +∞
}

,

where C∗({Fn, Vn}n)R is endowed with the norm

∥∥∥∥ ∞
�
n=1

an

∥∥∥∥ = supn ‖an‖.
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We can similarly define the Banach algebras C∗(
{
��Fn, Vn

}
n
)R and C∗({Fn, ��

Fn, Vn}n)R .

Lemma 6.4. We have

(1) C∗({Fn, Vn}n) = limR→∞ C∗({Fn, Vn}n)R ;
(2) C∗(

{
��Fn, Vn

}
n
) = limR→∞ C∗(

{
��Fn, Vn

}
n
)R ;

(3) C∗(
{
Fn, ��Fn, Vn

}
n
) = limR→∞ C∗(

{
Fn, ��Fn, Vn

}
n
)R .

Note that there exists a natural homomorphism

lim
R→∞ K∗(C∗({Fn, Vn}n)R) → lim

R→∞
∞
�
n=1

K∗(C∗(Fn, Vn)R) ,

where
∞
�
n=1

K∗(C∗(Fn, Vn)R) = { ∞
�
n=1

zn : zn ∈ K∗(C∗(Fn, Vn)R)}.
Similarly there exists a natural homomorphism

lim
R→∞ K∗(C∗(

{
Fn, ��Fn, Vn

}
n
)R) → lim

R→∞
∞
�
n=1

K∗(C∗(Fn, ��Fn, Vn)R) ,

where
∞
�
n=1

K∗(C∗(Fn, ��Fn, Vn)R) = { ∞
�
n=1

zn : zn ∈ K∗(C∗(Fn, ��Fn, Vn)R)}.
Composing {Vn} with the above homomorphisms, we obtain homomorphisms (still

denoted by {Vn})

K∗(C∗({Fn}n)) → lim
R→∞

∞
�
n=1

K∗(C∗(Fn, Vn)R) ,

K∗(C∗(
{
Fn, ��Fn

}
n
)) → lim

R→∞
∞
�
n=1

K∗(C∗(Fn, ��Fn, Vn)R) .

Proposition 6.5. Assume that {V ′
n} is a sequence of finite-dimensional subspaces of X

such that Vn ⊆ V ′
n. For any [z] ∈ K∗

(
C∗ ({Fn, ��Fn

}
n

))
,

{Vn}[z] = 0 in lim
R→∞

∞
�
n=1

K∗(C∗(Fn, ��Fn, Vn)R)

if and only if

{V ′
n}[z] = 0 in lim

R→∞
∞
�
n=1

K∗(C∗(Fn, ��Fn, V
′
n)R).

Roughly speaking, the proof of Proposition 6.5 is based on the idea that the product
of Bott elements for two finite-dimensional vector spaces is the Bott element for the
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product space of the two vector spaces. We need some preparations before we can
prove Proposition 6.5.

Next, we shall introduce the concept of a Fredholm pair for Banach algebras and
define its index. The concept of Fredholm pair and its index is motivated by KK-theory.
In the special case of C∗-algebras, it is compatible with the corresponding construction
in KK-theory.

Let B be a graded unital complex Banach algebra with the grading induced by a
grading operator ε in B satisfying ε2 = 1 and ‖ε‖ = 1. Let A be a graded closed two
sided ideal in B.

Let F be an element of degree 1 in B and let e be an idempotent of degree 0
in B.

(F, e) is said to be a Fredholm pair if

(1) e(F 2 − 1) ∈ A ;
(2) eF − Fe ∈ A .

We define Index(F, e) ∈ K0(A) of a Fredholm pair (F, e) as follows.
Let

p =
(

1 + ε

2

)
e

(
1 + ε

2

)
,

q =
(

1 − ε

2

)
e

(
1 − ε

2

)
,

� =
(

1 + ε

2

)
F

(
1 − ε

2

)
,

�′ =
(

1 − ε

2

)
F

(
1 + ε

2

)
.

Define

a11(F, e) = 1 + (p − p�q�′p)p�p�′p + (p�q�′p − p),

a12(F, e) = (p − p�q�′p)p�q(q − q�′p�q) + p�q(q − q�p�′q),

a21(F, e) = (q − q�′p�q)q�′p,

a22(F, e) = (q − q�′p�q)2.

Define

index(F, e) =
(

a11(F, e) a12(F, e)

a21(F, e) a22(F, e)

)
.



G. Kasparov, G. Yu / Advances in Mathematics 206 (2006) 1–56 31

It is not difficult to verify that index(F, e) is an idempotent in M2(A).
We define

Index(F, e) = [index(F, e)] −
[(

1 0
0 0

)]
∈ K0(A),

where K0(A) is the K-group of A considered as a Banach algebra without grading.
We remark that if e = 1, then

Index(F, e) = Index(F ),

where Index(F ) is defined as in Section 2.
Let A1 and A2 be two Banach algebras. Assume that A1 ⊗ A2 is a Banach algebra

tensor product of A1 and A2. We shall need an explicit construction of the product:

K0(A1) × K0(A2) → K0(A1 ⊗ A2).

Let �i : A+
i → C be the homomorphism defined by �i (a + cI) = c for any a ∈

Ai, c ∈ C and i = 1, 2, where A+
i is obtained from Ai by adjoining the identity.

Let � : A+
1 ⊗ A2 + A1 ⊗ A+

2 → C ⊗ A2 + A1 ⊗ C be the homomorphism defined by

�(a1 ⊗ a2 + b1 ⊗ b2) = �1(a1) ⊗ a2 + b1 ⊗ �2(b2)

for any a1 ⊗ a2 ∈ A+
1 ⊗ A2, b1 ⊗ b2 ∈ A1 ⊗ A+

2 . We have the following split exact
sequence:

0 → A1 ⊗ A2 → A+
1 ⊗ A2 + A1 ⊗ A+

2

�
�
i

C ⊗ A2 + A1 ⊗ C → 0,

where i : C ⊗ A2 + A1 ⊗ C → A+
1 ⊗ A2 + A1 ⊗ A+

2 is the inclusion homomorphism.
Next, we shall construct an explicit homomorphism

� : Ker �∗ → K0(A1 ⊗ A2).

Let p be an idempotent in Mn((A
+
1 ⊗ A2 + A1 ⊗ A+

2 )+) such that [p] − [i�(p)]
represents an element in Ker �∗.

Let

Z =

⎛⎜⎜⎝
i�(p) 0 1 − i�(p) 0

1 − i�(p) 0 0 i�(p)

0 0 i�(p) 1 − i�(p)

0 1 0 0

⎞⎟⎟⎠ .
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We have

Z−1 =

⎛⎜⎜⎝
i�(p) 1 − i�(p) 0 0

0 0 0 1
1 − i�(p) 0 i�(p) 0

0 i�(p) 1 − i�(p) 0

⎞⎟⎟⎠ .

Let

�0(p) = Z−1

⎛⎜⎜⎝
p 0 0 0
0 1 − i�(p) 0 0
0 0 0 0
0 0 0 0

⎞⎟⎟⎠Z .

We define

� ([p] − [i�(p)]) = [�0(p)] −

⎡⎢⎢⎣
⎛⎜⎜⎝

1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

⎞⎟⎟⎠
⎤⎥⎥⎦ ∈ K0(A1 ⊗ A2).

Lemma 6.6. The homomorphism � from Ker �∗ to K0(A1 ⊗ A2) is an isomorphism.

