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Abstract

In microarray-based cancer classification and prediction, gene selection is an important research problem owing to the large num-

ber of genes and the small number of experimental conditions. In this paper, we propose a Bayesian approach to gene selection and

classification using the logistic regression model. The basic idea of our approach is in conjunction with a logistic regression model to

relate the gene expression with the class labels. We use Gibbs sampling and Markov chain Monte Carlo (MCMC) methods to dis-

cover important genes. To implement Gibbs Sampler and MCMC search, we derive a posterior distribution of selected genes given

the observed data. After the important genes are identified, the same logistic regression model is then used for cancer classification

and prediction. Issues for efficient implementation for the proposed method are discussed. The proposed method is evaluated against

several large microarray data sets, including hereditary breast cancer, small round blue-cell tumors, and acute leukemia. The results

show that the method can effectively identify important genes consistent with the known biological findings while the accuracy of the

classification is also high. Finally, the robustness and sensitivity properties of the proposed method are also investigated.

� 2004 Elsevier Inc. All rights reserved.
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1. Introduction

Cancer classification and prediction has become one

of the most important applications of DNA microarray
due to their potentials in cancer diagnostic and prognos-

tic prediction [2,9,11,13]. Given the thousands of genes

and the small number of data samples involved in

microarray-based classification, gene selection is an

important research problem [17]. Many gene selection

algorithms have been proposed in the literature for gene

classification; for example, support vector machines [10],

genetic algorithms [16], Bayesian variable selection
[14,33–35], the minimum description length principle
1532-0464/$ - see front matter � 2004 Elsevier Inc. All rights reserved.

doi:10.1016/j.jbi.2004.07.009

* Corresponding author.

E-mail address: stephen_wong@hms.harvard.edu (S.T.C. Wong).
for model selection [12], and the logistic regression mod-

el [3]. The logistic regression model, also known as logit

in the literature, is one of the most common models for

prediction, regression, and classification of disease data
[6,22].

Logit-based methods have been successfully applied

to cancer classification [3,19]; nevertheless, gene selec-

tion and classification based on the same logit method

does not exist. Certain variable selection schemes for

the logistic regression model have been proposed

[4,23], but they are not suitable for microarray-like

problems having large numbers of variables and small
sample sizes.

Our observation is that no closed form expression for

the posterior distribution of the selected genes exists

for logistic regression, whereas such a closed form
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expression exists for linear probit regression [14]. Moti-

vated by the Bayesian variable selection based on probit

regression, we thus propose a new Bayesian method to

both gene selection and classification using the logistic

regression model. The basic idea of our Bayesian meth-

od is in conjunction with a logistic regression model to
relate the gene expression with the class labels. Rather

than fixing the number of selected genes or features,

we assign a prior distribution over it. The new Bayes-

ian-based logit method allows flexibility compared to

the existing logit methods by adding pre-determined

constraints, such as reducing the selected number of

genes for consideration using a prior distribution. This

method uses Gibbs sampling and Markov chain Monte
Carlo (MCMC) algorithms to discover important genes.

To implement Gibbs Sampler or MCMC search, how-

ever, we need to derive a posterior distribution of the se-

lected genes given the observed data. Unfortunately, no

closed form of such a distribution exists for logistic

regression models. Thus, we adapt an approximated

posterior distribution in our calculation.

After the important genes are identified, the same
Bayesian-based logit method in turn will be used for

cancer classification and prediction. We have evaluated

the proposed method against several published micro-

array disease data sets, including those of hereditary

breast cancer, small round blue-cell tumors, and acute

leukemia. The experimental results show that the pro-

posed Bayesian method can effectively identify impor-

tant genes consistent with the known biological
findings while the accuracy of the classification is high.

In addition, the robustness and sensitivity properties

for the Bayesian-based logit method are also

investigated.

The remainder of this paper is organized as follows.

In Section 2, we first formulate the problem of gene

selection and classification for logistic regression, then

we provide the Bayesian gene selection algorithm using
Gibbs sampling and MCMC algorithm. Section 3 pro-

vides experimental results on the three different micro-

array data sets. Section 4 presents the conclusions.

Finally, the detailed derivation of the proposed Bayes-

ian-based logical regression method and certain proce-

dures for efficient implementation of the proposed

Bayesian method are discussed in Appendices A and B.
2. Material and methods

2.1. Material preparation for DNA microarray

DNA microarrays work by hybridization of labeled

RNA or DNA in solution to DNA molecules attached

at specific locations on a surface. Such arrays are often
made of high-density arrays of oligonucleotide [18] or

complementary DNA (cDNA) [25,26]. Such an arrange-
ment allows a highly parallel monitoring of gene expres-

sion (mRNA abundance) patterns for thousands of

genes at the same time in a single experiment. These

transcription profiling techniques have been applied to

study the patterns of gene expression across many exper-

iments that survey a wide variety of cellular responses,
phenotypes, conditions, and often through observations

at multiple time points [7,15,18,21,25,28,29,31]. Such

studies often involve two major objectives, class discover

and class prediction, which can be used to develop a

more complete understanding of the function, regula-

tion, and interactions of genes and their products at

RNA and protein levels. The more comprehensive

knowledge may then help to delineate the underlying eti-
ology of many diseases and improve their diagnosis and

prognosis [9,11,13]. Further details of experimental pro-

cedures in sample preparation, hybridization, and wash-

ing, are documented in the above mentioned references.
2.2. Problem formulation

Assume we are interested in classifying whether a par-
ticular cancer is present or not. Let z = [z1, . . . ,zm]