The product K0(A1) × K0(A2) → K0(A1 ⊗ A2) can now be described as follows.
Given idempotents p0, p1 in Mn(A

+
1 ) and q0, q1 in Mn(A

+
2 ) representing [p0]−[p1] ∈

K0(A1) and [q0] − [q1] ∈ K0(A2) such that �1(p0) = �1(p1), �2(q0) = �2(q1), note
that

D((p0 ⊗ q0)�(p1 ⊗ q1), (p0 ⊗ q1)�(p1 ⊗ q0))∈Ker �∗⊆K0(A
+
1 ⊗A2 + A1⊗A+

2 ) .

We define the product of [p0] − [p1] and [q0] − [q1] to be

�(D((p0 ⊗ q0)�(p1 ⊗ q1), (p0 ⊗ q1)�(p1 ⊗ q0))) ∈ K0(A1 ⊗ A2) .

Let B1 and B2 be two graded unital complex Banach algebras with gradings induced
by grading operators ε1 and ε2 (respectively in B1 and B2) satisfying ε2

i = 1 and
‖εi‖ = 1 for i = 1, 2. Let A1 and A2 be, respectively, graded closed two sided ideals
in B1 and B2.

Assume that Fi is an element of degree 1 in Bi satisfying

(1) F 2
i − 1 ∈ Ai ,

(2) (1 − F 2
i )1/2 is a well defined element in Ai ,

where i = 1, 2.
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Assume that B1 ⊗ B2 is a Banach tensor product of B1 and B2. Endow B1 ⊗ B2
with the grading induced by the grading operator ε1 ⊗ ε2.

Let M and N be elements in B1 ⊗ B2 such that

(1) M and N have degree 0 and respectively commute with F1 ⊗ 1 and 1 ⊗ F2;
(2) M2 + N2 − 1 ∈ A1 ⊗ A2;
(3) M((1 − F 2

1 )1/2 ⊗ 1) and N(1 ⊗ (1 − F 2
2 )1/2) are elements in A1 ⊗ A2.

Define

F = M(F1 ⊗ 1) + N(ε1 ⊗ F2) ∈ B1 ⊗ B2.

It is easy to check that F has degree 1 and F 2 − 1 ∈ A1 ⊗ A2.

Hence we can define

Index(F ) ∈ K0(A1 ⊗ A2).

Proposition 6.7. Assume that there exist homotopies Mt and Nt (t ∈ [0, 1]) in B1 ⊗B2
such that

(1) Mt and Nt have degree 0 for each t ∈ [0, 1];
(2) Mt and Nt commute, respectively, with F1 ⊗ 1 and 1 ⊗ F2 for each t ∈ [0, 1];
(3) Mt and Nt commute, respectively, with (1 − F 2

1 )1/2 ⊗ 1 and 1 ⊗ (1 − F 2
2 )1/2 for

each t ∈ [0, 1];
(4) M2

t + N2
t − 1 ∈ A1 ⊗ A2 for all t ∈ [0, 1];

(5) Mt((A
+
1 ⊗ A2)�(A1 ⊗ A+

2 )) ⊆ (A+
1 ⊗ A2)�(A1 ⊗ A+

2 ) for all t ∈ [0, 1],
((A+

1 ⊗ A2)�(A1 ⊗ A+
2 ))Mt ⊆ (A+

1 ⊗ A2)�(A1 ⊗ A+
2 ) for all t ∈ [0, 1],

Nt((A
+
1 ⊗ A2)�(A1 ⊗ A+

2 )) ⊆ (A+
1 ⊗ A2)�(A1 ⊗ A+

2 ) for all t ∈ [0, 1],
and ((A+

1 ⊗ A2)�(A1 ⊗ A+
2 ))Nt ⊆ (A+

1 ⊗ A2)�(A1 ⊗ A+
2 ) for all t ∈ [0, 1];

(6) M0 = M, N0 = N, M1 = N1 = 1/
√

2.

Then Index(F ) is equal to the product of Index(F1) with Index(F2) in K0(A1 ⊗ A2).

Proof. Let

F̃i =
(

Fi 0
0 0

)
, i = 1, 2 ,

p0 =
(

1 0
0 0

)
.

For i = 1, 2, let M2(Bi) be endowed with the grading induced by the grading
operator: (

εi 0
0 −εi

)
.
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(F̃i , p0) is a Fredholm pair for i = 1, 2. We have

Index(F̃i , p0) = Index(Fi).

Let

Wi = 1

2

(
1 + εi 1 − εi

1 − εi 1 + εi

)
, i = 1, 2 ,

ε0 =
(

1 0
0 −1

)
.

We have

W−1
i

(
εi 0
0 −εi

)
Wi = ε0 , i = 1, 2 .

Let

Ei = W−1
i F̃iWi, ei = W−1

i p0Wi

for i = 1, 2 .

Note that (Ei, ei) is a Fredholm pair with respect to the grading on M2(Bi) induced
by the grading operator ε0 for i = 1, 2. We have

Index(Ei, ei) = Index(Fi)

for i = 1, 2 .

Let

Gi =
(

Ei (1 − E2
i )1/2

(1 − E2
i )1/2 −Ei

)
, i = 1, 2 .

Define

F ′ = M ′(G1 ⊗ 1) + N ′((ε0� − ε0) ⊗ G2)) ∈ M2(M2(B1)) ⊗ M2(M2(B2)) ,

where M ′=∑16
k=1 M, N ′=∑16

k=1 N∈M16(B1 ⊗ B2)� M2(M2(B1)) ⊗ M2(M2(B2)).

Endow M2(M2(B1)) ⊗ M2(M2(B2)) with the grading operator

ε′ = (ε0� − ε0) ⊗ (ε0� − ε0).
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Define

e′ =
(

e1 0
0 0

)
⊗
(

e2 0
0 0

)
∈ M2(M2(B1)) ⊗ M2(M2(B2)) .

It is not difficult to verify that (F ′, e′) is a Fredholm pair with respect to the grading
given by the grading operator ε′. We have

Index(F ) = Index(F ′, e′).

Define

F ′′ = M ′′((G1� − G1) ⊗ 1) + N ′′(((ε0� − ε0)�(−ε0�ε0)) ⊗ (G2� − G2))

∈ M2(M4(B1)) ⊗ M2(M4(B2)) ,

where M ′′=M ′�M ′�M ′�M ′, N ′′=N ′�N ′�N ′�N ′, and M2(M4(B1))⊗M2(M4(B2))

is endowed with the grading operator

ε′′ = ((ε0� − ε0)�(−ε0�ε0)) ⊗ ((ε0� − ε0)�(−ε0�ε0)) .

Define

e′′ =
((

e1 0
0 0

)
�
(

0 0
0 0

))
⊗
((

e2 0
0 0

)
�
(

0 0
0 0

))
∈ M2(M4(B1)) ⊗ M2(M4(B2)) .

Note that (F ′′, e′′) is a Fredholm pair with respect to the grading given by the
grading operator ε′′. We have

Index(F ′, e′) = Index(F ′′, e′′).

Let

Ui = 1√
2

(
1 −Gi

Gi 1

)
for i = 1, 2.

We have

Ui

(
Gi 0
0 −Gi

)
U−1

i =
(

0 1
1 0

)
for i = 1, 2.
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Note that U1 ⊗ 1 and 1 ⊗ U2 have degree 0 in M2(M4(B1)) ⊗ M2(M4(B2)). Let

F ′′′ = (1 ⊗ U2)(U1 ⊗ 1)F ′′(U1 ⊗ 1)−1(1 ⊗ U2)
−1

= M ′′
((

0 1
1 0

)
⊗ 1

)
+ N ′′

(
((ε0� − ε0)�(−ε0�ε0)) ⊗

(
0 1
1 0

))
,

e′′′ =
(

U1

((
e1 0
0 0

)
�
(

0 0
0 0

))
U−1

1

)
⊗
(

U2

((
e2 0
0 0

)
�
(

0 0
0 0

))
U−1

2

)
.

Note that ε′′ commutes with (1⊗U2)(U1⊗1). It follows that (F ′′′, e′′′) is a Fredholm
pair with respect to the grading induced by the grading operator ε′′. We have

Index(F ′′′, e′′′) = Index(F ′′, e′′).

Let

F ′′′
i =

(
0 1
1 0

)
∈ M2(M4(Bi)),

e′′′
i = Ui

((
1 0
0 0

)
�
(

0 0
0 0

))
U−1

i ∈ M2(M4(Bi)) , i = 1, 2.

Note that (F ′′′
i , e′′′

i ) is a Fredholm pair with respect to the grading given by the
grading operator (ε0� − ε0)�(−ε0�ε0) in M2(M4(Bi)).

We have

Index(Fi) = Index(F ′′′
i , e′′′

i )

for i = 1, 2.
Let

V = 1

2

(
1 + (ε0� − ε0) 1 − (ε0� − ε0)

1 − (ε0� − ε0) 1 + (ε0� − ε0)

)
.

We have

V −1
(

ε0� − ε0 0
0 −ε0�ε0

)
V =

(
1 0
0 −1

)
.

Note also that V commute with

(
0 1
1 0

)
.
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Write

V −1e′′′
i V =

(
pi 0
0 qi

)
∈ M2(M4(Bi)) , i = 1, 2.

Let

e′′′′
i =

⎛⎜⎜⎝
pi 0 0 0
0 1 − qi 0 0
0 0 0 0
0 0 0 0

⎞⎟⎟⎠�

⎛⎜⎜⎝
qi 0 0 0
0 1 − qi 0 0
0 0 0 0
0 0 0 0

⎞⎟⎟⎠ ∈ M2×42(Bi),

F ′′′′ = M ′′′
((

0 I ′
I ′ 0

)
⊗ I ′′

)
+ N ′′′

(
� ⊗

(
0 I ′
I ′ 0

))
∈ M2×42(B1) ⊗ M2×42(B2),

where I ′ = I�I�I�I (I is the identity element in M4(B1) or M4(B2)), I ′′ = I ′�I ′,
M ′′′ = M ′′�M ′′�M ′′�M ′′, N ′′′ = N ′′�N ′′�N ′′�N ′′, and

� =
(

I ′ 0
0 −I ′

)
.

Let

e′′′′ = e′′′′
1 ⊗ e′′′′

2 ∈ M2×42(B1) ⊗ M2×42(B2).

Observe that (F ′′′′, e′′′′) is a Fredholm pair with respect to the grading induced by
the grading operator � ⊗ �. We have

Index(F ′′′, e′′′) = Index(F ′′′′, e′′′′).

Let

Z(pi, qi) =

⎛⎜⎜⎝
qi 0 1 − qi 0

1 − qi 0 0 qi

0 0 qi 1 − qi

0 1 0 0

⎞⎟⎟⎠ .

Write

(Z(pi, qi)�Z(pi, qi))
−1e′′′′

i (Z(pi, qi)�Z(pi, qi)) =
(

p′
i 0

0 q ′
i

)
∈ M2(M42(Ai)).
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We have

p′
i − q ′

i ∈ M42(Ai) · · · · · · · · · (J ).

Note that (Z(p1, q1) ⊗ 1)�(Z(p1, q1) ⊗ 1) and (1 ⊗ Z(p2, q2))�(1 ⊗ Z(p2, q2))

commute with F ′′′′.
Define

H(t) = M ′
t

((
0 I ′
I ′ 0

)
⊗ I ′′

)
+ N ′

t

(
� ⊗

(
0 I ′
I ′ 0

))
∈ M2×42(B1) ⊗ M2×42(B2),

where M ′
t = 2×44

�
k=1

Mt and N ′
t = 2×44

�
k=1

Nt .

Let

g =
(

p′
1 0

0 q ′
1

)
⊗
(

p′
2 0

0 q ′
2

)
∈ M2×42(B1) ⊗ M2×42(B2).

We have

H(t)g − gH(t) ∈ (M2×42(A
+
1 ) ⊗ M2×42(A2)) + (M2×42(A1) ⊗ M2×42(A

+
2 )),

H(t)2 − 1 ∈ M2×42(A1) ⊗ M2×42(A2).

Hence, by the formula of index(H(t), g), condition (5) of the proposition and the
above property (J ) of p′

i and q ′
i , we know that index(H(t), g) is a homotopy of

idempotents in M2(((M2×42(A
+
1 ) ⊗ M2×42(A2)) + (M2×42(A1) ⊗ M2×42(A

+
2 )))+) (note

that although (H(t), g) may not be a Fredholm pair, index(H(t), g) is still well defined
as an idempotent for each t).

It follows that

Index(H(1), g) = Index(H(0), g)

in K0((M2×42(A
+
1 ) ⊗ M2×42(A2)) + (M2×42(A1) ⊗ M2×42(A

+
2 ))).

This implies that

Index(H(1), g) ∈ Ker �∗,

where � is the natural homomorphism from (M2×42(A
+
1 )⊗M2×42(A2))+(M2×42(A1)⊗

M2×42(A
+
2 )) to (M2×42(C) ⊗ M2×42(A2)) + (M2×42(A1) ⊗ M2×42(C)).
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Note that

H(1) =
√

1

2

(((
0 I ′
I ′ 0

)
⊗ I ′′

)
+
(

� ⊗
(

0 I ′
I ′ 0

)))
.

It is not difficult to see that there exists a homotopy H1(t) in M2×42(C)⊗M2×42(C) ⊆
M2×42(B1) ⊗ M2×42(B2) such that

(1) H1(t) has degree one for all t ∈ [0, 1];
(2) H1(0) = H(1);

(3) H1(1) =
(

0 1
1 0

)
∈ M2(M2((M2×4(B1) ⊗ M2×4(B2)))), where M2(M2((M2×4

(B1) ⊗ M2×4(B2)))) is a graded algebra with the grading operator

(
1 0
0 −1

)
and

is identified with M2×42(B1) ⊗ M2×42(B2) as graded algebras;

(4) (H1(t))
2 =

(
1 0
0 1

)
;

(5) H1(t)g−gH1(t) ∈ M2(M2((M2×4(A
+
1 )⊗M2×4(A2))+(M2×4(A1)⊗M2×4(A

+
2 )))) ⊆

M2(M2((M2×4(B1) ⊗ M2×4(B2)))) for all t ∈ [0, 1].
By the formula of index(H1(t), g) and the above properties of H1(t), we know that

index(H1(t), g) is a homotopy of idempotents in M2(((M2×42(A
+
1 ) ⊗ M2×42(A2)) +

(M2×42(A1) ⊗ M2×42(A
+
2 )))+) (note that although (H1(t), g) may not be a Fredholm

pair, index(H1(t), g) is still well defined as an idempotent for each t).
It follows that

Index(H1(1), g) = Index(H1(0), g) = j∗(Index(F ))

in K0((M2×42(A
+
1 )⊗M2×42(A2))+(M2×42(A1)⊗M2×42(A

+
2 ))), where j is the natural

inclusion homomorphism from A1 ⊗A2 to (M2×42(A
+
1 )⊗M2×42(A2))+ (M2×42(A1)⊗

M2×42(A
+
2 )).