T de-

note the class labels, where zi = 1 indicates sample i has

the cancer, and zi = 0 indicates sample i does not have

the cancer. Denote x1, . . . ,xn as the expression levels

of n genes. Let xi, j be the measurement of the expression

level of the jth gene for the ith sample. Let X = (xi, j)m, n

denote the expression levels of all genes, i.e.,

X ¼

x1;1 x1;2 � � � x1;n
x2;1 x2;2 � � � x2;n

..

. ..
. . .

. ..
.

xm;1 xm;2 � � � xm;n

2
66664

3
77775: ð1Þ

Let Xi , [xi, 1,xi, 2, . . . ,xi, n] denote the ith row of
the above matrix. We model mi , P(zi = 1|X) by using

a logistic regression model given by

log
mi

1� mi
¼X ib, xi;1b1 þ � � � þ xi;nbn; i¼ 1; . . . ;m; ð2Þ

where b , [b1, . . . ,bn]
T contains the regression coeffi-

cients. According to [1,20], the logistical model can be

rewritten as zi = 1(yi > 0), yi = Xib + log(F (ti)/(1 � F

(ti))), ti � Nð0; r2Þ, and r2 � C (m/2,m/2), where F denotes

the cumulative distribution function of the t distribution

with mean 0 and variance 1. This model can be approxi-

mated by [20] zi = 1(yi > 0), yijb; r2 � NðX ib; ar�2I mÞ,
r2 � C (m/2,m/2), where a , p2 (m � 2)/3m with m = 7.3 and

I is an identitymatrix or unit matrix. Then posterior com-

putation for parameters b, r2 under that approximation

can be accomplished usingMCMC algorithm.Motivated

by this, we derived approximated posterior distributionof

a indicator vector for gene selection.

Define c as the n · 1 indicator vector with the jth

element cj such that cj = 0 if bj = 0 (the variable is not
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selected) and cj = 1 if bj „ 0 (the variable is selected). The

Bayesian variable selection is to estimate c from the pos-

terior distribution p (c|y,X). Given c, let bc consists of all

non-zero elements of b and let Xc be the columns of X
corresponding to those c that are equal to 1. Now the

problem is how to estimate c and the corresponding
bc. Note that no closed form expression exists for the

posterior distribution p (b|c,y,X), and neither for

p (c|y,X).

2.3. Bayesian gene selection based on logistic regression

The indicator vector c can be modeled as a realization

from any prior p (c) on the 2n possible values of c given
by pðcÞ ¼

Qn
i¼1p

ci
i ð1� piÞð1�ciÞ, where pi = P (ci = 1) is a

prior probability to select the jth gene. This form is actu-

ally a Bernoulli distribution for selecting each gene.

We make the following assumptions on the priors of

the parameters. First, given bc, Xc, and r2, the likelihood
of yjbc;Xc; r2 � NðXcbc; ar

2IÞ. Then, given c and r2,
the prior for bc is bc � Nð0; r2RcÞ, where Rc is set as

ðXT
cXcÞ�1

in this study. Given c, the prior of r2 is as-
sumed to be an conjugate inverse-Gamma distribution

pðr2jcÞ / IGðm
2
; m
2
Þ. Moreover, the fcjg

n
j¼1 are assumed

to be independent with p (cj = 1) = pj, j = 1,. . .,n. In this

paper we set pj = 15/n for all genes, based on the total

sample number m = 22. If pj is chosen to take a larger

value, then we found that often times ðXT
cXcÞ�1

is

singular.

Here we introduce the Bayesian variable selection
principle [5]. A Gibbs sampler is employed to estimate

the parameters. Denote

Sðc; yÞ,mþ a�1yTP cy; ð3Þ
where y = [y1,y2, . . . ,ym]

T, P c,I� XcM cX
T
c with

M c,ðXT
cXc þ aR�1

c Þ�1 ¼ ð1þ aÞ�1ðXT
cXcÞ�1

. Define

nc ¼
Pn

i¼1ci. In Appendix A, we show that

pðyjcÞ /
Z
r

Z
bc

pðyjbc; r
2Þpðbcjr2ÞdpðbcÞ

( )
pðr2Þdr2

/ a�
mþnc

2 ð1þ aÞ�
nc
2 Sðc; yÞ�

mþm
2 : ð4Þ

Then the posterior distribution of c is

pðcjyÞ / pðyjcÞpðcÞ

/ a�
mþnc

2 ð1þ aÞ�
nc
2 Sðc; yÞ�

mþm
2

Yn
j¼1

p
cj
j ð1� pjÞ1�cj :

ð5Þ

In Appendix A, we also show the posterior distribution
of r2 and b are, respectively, given by

pðr2jy;XcÞ / IG
mþ m

;
Sðc; yÞ

� �
; ð6Þ
2 2
pðbjy;Xc; r
2Þ / NðH c; ar2M cÞ; ð7Þ

where H c ,M cX
T
c y ¼ ð1þ aÞ�1ðXT

cXcÞ�1
XT

c y. Based on

the posterior distribution (5), a Gibbs sampler can be

employed to estimate all the parameters. We use the

following Gibbs sampling algorithm to estimate

{c,bc,r
2}.

� Draw c from p(c|y) in (5). In fact, we sample each cj
independently from

pðcjjy; ci6¼jÞ / a�
mþnc

2 ð1þ aÞ�
nc
2 Sðc; yÞ�

mþm
2 p

cj
j ð1� pjÞ1�cj ;

j ¼ 1; . . . ; n: ð8Þ

� Draw r2 from p(r2|y,c) in (6).

� Draw b from p(b|c,y) in (7).

� Draw zi, i = 1, . . . ,m from a truncated normal distri-

bution as follows [24]: yijb; zi ¼ 1 � NðX ib; ar2Þ
1fyi>0g, yijb; zi ¼ 0 � NðX ib; ar2Þ1fyi<0g.

In this study, 25,000 Gibbs iterations are imple-
mented with the first 5000 as burn-in period. We obtain

the Monte Carlo samples as {c(t), t = 1, . . . ,T}, where
T = 25,000. Finally, we count the number of times that

each gene appears in {c(t), t = 5001, . . . , 25,000}. We de-

fine the appearance frequency of a gene as the number of

appearances of this gene divided by the total iteration

(i.e., 20,000 here). The genes with the highest appear-

ance frequencies play the strongest role in predicting
the target gene. We will discuss some implementation is-

sues in the Appendix B.

2.4. Cancer classification and prediction using the stron-

gest genes

Now assume the genes corresponding to non-zero c

are the strongest genes obtained by the above Bayesian
variable-selection algorithm. We still use Xc to denote

the profiles of these strongest genes. For fixed c, we

again use a Gibbs sampler to estimate the linear regres-

sion coefficients b as follows: First draw bc according to

(7), then draw r2 according to (6) and iterate the two

steps. In this study, 1500 iterations are implemented

with the first 500 as the burn-in period. Thus we obtain

the Monte Carlo samples f~bðtÞ
c ; ~r2ðtÞ ; t ¼ 1; . . . ; ~Tg. We

then predict the tested sample by Pðy ¼ 1jX cÞ ¼
1
~T

P~T
t¼1 expfX c

~b
ðtÞ
c g=ð1þ expfX c

~b
ðtÞ
c gÞ. If we consider

computational complexity, an alternative approach is
iterative methods such as the Newton–Raphson proce-

dure which can be adopted to obtain the maximum like-

lihood estimate of bc [8], then we can predict the tested

sample by

P ðy ¼ 1jX cÞ ¼
expfX cbcg

1þ expfX cbcg
: ð9Þ
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2.5. Pre-selection method

If there are 3000 gene variables, then for each itera-

tion we have to estimate bc 3000 times because we need

to sample cj for each gene according to (8). The compu-

tational complexity of the Bayesian gene selection algo-
rithm in the previous section is very high. Hence, some

fast algorithms must be developed to speed up the com-

putation. Here we pre-select some genes using the fol-

lowing procedure. The other fast implementation

issues are discussed in Appendix B.

Suppose that the total number of genes is p, and we

will only consider n < p candidates in the Bayesian selec-

tion algorithm. We next discuss how to pre-select the n

genes using an F-test. In pattern recognition, we usually

adopt the following criterion: the smaller is the sum of

squares within groups and the bigger is the sum of

squares between groups, then it is expected a better clas-

sification accuracy. Therefore we can define a score

using the above two statistics to pre-select genes, i.e.,

the ratio of the between-group to within-group sum of

squares:

RðjÞ,
Pm

i¼1

PK�1

k¼0 1ðyi¼kÞð�xk;j � �xjÞ2Pm
i¼1

PK�1

k¼0 1ðyi¼kÞðxi;j � �xk;jÞ2
; 1 6 j 6 p; ð10Þ

where K the number of classes; p is the total number of

original genes (Note that the number of genes n used in

the Bayesian selection procedure is much smaller than

p); �xj denotes the average expression level of gene j

across all samples; and �xk;j denotes the average expres-

sion level of gene j across the samples belonging to class
k where class k corresponds to {yi = k}; and the indica-

tor function 1X is equal to one if event X is true and zero
Table 1

The top 20 important genes using the proposed gene selection algorithm for

Gene No. Frequency Index No. (Clone ID) Gen

1 0.3103 10 (26184) Pho

2 0.1621 118 (47542) Sma

3 0.1399 336 (823940) Tran

4 0.1338 2699 (44180) a-2-
5 0.1335 2761 (47884) Mac

6 0.1330 742 (183200) Fum

7 0.1305 2382 (21652) Cate

8 0.1289 2018 (139354) EST

9 0.1279 157 (809981) Glut

10 0.1260 739 (214068) GAT

11 0.1260 1120 (841617) Hum

12 0.1251 2272 (309583) EST

13 0.1250 1620 (137638) EST

14 0.1246 1999 (247818) EST

15 0.1243 1859 (307843) EST

16 0.1241 439 (160793) Disc

17 0.1234 2734 (46019) Min

18 0.1233 247 (725680) Tran

19 0.1233 3009 (366647) Buty

20 0.1230 2423 (26082) Buty
otherwise. We select a threshold @ and keep those genes j