Now Proposition 6.7 follows from the fact that �(Index(H1(1), g)) is the product of
Index(F ′′′

1 , e′′′
1 ) with Index(F ′′′

2 , e′′′
2 ), where � is as in Lemma 6.6. �

Let Vn and V ′
n be as in Proposition 6.5. Let V ′′

n be a finite-dimensional subspace of
X such that V ′

n = Vn�V ′′
n .

Define

‖x‖1 =
√

‖x1‖2 + ‖x2‖2

x∗,1 = x∗
1�x∗

2
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for any x = x1�x2 ∈ Vn�V ′′
n , and

‖h‖1 =
√

‖h1‖2 + ‖h2‖2

h∗,1 = h∗
1�h∗

2

for any h = h1�h2 ∈ (V ′
n)

∗ = V ∗
n �(V ′′

n )∗.
We define FV ′

n,�,1 ∈ Cb(W
′
n, Cl(W ′

n)) by

FV ′
n,�,1(x�h)

=
�

(√
‖x‖2

1 + ‖h‖2
1

)
√

‖x‖2
1 + ‖h‖2

1 + i(h(x) − x∗,1(h∗,1))(
(h∗,1�x∗,1) − x�h

2
+ i

x�h + (h∗,1�x∗,1)

2

)
for all x�h ∈ W ′

n = V ′
n�(V ′

n)
∗.

Let W ′
n = V ′

n�(V ′
n)

∗, Wn = Vn ⊗ (Vn)
∗, and W ′′

n = V ′′
n �(V ′′

n )∗.
For each k�1 and l�1, we define a norm on (⊗kWn) ⊗ (⊗lW ′′

n ) by

‖u‖
= sup

�i∈W ∗
n ,�j ∈W ′′

n ,‖�i‖�1,‖�j ‖�1,1� i �k,1� j � l

((�1 ⊗ · · · ⊗ �k) ⊗ (�1 ⊗ · · · ⊗ �l ))(u)

for all u ∈ (⊗kWn) ⊗ (⊗lW ′′
n ).

This norm can be extended to construct Banach algebra tensor products T (Wn) ⊗
T (W ′

n) and TC(Wn)⊗TC(W ′
n). The Banach algebra norm on TC(Wn)⊗TC(W ′

n) induces
a Banach algebra norm on Cl(Wn)⊗Cl(W ′′

n ) by a quotient construction. It is not difficult
to see that Cl(Wn) ⊗ Cl(W ′

n) is naturally isomorphic to Cl(W ′
n).

We define a norm on the algebraic tensor product C0(Wn, Cl(Wn)) ⊗alg C0(W
′′
n ,

Cl(W ′′
n )) by

∥∥∥∥∥∑
k

fk ⊗ gk

∥∥∥∥∥ = sup
w∈Wn,w′′∈W ′′

n

∥∥∥∥∥∑
k

(fk(w) ⊗ gk(w
′′))
∥∥∥∥∥

for all
∑

k fk ⊗ gk ∈ C0(Wn, Cl(Wn)) ⊗ C0(W
′′
n , Cl(W ′′

n )).

We define C0(Wn, Cl(Wn)) ⊗ C0(W
′′
n , Cl(W ′′

n )) to be the norm closure
C0(Wn, Cl(Wn)) ⊗alg C0(W

′′
n , Cl(W ′′

n )). Observe that C0(Wn, Cl(Wn)) ⊗ C0(W
′′
n ,

Cl(W ′′
n )) is isomorphic to C0(W

′
n, Cl(W ′

n)) as Banach algebras.
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For each natural number k, the above Banach algebra isomorphism can be naturally
extended to a Banach algebra isomorphism from Mk(C0(Wn, Cl(Wn)) ⊗ C0(W

′′
n , Cl

(W ′′
n ))) to Mk(C0(W

′
n, Cl(W ′

n))).

We can similary define the graded Banach tensor product C0(Wn, Cl(Wn))⊗̂
C0(W

′′
n , Cl(W ′′

n )), where the gradings on C0(Wn, Cl(Wn)) and C0(W
′′
n , Cl(W ′′

n )) are
induced by the natural gradings on the Clifford algebras.

Proposition 6.8. Let FV ′
n,�,1 be as above. Given r > 0 and � > 0, there exist �

and a natural number m such that index(FV ′
n,�,1)�pm is homotopy equivalent to

�0(D0((index(FVn,�) ⊗ index(FV ′′
n ,�))�(p1 ⊗ p1), (index(FVn,�) ⊗ p1)�(p1 ⊗ index

(FV ′′
n ,�))))�pm in Mk((C0(W

′
n, Cl(W ′

n)))
+) through a homotopy of idempotents which

are (r, �)-flat relative to Wn, where �0 is as in the definition of � in Lemma 6.6, D0
is as in the definition of the difference construction D in this section, and pm is the
direct sum of m copies of the identity 1 and m copies of 0.

Proof. Let

M =

√
‖x1‖2 + ‖h1‖2 + i(h1(x1) − x∗

1 (h∗
1)) �

(√
‖x‖2

1 + ‖h‖2
1

)
√

‖x‖2
1 + ‖h‖2

1 + i(h(x) − x∗,1(h∗,1))

,

N =

√
‖x2‖2 + ‖h2‖2 + i(h2(x2) − x∗

2 (h∗
2)) �

(√
‖x‖2

1 + ‖h‖2
1

)
√

‖x‖2
1 + ‖h‖2

1 + i(h(x) − x∗,1(h∗,1))

,

for all x = x1�x2 ∈ V ′
n = Vn�V ′′

n and h = h1�h2 ∈ (V ′
n)

∗ = (Vn)
∗�(V ′′

n )∗.
Let ε be the grading operator in Cb(Wn, Cl(Wn)) induced by the natural grading of

Cl(Wn), where Wn = Vn�V ∗
n .

Define

FV ′
n,�,0 = M((FVn,� ⊗ 1) + N(ε ⊗ FV ′′

n ,�)),

where ε is the grading operator.
Let

F(t) = tFV ′
n,�,1 + (1 − t)FV ′

n,�,0

for t ∈ [0, 1].
Observe that index(F (t)) is a homotopy between index(FV ′

n,�,1) and index(FV ′
n,�,1).

Furthermore, index(F (t)) is (r, �)-flat relative to Wn for a suitable choice of �.
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Let

Mt =
√

(1 − t)M2 + t

2
,

Nt =
√

(1 − t)N2 + t

2

for all t ∈ [0, 1].
It is not difficult to see that Mt and Nt satisfy the conditions of Proposition 6.7.

Now Proposition 6.8 follows from Proposition 6.7 and its proof. �

Proof of Proposition 6.5. We shall prove the K0 case. The K1 case can be proved in
a similar way by a suspension argument.

Let V ′
n = Vn�V ′′

n . For any g ∈ V ∗
n , we extend g to an element in (V ′

n)
∗ by defining

g(x) = 0 if x ∈ V ′′
n . Thus we can identify V ∗

n with a subspace of (V ′
n)

∗. Similarly we
identify (V ′′

n )∗ with a subspace of (V ′
n)

∗. We have

(V ′
n)

∗ = V ∗
n �(V ′′

n )∗.