such that RðjÞ P @. The pre-selection procedure yields n

genes such that RðjÞ P @.
3. Experimental results

3.1. Breast cancer data

In our first experiment, we will focus on hereditary

breast cancer data, which can be downloaded from the

web page for the original paper [11]. In [11], cDNA

microarrays are used in conjunction with classification

algorithms to show the feasibility of using differences
in global gene expression profiles to separate BRCA1

and BRCA2 mutation-positive breast cancers. Twenty-

two breast tumor samples from 21 patients were exam-

ined: 7 BRCA1, 8 BRCA2, and 7 sporadic. There are

3226 genes for each tumor sample. We use our methods

to classify BRCA1, BRCA2, and sporadic. The ratio

data have been truncated from below at 0.1 and above

at 20. Log of the ratio data are employed to test the
proposed gene selection method. The cross-validation

(leave-one-out) method is employed to compute all clas-

sification errors in this paper. The number of preselected

genes are 473 in this data set.

Table 1 lists the strongest genes using the proposed

approximate Bayesian gene selection method. Gene 10

(Clone ID: 26184, phosphofructokinase, platelet) is the

strongest gene. The gene TOB1 (Clone ID 823940) is
the top 3 gene listed in Table 1 [14]. Gene 1008 (Clone

ID: 897781, keratin 8) is also listed in the top 20 genes.

These results are consistent with other references [11].
breast cancer data (pi = 15/n)

e description

sphofructokinase, platelet

ll nuclear ribonucleoprotein D1 polypeptide (16kD)

sducer of ERBB2, 1 (TOB1)

macroglobulin

rophage migration inhibitory factor (glycosylation-inhibiting factor)

arylacetoacetate

nin (cadherin-associated protein), a1 (102 kDa)

s

athione peroxidase 4 (phospholipid hydroperoxidase)

A-binding protein 3

an mRNA for ornithine decarboxylase antizyme, ORF 1 and ORF 2

s

s

s

s

s, large (Drosophila) homolog 1

ichromosome maintenance deficient (S. cerevisiae) 7

scription factor AP-2c (activating enhancer-binding protein 2c)
rate response factor 1 (EGF-response factor 1)

rate response factor 1 (EGF-response factor 1)



Table 4

The estimated probabilities of each sample for SRBCT data using the

proposed algorithm (pi = 15/n)

Sample index No. True label P(y = 1|X) Prediction

1 0 0.0000 0

2 0 0.0001 0

3 0 0.0001 0

4 0 0.0000 0

5 0 0.0000 0

6 0 0.0000 0
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Using the top 5, 10, and 15 genes for classification, it

is seen that the classification error based 5 genes and 10

genes is zero. Note that there is one error in the original

paper [11]. There is one error using 15 genes, which is

likely due to the small sample size. The conditional

probabilities based the three criteria using top 10 genes
are listed in Table 2. These are very close to the true la-

bel values (namely, 0 and 1). The Eq. (9) is employed to

predict cancers in this study.
Table 2

The estimated probabilities of each sample for breast cancer data using

the proposed Bayesian gene algorithm (pi = 15/n)

Sample index No. True label P (y = 1|X) Prediction

1 0 0.0060 0

2 0 0.0000 0

3 0 0.0000 0

4 0 0.0021 0

5 0 0.0000 0

6 0 0.0237 0

7 1 1.0000 1

8 1 0.9709 1

9 1 1.0000 1

10 1 1.0000 1

11 1 0.9915 1

12 1 1.0000 1

13 1 1.0000 1

14 1 1.0000 1

15 1 0.9999 1

16 1 0.9908 1

17 1 0.9359 1

18 0 0.0000 0

19 1 1.0000 1

20 1 1.0000 1

21 1 1.0000 1

22 1 1.0000 1

No. of misclassification 0

Table 3

The top 20 important genes selected using the proposed Bayesian gene selection algorithm for SRBCT data (pi = 15/n)

Gene No. Frequency Index No. (Clone ID) Gene description

1 0.1403 1389 (770394) Fc fragment of IgG, receptor, transporter, a
2 0.1310 52 (50359) Mannose phosphate isomerase

3 0.1250 1873 (166195) Ribonuclease/angiogenin inhibitor

4 0.1240 1914 (824704) Mannose phosphate isomerase

5 0.1195 545 (1435862) Antigen identified by monoclonal antibodies 12E7, F21 and O13

6 0.1138 842 (262231) No name

7 0.1128 1093 (812965) v-myc avian myelocytomatosis viral oncogene homolog

8 0.1108 246 (377461) Caveolin 1, caveolae protein, 22kD

9 0.1105 812 (166236) Glucose-6-phosphate dehydrogenase

10 0.1088 153 (383188) Recoverin

11 0.1050 137 (486175) Solute carrier family 16 (monocarboxylic acid transporters), member 1

12 0.1000 2157 (244637) Homo sapiens mRNA full length insert cDNA clone EUROIMAGE 45620

13 0.0995 1088 (85171) ADP-ribosylation factor 4

14 0.0985 2050 (295985) ESTs

15 0.0985 976 (786084) Chromobox homolog 1 (Drosophila HP1 b)
16 0.0985 742 (812105) Transmembrane protein

17 0.0978 1601 (629896) Microtubule-associated protein 1B

18 0.0960 823 (134748) Glycine cleavage system protein H (aminomethyl carrier)

19 0.0933 255 (325182) Cadherin 2, N-cadherin (neuronal)

20 0.0922 1862 (789376) Thioredoxin reductase 1

7 0 0.0000 0

8 0 0.0000 0

9 0 0.0000 0

10 0 0.0060 0

11 0 0.0032 0

12 0 0.0025 0

13 0 0.0000 0

14 0 0.0000 0

15 0 0.0115 0

16 0 0.0000 0

17 0 0.0001 0

18 0 0.0001 0

19 0 0.0000 0

20 0 0.0000 0

21 0 0.0042 0

22 0 0.0002 0

23 0 0.0002 0

24 1 0.9928 1

25 1 1.0000 1

26 1 0.9954 1

27 1 1.0000 1

28 1 1.0000 1

29 1 1.0000 1

30 1 1.0000 1

31 1 1.0000 1

32 1 1.0000 1

33 1 1.0000 1

34 1 1.0000 1

35 1 0.9999 1

No. of misclassification 0



Table 6

The estimated probabilities of each sample for leukemia data using the

proposed algorithm (pi = 15/n)

Sample index No. True label P (y = 1|X) Prediction

1 0 0.0006 0

2 0 0.0004 0

3 0 0.0000 0

4 0 0.0000 0

5 0 0.0000 0

6 0 0.0000 0

7 0 0.0000 0

8 0 0.0000 0

9 0 0.0000 0

10 0 0.0000 0

11 0 0.0000 0

12 0 0.0006 0

13 0 0.0000 0

14 0 0.0007 0

15 0 0.0000 0

16 0 0.0000 0

17 0 0.0025 0

18 0 0.0005 0

19 0 0.0000 0

20 0 0.0000 0

21 0 0.0010 0

22 0 0.0007 0

23 0 0.0029 0

24 0 0.0000 0

25 0 0.0001 0

26 0 0.0000 0

27 0 0.0000 0

28 1 0.9963 1

29 1 0.9992 1

30 1 1.0000 1

31 1 1.0000 1

32 1 0.9931 1

33 1 0.9935 1

34 1 1.0000 1

35 1 1.0000 1

36 1 0.9999 1

37 1 1.0000 1

38 1 1.0000 1
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3.2. Small round blue-cell tumors

This experiment focuses on the small, round blue cell

tumors (SRBCTs) of childhood, which include neuro-

blastoma (NB), rhabdomyosarcoma (RMS), non-hodg-

kin lymphoma (NHL), and the Ewing family of tumors
(EWS) in [13]. We classify the rhabdomyosarcoma and

neuroblastoma tumors. The data set for the two cancers

is composed of 2308 genes, and the sample consists of 35

tumors, 23 for RMS, and 12 for NB. The ratio data has

been truncated from below at 0.01. The number of pres-

elected genes are 282 in this data set.

Table 3 lists the strongest genes using the proposed

approximate Bayesian gene selection method. Gene
1389 (clone ID 770394) is top important gene in the list.

It is also an important gene listed in [13]. A number of

other previously noted genes also appear [13,32]: gene

545 (Clone ID 1435862), gene 246 (Clone ID 377461),

gene 153 (Clone ID 383188), gene 2050 (Clone ID

295985), gene 742 (Clone ID 812105), gene 1601 (Clone

ID 629896), and gene 255 (clone ID 325182). The condi-

tional probabilities based the three criteria using top 10
genes are listed in Table 4. These conditional probabili-

ties are very close to the true label values. Using the top

5, 10, and 15 genes for classification based on the three

criteria, no error is found.

3.3. Acute leukemia data

The leukemia data of [9] is publicly available the pa-
per�s original website. The microarray data contains

7129 human genes, sampled from 72 cases of cancer,

of which 38 are of type B-cell ALL, 9 are of type T-cell

ALL, and 25 of type AML. The data are preprocessed

as recommended in [30]: gene values are truncated from
Table 5

The top 20 important genes selected using the proposed Bayesian gene selection algorithm for acute leukemia data (pi = 15/n)

Gene No. Frequency Index No. Gene description

1 0.1153 4211 Vascular endothelial growth factor receptor 1 precursor

2 0.1108 5772 C-myb gene extracted from Human (c-myb) gene, complete primary cds

3 0.1093 2354 CCND3 cyclin D3

4 0.1083 1144 SPTAN1 spectrin, a, non-erythrocytic 1 (a-fodrin)
5 0.1038 1928 Oncoprotein 18 (Op18) gene