Define

‖x‖1 =
√

‖x1‖2 + ‖x2‖2

for any x = x1�x2 ∈ Vn�V ′′
n , and

‖g‖1 =
√

‖g1‖2 + ‖g2‖2

for any g = g1�g2 ∈ (V ′
n)

∗ = V ∗
n �(V ′′

n )∗.
Define

‖x‖2
t = t (‖x‖1)

2 + (1 − t)‖x‖2 ,

‖g‖2
t = t (‖g‖1)

2 + (1 − t)‖g‖2 ,

for all t ∈ [0, 1], x = x1�x2 ∈ Vn�V ′′
n and g = g1�g2 ∈ (V ′

n)
∗ = V ∗

n �(V ′′
n )∗.

For each t ∈ [0, 1], let W ′
n = V ′

n�(V ′
n)

∗ be the given norm,

‖x�g‖t =
√

‖x‖2
t + ‖g‖2

t

for all x�g ∈ W ′
n = V ′

n�(V ′
n)

∗.
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Let

x∗,t = t (x∗
1�x∗

2 ) + (1 − t)x∗ ,

g∗,t = t (g∗
1�g∗

2) + (1 − t)g∗ ,

for any t ∈ [0, 1], x = x1�x2 ∈ Vn�V ′′
n , g = g1�g2 ∈ (V ′

n)
∗ = V ∗

n �(V ′′
n )∗.

Let � be a continuous function on R such that 0��(t)�1, ∃ 0 < c1 < c2 satisfying
�(t) = 0 if t �c1 and �(t) = 1 if t �c2.

For each t ∈ [0, 1], let FV ′
n,�,t , ∈ Cb(W

′
n, Cl(W ′

n)) be defined by

FV ′
n,�,t (0�0) = 0,

FV ′
n,�,t (x�h)

=
�

(√
‖x‖2

t + ‖h‖2
t

)
√

‖x‖2
t + ‖h‖2

t + i(h(x) − x∗,t (h∗,t ))(
(h∗,t�x∗,t ) − x�h

2
+ i

x�h + (h∗,t�x∗,t )

2

)
,

for all nonzero x�h ∈ W ′
n = V ′

n�(V ′
n)

∗.
For each t ∈ [0, 1], let ‖·‖t be the Banach algebra norm on Cb(W

′
n, Cl(W ′

n)) induced
by the Banach space norm ‖ · ‖t on W ′

n.
By the definition of index(FV ′

n,�,t ), it is not difficult to verify that, given r > 0, � > 0,
there exists � such that � is independent of n, and index(FV ′

n,�,t ) is (r, �)-flat relative
to Vn�0 ⊆ W ′

n with respect to ‖ · ‖t , i.e.

‖(index(FV ′
n,�,t ))(u1) − (index(FV ′

n,�,t ))(u2)‖t < �

if u1, u2 ∈ Vn�0 ⊆ W ′
n and ‖u1 − u2‖t �r.

Let

index(FV ′
n,�,t ) = aV ′

n,�,t +
(

1 0
0 0

)
for some aV ′

n,�,t ∈ C0(W
′
n, Cl(W ′

n)).
Note that ‖x‖t �‖x‖ for all x ∈ Vn�V ′′

n , and ‖g‖t �‖g‖ for all g ∈ V ∗
n �(V ′′

n )∗.
This, together with the definition of index(FV ′

n,�,t ), implies that there exists R > 0
such that R is independent of n, and

supp(aV ′
n,�,t ) ⊆ BW ′

n
(0, R) = {� ∈ W ′

n : ‖�‖ < R}

for all n, where supp(aV ′
n,�,t ) = {� ∈ W ′

n : aV ′
n,�,t (�) �= 0}.
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For each t ∈ [0, 1], in the definition of {V ′
n}, we replace FV ′

n,� by FV ′
n,�,t to define

{V ′
n},t . Note that ‖x�0‖t = ‖x�0‖ for all x�0 ∈ Vn�0 ⊆ W ′

n = V ′
n�(V ′)∗n, and,

for each n, the topology on C∗(Fn, ��Fn, Vn)R induced by ‖ · ‖t is equivalent to the
topology induced by ‖ · ‖.

The above facts, together with the (r, �)-flatness of index(FV ′
n,�,t )) and the above

property of the support of aV ′
n,�,t , imply that {V ′

n},t is a well-defined homomorphism

from K0(C
∗(
{
Fn, ��Fn

}
n
)) to limR→∞

∞
�
n=1

K0(C
∗(Fn, ��Fn, Vn)R).

It is easy to see that {V ′
n},0 = {V ′

n}, and {V ′
n},0 = {V ′

n},1 as homomorphisms from

K0(C
∗(
{
Fn, ��Fn

}
n
)) to limR→∞

∞
�
n=1

K0(C
∗(Fn, ��Fn, Vn)R).

Let W ′′
n = V ′′

n �(V ′′
n )∗. Let C0(Wn, Cl(Wn))⊗̂ C0(W

′′
n , Cl(W ′′

n )) be the graded Ba-
nach algebra tensor product C0(Wn, Cl(Wn)) and C0(W

′′
n , Cl(W ′′

n )) as defined in the
paragraphs before Proposition 6.8, where the gradings of C0(Wn, Cl(Wn)) and C0(W

′′
n ,

Cl(W ′′
n )) are induced by the natural gradings of the Clifford algebras. Note that the

isomorphism from C0(Wn, Cl(Wn))⊗̂ C0(W
′′
n , Cl(W ′′

n )) to C0(W
′
n, Cl(W ′

n)) is a graded
Banach algebra isomorphism.

Recall that the map: a⊗̂b → a��b ⊗ b, is an isomorphism from

C0(Wn, Cl(Wn))⊗̂ C0(W
′′
n , Cl(W ′′

n ))

to

C0(Wn, Cl(Wn)) ⊗ C0(W
′′
n , Cl(W ′′

n )) ,

where a and b are, respectively, homogeneous elements in C0(Wn, Cl(Wn)) and C0(W
′′
n ,

Cl(W ′′
n )), � is the grading operator in Cb(Wn, Cl(Wn)) induced by the natural grading

of the Clifford algebra Cl(Wn), and �b is the degree of b. This fact, together with
Proposition 6.8, implies that {V ′

n},1[z] is the product of {Vn}[z] with the direct sum

of the Bott elements associated to
{
W ′′

n

}
n
. Hence Proposition 6.5 follows. �

7. The proof of the main result

The purpose of this section is to prove the main result of this paper.
We need some preparations before we prove the main result.

Given d �0, let C∗
L,alg({Pd(Fn)}n) be the algebra of all elements

∞
�
n=1

an such that

(1) an ∈ C∗
L(Pd(Fn)) ;

(2) sup
n

‖an‖ < +∞ ;

(3) The map, t → ∞
�
n=1

an(t), is uniformly continuous on [0, ∞) ;

(4) sup
n,t

propagation(an(t)) < +∞ and sup
n

propagation(an(t)) → 0 as t → ∞.
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Endow C∗
L,alg({Pd(Fn)}n) with the norm

∥∥∥∥ ∞
�
n=1

an

∥∥∥∥ = sup
n

‖an‖ .

Define C∗
L({Pd(Fn)}n) to be the norm completion of C∗

L,alg({Pd(Fn)}n). Let C∗
L,alg

(
{
Pd(��Fn)

}
n
) be the subalgebra of C∗

L,alg({Pd(Fn)}n) consisting of elements �∞
n=1an

such that ∃ R�0,

supp(an(t)) ⊆ Pd((Fn ∩ B�(� − Fn, R)) × Pd((Fn ∩ B�(� − Fn, R)) ,

for any natural number n and t ∈ [0, ∞), where B�(� − Fn, R) = {x ∈ � : d(x, � −
Fn) < R} if � − Fn �= ∅, and B�(� − Fn, R) = ∅ if � − Fn = ∅.

Define C∗
L(
{
Pd(��Fn)

}
n
) to be the norm closure of C∗

L,alg(
{
Pd(��Fn)

}
n
). Note that

C∗
L(
{
Pd(��Fn)

}
n
) is a two-sided ideal of C∗

L({Pd(Fn)}n).
Throughout the rest of this paper, we fix x0 ∈ � and choose

Fn = B(x0, n) = {x ∈ � : d(x, x0)�n}

for each nonnegative integer n.
For any d �0, let ��,dFn be

{x ∈ � : n − 10d �d(x, x0)�n}.

By the choice of Fn, Pd(Fn)\Pd(��,dFn) is an open subset of Pd(Fn+1)\Pd(��,d

Fn+1). Let in,d be the inclusion homomorphism from C0(Pd(Fn)\Pd(��,dFn)) into
C0(Pd(Fn+1)\Pd(��,dFn+1)). By the definition of relative K-homology group in Sec-
tion 4, in,d induces a homomorphism

(in,d)∗ : K∗(Pd(Fn+1), Pd(��,dFn+1)) → K∗(Pd(Fn), Pd(��,dFn)).

We have

K∗

(∏
n

Pd(Fn),
∏
n

Pd(��,dFn)

)
= �nK∗(Pd(Fn), Pd(��,dFn)),

where �nK∗(Pd(Fn), Pd(��,dFn)) is defined to be

{�nzn : zn ∈ K∗(Pd(Fn), Pd(��,dFn))}.
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For each d �0, we define a homomorphism

sd : K∗

(∏
n

Pd(Fn),
∏
n

Pd(��,dFn)

)
→ K∗

(∏
n

Pd(Fn),
∏
n

Pd(��,dFn)

)

by

sd(�nzn) = �n(in,d)∗(zn+1)

for all �nzn ∈ K∗(
∏

n Pd(Fn),
∏

n Pd(��,dFn)).
Note that if d1 > d2 �0, then

sd1(�nzn) = sd2(�nzn) ∈ lim
d→∞ K∗

(∏
n

Pd(Fn),
∏
n

Pd(��,dFn)

)

for all �nzn ∈ K∗(
∏

n Pd2(Fn),
∏

n Pd2(��,d2Fn)).
It follows that {sd}d induces a well-defined homomorphism

s: lim
d→∞ K∗

(∏
n

Pd(Fn),
∏
n

Pd(��,dFn)

)
→ lim

d→∞ K∗

(∏
n

Pd(Fn),
∏
n

Pd(��,dFn)

)
.

Observe that Pd(Fn)\Pd(��,dFn) is an open subset of Pd(�). Let jn,d be the in-
clusion homomorphism from C0(Pd(Fn)\Pd(��,dFn)) to C0(Pd(�)). jn,d induces a
homomorphism

(jn,d)∗ : K∗(Pd(�)) → K∗(Pd(Fn), Pd(��,dFn)).

We define a homomorphism

r : lim
d→∞ K∗(Pd(�)) → lim

d→∞ K∗

(∏
n

Pd(Fn),
∏
n

Pd(��,dFn)

)

by

r(z) = �n(jn,d)∗z

for all z ∈ K∗(Pd(�)).
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Proposition 7.1. We have the following exact sequence:

→ lim
d→∞ K∗+1

(∏
n

Pd(Fn),
∏
n

Pd(��,dFn)

)

Id−s→ lim
d→∞ K∗+1

(∏
n

Pd(Fn),
∏
n

Pd(��,dFn)

)

→ lim
d→∞ K∗(Pd(�))

r→ lim
d→∞ K∗

(∏
n

Pd(Fn),
∏
n

Pd(��,dFn)

)

Id−s→ lim
d→∞ K∗

(∏
n

Pd(Fn),
∏
n

Pd(��,dFn)

)
→,

where Id is the identity homomorphism.

The above proposition follows from the standard lim1-sequence for K-homology
[36].

Definition 7.2. We define the C∗-algebra C∗
L,d

({
Fn, ��Fn

}
n

)
to be the quotient algebra

of C∗
L ({Pd(Fn)}n) over C∗

L

({
Pd(��Fn)

}
n

)
.

We define a map

�L : C∗
L (Pd(�)) → C∗

L,d

({
Fn, ��Fn

})
by

�L(a) =
[ ∞

�
n=1

�na�n

]

for all a ∈ C∗(�), where �n is the characteristic function of Fn.

Proposition 7.3. We have the following exact sequence:

→ lim
d→∞ K∗+1

(
C∗

L,d

({
Fn, ��Fn

}
n

)) (Id−S)∗→ lim
d→∞ K∗+1

(
C∗

L,d

({
Fn, ��Fn

}
n

))
→ lim

d→∞ K∗
(
C∗

L (Pd(�))
) (�L)∗→ lim

d→∞ K∗
(
C∗

L,d

({
Fn, ��Fn

}
n

))
(Id−S)∗→ lim

d→∞ K∗
(
C∗ ({Fn, ��Fn

}
n

)) · · · ,
where Id is the identity homomorphism.
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Proof. We have the following commutative diagram:

lim
d→∞K∗+1(

∏
n Pd(Fn),

∏
n Pd(��,dFn))

Id−s→ lim
d→∞K∗+1(

∏
n Pd(Fn),

∏
n Pd(��,dFn))

↓ ↓
lim

d→∞K∗+1(C
∗
L,d(

{
Fn, ��Fn

}
))

(Id−S)∗→ lim
d→∞K∗+1(C

∗
L,d(

{
Fn, ��Fn

}
))

→ lim
d→∞ K∗(Pd(�))

r→ lim
d→∞K∗(

∏
n Pd(Fn),

∏
n Pd(��,dFn))

Id−s→
↓ ↓

→ lim
d→∞ K∗(C∗

L(Pd(�)))
(�L)∗→ lim

d→∞ K∗(C∗
L,d(

{
Fn, ��Fn

}
))

(Id−S)∗→

By Theorem 4.5 and Proposition 4.6, the vertical maps in the above diagram are
isomorphisms. Note that the first horizontal sequence is exact. This, together with
the commutativity of the diagram, implies that the second horizontal sequence is
exact. �

Note that limd→∞ C∗({Pd(Fn)}n) is naturally ∗-isomorphic to C∗({Fn}n) (cf. [25]).
Let e be the evaluation homomorphism from C∗

L({Pd(Fn)}n) to C∗({Fn}n) defined
by

e(
∞
�
n=1

an) = ∞
�
n=1

an(0)

for all
∞
�
n=1

an ∈ C∗
L ({Pd(Fn)}n), where

∞
�
n=1

an(0) is identified with an element of

C∗ ({Fn}n) by the above isomorphism.
e induces a ∗-homomorphism (still denoted by e) from C∗

L,d

({
Fn,��Fn

}
n

)
to C∗ ({Fn,

��Fn

}
n

)
.