6 0.1035 4167 ALDR1 aldehyde reductase 1 (low Km aldose reductase)

7 0.1027 804 Macmarcks

8 0.1008 6281 MYL1 myosin light chain (alkali)

9 0.1008 4398 DNMT DNA methyltransferase

10 0.1003 1630 Inducible protein mRNA

11 0.1000 1882 CST3 cystatin C (amyloid angiopathy and cerebral hemorrhage)

12 0.0983 1834 CD33 CD33 antigen (differentiation antigen)

13 0.0978 5501 TOP2B topoisomerase (DNA) II b (180 kDa)

14 0.0978 2348 ACADM acyl-coenzyme A dehydrogenase, C-4 to C-12 straight chain

15 0.0978 1120 SNRPN small nuclear ribonucleoprotein polypeptide N

16 0.0975 5039 LEPR leptin receptor

17 0.0970 6855 TCF3 transcription factor 3 (E2A immunoglobulin enhancer-binding factors E12/E47)

18 0.0963 6279 GB DEF = PTX3 gene promotor region

19 0.0958 3258 Phosphotyrosine independent ligand p62 for the Lck SH2 domain mRNA

20 0.0948 1704 ADA adenosine deaminase

No. of misclassification 0



Table 8

The top 20 important genes selected using the proposed Bayesian gene

selection algorithm for breast cancer data with different prior pi = 10/n

Gene No. Frequency Index No. Clone ID

1 0.1409 10 26184

2 0.1210 118 47542

3 0.0980 336 823940

4 0.0970 858 783729

5 0.0927 258 324210

6 0.0920 733 134748

7 0.0885 2699 44180

8 0.0870 2018 139354

9 0.0867 955 950682
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below at 100 and from above at 16,000; genes having the

ratio of the maximum over the minimum less than 5 or

the difference between the maximum and the minimum

less than 500 are excluded; and finally the base-10 loga-

rithm is applied to the 3571 remaining genes. Here we

consider the 38-tumor sample, splitting it between
ALL (11) and AML (27). The number of preselected

genes are 356 in this data set.

Table 5 lists the 20 strongest genes based on the pro-

posed approximate Bayesian gene selection. The index

number is the Clone ID in this data set. The top ten

genes are gene 4211, gene 5772, gene 2354, gene 1144,

gene 1928, gene 4167, gene 804, gene 6281, gene 4398,

and gene 1630. Genes 5772, gene 1882, gene 1834, gene
1630, and gene 5772 are also listed in [9]. The condi-

tional probabilities based the three criteria using top

10 genes are listed in Table 6. Again we saw that these

conditional probabilities are very close to the true label

values. Using the top 5, 10, and 15 genes for classifica-

tion, no error is found. We also test the 34 samples,

and one error is found, but there are four error in origi-

nal paper [9].
10 0.0862 1417 825478

11 0.0850 1466 767817

12 0.0830 2428 26184

13 0.0820 1120 841617

14 0.0818 272 47681

15 0.0808 1859 307843

16 0.0808 1008 897781

17 0.0805 1200 811930

18 0.0800 116 754998

19 0.0798 955 950682

20 0.0795 1531 711826
4. Sensitivity and robustness

To check the sensitivity and robustness of our algo-

rithms, we have added white Gaussian noise with differ-

ent variances to the breast cancer data and re-applied

our algorithms to the contaminated data. The strongest
genes are listed in Table 7. It is seen gene 10 (phospho-

fructokinase, platelet) and gene 336 TOB1 remain very
Table 7

The top 20 important genes selected using the proposed Bayesian gene selecti

Gene No. r = 0.1 r = 0.2

Frequency Index No. (Clone ID) Frequency

1 0.1411 10 (26184) 0.1356

2 0.1273 118 (47542) 0.1213

3 0.0980 336 (823940) 0.1000

4 0.0920 955 (950682) 0.0940

5 0.0907 2699 (44180) 0.0935

6 0.0905 1443 (566887) 0.0927

7 0.0887 2428 (26184) 0.0922

8 0.0885 2259 (814270) 0.0887

9 0.00882 733 (134748) 0.0860

10 0.0882 585 (41356) 0.0855

11 0.0865 1179 (788721) 0.0845

12 0.0850 496 (376516) 0.0845

13 0.0845 3009 (366647) 0.0838

14 0.0845 1999 (247818) 0.0825

15 0.0845 1008 (897781) 0.0823

16 0.0843 3010 (366824) 0.0823

17 0.0843 2387 (22230) 0.0820

18 0.0838 2259 (814270) 0.0820

19 0.0830 258 (324210) 0.0810

20 0.0828 1766 (239958) 0.0800
important for different noise levels. The results indicate

that the proposed methods are not sensitive to the differ-

ent noise levels.

To check the sensitivity to the prior distributions,

we have re-run the algorithms for pi = 10/n. According

to Table 8, most of the selected genes are the same as
the gene list in Table 1, hence it is seen that the pro-

posed gene selection method is robust to the prior

setting.
on algorithm for breast cancer data for different noise levels (pi = 15/n)

r = 0.5

Index No. (Clone ID) Frequency Index No. (Clone ID)

10 (26184) 0.1467 10 (26184)

118 (47542) 0.1315 118 (47542)

336 (823940) 0.0975 272 (47681)

2699 (44180) 0.0970 336 (823940)

955 (950682) 0.0943 258 (324210)

2428 (26184) 0.0920 2428 (26184)

858 (783729) 0.0910 733 (134748)

1179 (788721) 0.0907 858 (783729)

1443 (566887) 0.0902 1120 (841617)

585 (41356) 0.0895 1620 (137638)

1999 (247818) 0.0885 1443 (566887)

258 (324210) 0.0875 2734 (46019)

733 (134748) 0.0848 1446 (767817)

1466 (767817) 0.0848 1179 (788721)

1531 (711826) 0.0838 2699 (44180)

1120 (841617) 0.0835 809 (810899)

2734 (46019) 0.0810 556 (212198)

2423 (26082) 0.0808 496 (376516)

272 (47681) 0.0805 1008 (897781)

1008 (897781) 0.0805 1466 (767817)
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4.1. Comparisons

Various gene selection methods and classifiers for

cancer classification have been proposed. In particular,

there is strong evidence that Bayesian gene selection is

effective [14]. Regarding classification, the linear probit
(LProbit) [14], and logistical regression with AIC (BIC

and MDL) gene selection [36] have proved effective.

Using the breast-cancer data set, we will compare the

performance of these classifiers when used in conjunc-

tion with the previously proposed Bayesian gene-selec-

tion methods and the logistic method developed in this

paper. We summarize linear probit based and logistical

regression with AIC-based gene selection, along with the
corresponding classifiers.

Probit gene selection and classification [14]: the rela-

tion between the class label yi and the gene expression

levels xi is modeled by using a probit regression model

which yields P (yi = 1|xi) = U(xib), i = 1, . . . ,m, where

b = (b1,b2, . . . ,bn)
T is the vector of regression parame-

ters and U is the standard normal cumulative distribu-

tion function. Gene selection based on probit
regression is similar to that of logistic regression using

Gibbs sampling. The difference is the posterior distribu-

tion of p (c|z), see [14]. After obtaining the strongest

genes, we can estimate P (y = 1|X) using Gibbs sampling

for the probit regression classifier. The model of logisti-

cal regression with AIC-based gene selection and classi-

fication is similar to the model used in this paper. The

difference is that we approximated p (c|z) by using infor-
mation theory AIC criterion.

Table 9 lists the top 20 genes selected by probit

regression and logistic regression with AIC-based gene
Table 9

The top 20 important genes selected using linear probit regression [14] and log

for breast cancer data

Gene No. Probit

Frequency Index No. (Clone ID

1 0.0860 1008 (897781 )

2 0.0840 336 (823940)

3 0.0780 10 (26184)

4 0.0750 1068 (840702)

5 0.0710 496 (376516)

6 0.0690 118 (47542)

7 0.0660 3009 (366647)

8 0.0660 585 (293104)

9 0.0620 523 (28012)

10 0.0610 556 (212198)

11 0.0590 1999 (247818)

12 0.0550 2423 (26082)

13 0.0540 498 (667598)

14 0.0520 140 (30093)

15 0.0510 1277 (73531)

16 0.0500 955 (950682)

17 0.0500 272 (47681)

18 0.0490 2734 (46019)

19 0.0490 1859 (307843)

20 0.0480 555 (548957)
selection, respectively. Gene 10 (phosphofructokinase,

platelet) and gene 336 TOB1 are important genes for

all methods, and also quite a few genes are the same

for all methods. The misclassification numbers using

the three classifiers (Logit, LProbit, and Logit-AIC)

for three gene selection methods (logit, probit, Logit-
AIC) with 5, 10, and 15 top genes are as follows: No er-

ror is found for all of the classifiers based on Small

Round Blue-cell Tumors and acute leukemia data, but

one error for all of the classifiers based on breast cancer

data. Therefore, we conclude that the proposed ap-

proach in this study is at least comparative with the

other two.
5. Conclusion

In this work, we proposed a Bayesian approach to

gene selection using the logistic regression model. The

basic idea of our approach is in conjunction with a

logistic regression model to relate the gene expression

with the class labels. Rather than fixing the number
of selected genes or features, we assigned a prior dis-

tribution over it. The approach creates additional

flexibility by allowing the imposition of constraints,

such as not allowing the dimension to be too big

by using this prior. We use Gibbs sampling and

MCMC methods to discover important genes. In or-

der to implement Gibbs Sampler and MCMC search,

we derived a posterior distribution of selected genes
given the observed data. Once important genes are

identified, the same logistic regression model was em-

ployed for cancer classification. For practicality, we
istic regression with Bayesian gene selection based on AIC criterion [36]

Logit-AIC

) Frequency Index No. (Clone ID)

0.1454 1008 (897781)

0.1394 496 (376516)

0.1340 336 (823940)

0.1331 2699 (44180)

0.1240 2761 (47884)

0.1167 742 (183200)

0.1044 2382 (21652)

0.1003 2018 (139354)

0.9025 157 (809981)

0.0545 739 (214068)

0.0483 1120 (841617)

0.0473 2272 (309583)

0.0472 1620 (137638)

0.0463 1999 (247818)

0.0433 1859 (307843)

0.0426 439 (160793)

0.0424 2734 (46019)

0.0419 247 (725680)

0.0414 3009 (366647)

0.0405 2423 (26082)
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also investigated efficient implementational issues of

these methods.