Lemma 7.4. {Vn}◦e∗ is an isomorphism of limd→∞ K∗
(
C∗

L ({Pd(Fn)}n)
)

onto limR→∞
∞
�
n=1

K∗ (C∗ (Fn, Vn)R).

We need some preparations to prove Lemma 7.4.
For any d �0, let C∗(Pd(Fn) ⊗alg C0(Wn, Cl(Wn)) be the algebraic tensor product

of C∗(Pd(Fn) with C0(Wn, Cl(Wn)). We can construct a representation of the algebra
C∗(Pd(Fn))⊗algC0(Wn, Cl(Wn)) on the Banach space C0(Wn, (l

2(�d,n)⊗H)⊗Cl(Wn)),

where C∗(Pd(Fn)) is defined as in Section 4 using a countable dense subset �d,n of
Pd(Fn), and C0(Wn, (l

2(�d,n) ⊗ H) ⊗ Cl(Wn)) is the Banach space defined as in the
definition of C∗(Fn, Vn). We define C∗(Pd(Fn)) ⊗ C0(Wn, Cl(Wn)) to be the operator
norm closure of C∗(Pd(Fn))⊗alg C0(Wn, Cl(Wn)), where the operator norm is induced
by the representation of the algebra C∗(Pd(Fn)) ⊗alg C0(Wn, Cl(Wn)) on the Banach
space C0(Wn, (l

2(�d,n) ⊗ H) ⊗ Cl(Wn)).
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For any � in l∞(�d,n), we can define an operator N� on the Banach space C0(Wn, (l
2

(�d,n) ⊗ H) ⊗ Cl(Wn)) by

(N��)(w) = ((� ⊗ I ) ⊗ 1)(�(w))

for all � ∈ C0(Wn, (l
2(�d,n) ⊗ H) ⊗ Cl(Wn)) and w ∈ Wn, where � acts on l2(�d,n)

by multiplication.
We can verify that N� is a bounded operator (using an argument similar to the proof

of Claim 2 in the proof of Lemma 6.1).
For every pair (x, y) in �d,n×�d,n, let �x and �y be, respectively, the Dirac functions

in l∞(�d,n) at x and y. For any a ∈ C∗(Pd(Fn), Vn), we write

a(x, y) = N�x
aN�y

.

We define

supp(a) = {(x, y) ∈ �d × �d | a(x, y) �= 0},

propagation(a) = sup{d(x, y) | (x, y) ∈ supp(a)}.

For any g in C0(Wn) and a in C∗(Pd(Fn), Vn), we define a bounded operator ga

on the Banach space C0(Wn, (l
2(�d,n) ⊗ H) ⊗ Cl(Wn)) by

((ga)�)(w) = g(w) (a�)(w)

for all � ∈ C0(Wn, (l
2(�d,n) ⊗ H) ⊗ Cl(Wn)) and w ∈ Wn.

We define the support of a(x, y), support(a(x, y)), to be the complement of the
set of all points � ∈ Wn such that there exists g ∈ C0(Wn) satisfying g(�) �= 0 and
(ga)(x, y) = 0.

We define C∗
alg,L(Pd(Fn), Vn) to be the algebra of all uniformly continuous functions

a : [0, ∞) → C∗(Pd(Fn), Vn)

satisfying sup
t

propagation(a(t)) < +∞ and propagation(a(t)) → 0 as t goes to ∞.

We endow C∗
alg,L(Pd(Fn), Vn) with the norm

‖a‖ = supt∈[0,∞)‖a(t)‖.

We define C∗
L(Pd(Fn), Vn) to be the norm closure of C∗

alg,L(Pd(Fn), Vn).
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For each n and R > 0, we define C∗
L(Pd(Fn), Vn)R to be the closed subalgebra of

C∗
L(Pd(Fn), Vn) generated by all elements a ∈ C∗

L(Pd(Fn), Vn) such that

(1) propagation(a(t)) < R for all t ∈ [0, ∞),
(2) support((a(t))(x, y)) ⊆ BWn(f (x)�0, R) for all t ∈ [0, ∞), all x and y in �d,n,

where f : Pd(�) → X, is the convex linear extension of the uniform embedding
f : � → X.

We can define the Bott map

{Vn},L : K∗(C∗
L({Pd(Fn)}n)) → lim

R→∞
∞
�
n=1

K∗(C∗
L(Pd(Fn), Vn)R) ,

in a way similar to the definition of {Vn}.

Lemma 7.5. {Vn},L is an isomorphism between K∗(C∗
L({Pd(Fn)}n)) and limR→∞

∞
�
n=1

K∗(C∗
L(Pd(Fn), Vn)R).

Proof. By a Mayer–Vietoris sequence argument and induction on the dimension of
the skeletons, the general case can be reduced to the zero-dimensional case, i.e., if
�n ⊆ Pd(Fn) is �-separated (meaning d(x, y)�� if x �= y ∈ �n) for some � > 0,
then {Vn},L is an isomorphism from K∗(C∗

L({�n}n)) to K∗(C∗
L({�n, Vn})) . This zero-

dimensional case follows from the facts that

K∗(C∗
L({�n}n))�

∞
�
n=1

�
z∈�n

K∗(C∗
L({z})) ,

lim
R→∞

∞
�
n=1

K∗(C∗
L(�n, Vn)R)�

∞
�
n=1

�
z∈�n

K∗(C∗
L({z} , Vn)) ,

and {Vn},L is an isomorphism from K∗(C∗
L({z})) to K∗(C∗

L({z} , Vn)) by Lemma 3.1
and the Bott periodicity. �

Proof of Lemma 7.4. Note that limd→∞ C∗(Pd(Fn), Vn)R is naturally isomorphic to
C∗(Fn, Vn)R .

Let eVn be the homomorphism

C∗
L(Pd(Fn), Vn)R → C∗(Fn, Vn)R

defined by

eVn(a) = a(0)

for each a ∈ C∗
L(Pd(Fn), Vn)R , where a(0) is identified with an element in C∗(Fn, Vn)R

by the above isomorphism.
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The family of homomorphisms {eVn} induces a homomorphism
(
e{Vn}

)
∗:

lim
d→∞ lim

R→∞
∞
�
n=1

K∗(C∗
L(Pd(Fn), Vn)R) → lim

R→∞
∞
�
n=1

K∗(C∗(Fn, Vn)R) .

Clearly we have (
e{Vn}

)
∗ ◦ {Vn},L = {Vn} ◦ e∗ .

By Lemma 7.5, it is enough to prove that
(
e{Vn}

)
∗ is an isomorphism. Assume that

for each n, On is an open subset of Wn = Vn�V ∗
n . We define C∗(Fn, On) to be

a closed subalgebra of C∗(Fn, Vn) consisting of elements a ∈ C∗(Fn, Vn) such that
support(a(x, y)) ⊆ On for all x, y ∈ Fn.

Similarly we can define C∗(Fn, On)R for each R > 0. For each r > 0, let

On,r =
⋃

x∈Fn

BWn(f (x)�0 , r) .

By the bounded geometry property of � and the fact that f is a uniform embedding,
there exists a natural number m (independent of n) such that

(1) On,r =
m⋃

k=1

O
(k)
n,r ;

(2) for each k, O
(k)
n,r is a disjoint union of open balls of the form BWn(f (x)�0, r).

By a Mayer–Vietoris sequence argument, it suffices to prove that (e{Vn})∗ is an
isomorphism,

lim
d→∞ lim

R→∞
∞
�
n=1

K∗(C∗
L(Pd(Fn), O

(k)
n,r )R) → lim

R→∞
∞
�
n=1

K∗(C∗(Fn, O
(k)
n,r )R)

for each k and r .
Assume that O

(k)
n,r is the disjoint union of BWn(f (z)�0, r) (z ∈ F

(k)
n,r ), where F

(k)
n,r

is a subset of Fn.
For each D > 0, we define A

(k)
D,n,r to be the Banach algebra consisting of elements

�
z∈F

(k)
n,r

bz such that

(1) bz ∈ C∗(BFn(z, D), Vn), where BFn(z, D) = {z ∈ Fn : d(x, z) < D};
(2) support(bz(x, y)) ⊆ BWn(f (z)�0, r) for all x, y ∈ BFn(z, D).

A
(k)
D,n,r is endowed with the norm∥∥∥∥∥∥ �

z∈F
(k)
n,r

bz

∥∥∥∥∥∥ = sup
z∈F

(k)
n,r

‖bz‖ .
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It is easy to see that

lim
R→∞

∞
�
n=1

K∗(C∗(Fn, O
(k)
n,r )R)

is naturally isomorphic to

lim
D→∞

∞
�
n=1

K∗
(
A

(k)
D,n,r

)
.

For each n, we define A
(k)
L,D,n,r to be the Banach algebra generated by elements

�
z∈F

(k)
n,r

az such that

(1) az ∈ C∗
L(PD′(BFn(z, D)), Vn) where D′ = diameter(BFn(z, D));

(2) sup
z∈F

(k)
n,r

‖az‖ < +∞ ;

(3) support(az(x, y)) ⊆ BWn(f (z)�0, r) for all z ∈ F
(k)
n,r and x, y ∈ BFn(z, D) ;

(4) t → �
z∈F

(k)
n,r

az(t) is uniformly continuous;

(5) sup
z

propagation(az(t)) < +∞, and sup
z

propagation(az(t)) → 0 as

t → ∞, where A
(k)
L,D,n,r is endowed with the norm

∥∥∥∥∥∥ �
z∈F

(k)
n,r

az

∥∥∥∥∥∥ = sup
z∈F

(k)
n,r

‖az‖.

It is easy to see that

lim
d→∞ lim

R→∞
∞
�
n=1

K∗(C∗
L(Pd(Fn), O

(k)
n,r )R)

is naturally isomorphic to

lim
D→∞

∞
�
n=1

K∗
(
A

(k)
L,D,n,r

)
.

Using the fact that PD′(BFn(z, D)) is (Lipschitz) contractible, it is easy to see that
the evaluation homomorphism (at 0) induces an isomorphism from

lim
D→∞

∞
�
n=1

K∗
(
A

(k)
L,D,n,r

)
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to

lim
D→∞

∞
�
n=1

K∗
(
A

(k)
D,n,r

)
.

This implies Lemma 7.4. �

The following result can be proved in a way similar to Lemma 7.4.

Lemma 7.6. {Vn} ◦ e∗ is an isomorphism between

lim
d→∞ K∗

(
C∗

L

({
Pd(��Fn)

}
n

))
and

lim
R→∞

∞
�
n=1

K∗
(
C∗ ({��Fn, Vn}

)
R

)
.

Proposition 7.7. {Vn} ◦ e∗ is an isomorphism between

lim
d→∞ K∗

(
C∗

L,d({Fn, ��Fn}n)
)

and

lim
R→∞

∞
�
n=1

K∗
(
C∗ (Fn, ��Fn, Vn

)
R

)
.

Proof. The proposition follows from Lemmas 7.4 and 7.6, and a five lemma
argument. �

Proof of Theorem 1.1. Let �L be as in Proposition 7.3. Let e be the evaluation
homomorphism from C∗

L(Pd(�)) to C∗(Pd(�)) defined by: e(a) = a(0). e induces a
homomorphism (still denoted by e∗) from K∗(C∗

L(Pd(�))) to K∗(C∗(�)).

Let e′∗ = �∗ ◦e∗ be the homomorphism from K∗(C∗
L(Pd(�))) to K∗(C∗

S(�)), where �
is as in Lemma 5.6. It is enough to prove that e′∗ is injective from limd→∞ K∗(Pd(�))

to K∗(C∗
S(�)).

We have the following commutative diagram:

lim
d→∞ K∗+1(C

∗
L,d(

{
Fn, ��Fn

}
))

(Id−S)∗−→ lim
d→∞ K∗+1(C

∗
L,d(

{
Fn, ��Fn

}
))


−→
↓ e∗ ↓ e∗

K∗+1(C
∗(
{
Fn, ��Fn

}
))

(Id−S)∗−→ K∗+1(C
∗(
{
Fn, ��Fn

}
))


−→
↓ {Vn} ↓ {Vn}

lim
R→∞

∞
�
n=1

K∗+1(C
∗(Fn, ��Fn, Vn)R) lim

R→∞
∞
�
n=1

K∗+1(C
∗(Fn, ��Fn, Vn)R)
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−→ lim
d→∞ K∗(C∗

L(Pd(�)))
(�L)∗−→ lim

d→∞ K∗(C∗
L,d(

{
Fn, ��Fn

}
))

↓ e′∗ ↓ e∗

−→ K∗(C∗

S(�))
j∗−→ K∗(C∗(

{
Fn, ��Fn

}
))

↓ {Vn}
lim

R→∞
∞
�
n=1

K∗(C∗(Fn, ��Fn, Vn)R)

By Propositions 7.3 and 5.5, the first and second horizontal sequences in the above
diagram are exact.

Let [x] ∈ limd→∞ K∗(C∗
L(Pd(�))) such that e′∗[x] = 0. We need to prove that

[x] = 0.
We first claim that (�L)∗[x] = 0. This follows from the identity

{Vn}(e∗((�L)∗[x])) = {Vn}(j∗(e′∗[x])) = 0

(by the commutativity of the diagram), and the fact that {Vn} ◦ e∗ is an isomorphism
(by Proposition 7.7).

By exactness, ∃ [x′] ∈ limd→∞ K∗+1(C
∗
L,d({Fn, ��Fn})) such that 
[x′] = [x]. By

the commutativity of the diagram, we have


(e∗[x′]) = e′∗(
[x′]) = e′∗[x] = 0.

Hence by exactness, ∃ [y] ∈ K∗+1(C
∗({Fn, ��Fn})) such that

(Id − S)∗[y] = e∗[x′].

The fact that {Vn} ◦ e∗ is an isomorphism implies that

∃ [x′′] ∈ lim
d→∞ K∗+1(C

∗
L,d({Fn, ��Fn}))

such that

{Vn} ◦ e∗[x′′] = {Vn}[y].

Hence we have

{Vn}(e∗[x′′] − [y]) = 0.

This, together with Proposition 6.5, implies that

{Vn}(Id − S)∗(e∗[x′′] − [y]) = 0.
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By the commutativity of the diagram and the property of y, it follows that

{Vn}(e∗(Id − S)∗[x′′] − e∗[x′]) = 0.

Hence

{Vn} ◦ e∗((Id − S)∗[x′′] − [x′]) = 0.

By Proposition 7.7, we have

(Id − S)∗[x′′] − [x′] = 0.

This, together with exactness and the identity [x] = 
[x′], implies that [x] = 0. �
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