The proposed Bayesian based logit method was

tested on data sets including hereditary breast cancer

data, small round blue-cell tumor data, and acute leu-

kemia tumor data. The experimental results show that
the proposed method can effectively find genes that are

consistent with the existing biological knowledge and

with high accuracy. Our experimental results also show

that the proposed gene selection has robustness and

sensitivity properties. Note that for the breast cancer

data and acute leukemia tumor data, the classification

accuracy of the proposed Bayesian based logit method

is much better than that reported in the original pa-
pers, and for small round blue-cell tumor data, the

proposed logit approach has a perfect classification

result.
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Appendix A. Derivation of (4), (6), and (7)

For notational convenience, we denote g , r2 and
a , p2 (m � 2)/3m, where m = 7.3. Since

yjbc; g;Xc � NðXcbc; agImÞ;

bcjg � Nð0; gRcÞ; and g � IG
m
2
;
m
2

� �
;

where Rc is set as ðXT
cXcÞ�1

in this study, IG is the in-

verse Gamma distribution, then we have

p yjbc; g;Xc

� �
/ a�

m
2g�

m
2

� exp � 1

2ag
ðy� XcbcÞ

Tðy� XcbcÞ
� �

;

ðA:1Þ

pðbcjg; cÞ / g�
nc
2 jRcj�

1
2 exp � 1

2g
bT
c ðXT

cXcÞbc

� �
; ðA:2Þ

pðgÞ / bðmÞg� m=2þ1ð Þ exp � m
2g

� �
; ðA:3Þ

where bðmÞ,ðm
2
Þ
m
2ðCðm

2
ÞÞ�1

. According to the Bayesian the-
orem, we have

p bc; gjXc; y
� �

/ p yjbc; g;Xc

� �
p bc; g
� �

¼ p yjbc; g;Xc

� �
pðbcjgÞpðgÞ: ðA:4Þ
Using ((A.1)–(A.4)), we have

p bc; gjXc; y
� �

/ a�
m
2g�

mþmþncþ2

2 jRcj�
1
2

� exp � 1

2ag
yTy� yTXcbc � Xcbc

� �T
y

h�
ðA:5Þ

þ Xcbc

� �T
Xcbc

� �
þ abcR

�1
c bc

i
� m
2g

�
: ðA:6Þ

Define

M�1
c ,XT

cXc þ aR�1
c () M c

¼ XT
cXc þ aR�1

c

� ��1

; ðA:7Þ

H c,M cX
T
c y ¼ XT

cXc þ aR�1
c

� ��1

XT
c y; ðA:8Þ

P c,I� XcM cX
T
c : ðA:9Þ

Then we have the following equations

M�1
c H c ¼ XT

c y;

bT
cX

T
c y ¼ bT

cM
�1
c H c;

yTXcH c ¼ H cM�1
c H c:

Note that the following equality holds:
yTy�yTXcbc� Xcbc

� �T
yþ Xcbc

� �T
Xcbc

� �
þabcR

�1
c bc

¼ yT I�XcM cX
T
c

� �
yþyTXcH c�HT

cM
�1
c bc

�bT
cM

�1
c H cþbT

c XT
cXcþaR�1

c

� �
bc

¼ yTP cyþyTXcH c�HT
cM

�1
c bc�bT

cM
�1
c H cþbT

cM cbc

¼ yTP cyþðbc�H cÞTM�1
c ðbc�H cÞ: ðA:10Þ
Then (A.6) becomes

p bc;gjXc;y
� �

/ a�
m
2g�

mþmþncþ2

2 jRj�
1
2

� exp � 1

2ag
yTP cyþðbc�H cÞTM�1

c ðbc�H cÞ
h i

� m
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m
2g�

mþmþncþ2

2 jRj�
1
2 exp �a�1yTP cyþ m

2g

� �

� exp � 1

2ag
ðbc�H cÞTM�1

c ðbc�H cÞ
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: ðA:11Þ

After integrating out bc in (A.11), we have

pðgjXc; yÞ /
Z
bc

p bc; gjXc; y
� �

dbc

/ a�
mþnc

2 g�
mþmþ2

2 jRcj�
1
2jM cj

1
2

� exp � a�1yTP cyþ m
� �

: ðA:12Þ

2g
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That is gjXc; y / IGðmþm
2
;
mþa�1yTP cy

2
Þ. Hence (6) holds.

Note that

p bc; gjXc; y
� �

¼ pðbcjg;Xc; yÞpðgjXc; yÞ: ðA:13Þ

Comparing (A.11), (A.12), and (A.13), we have

pðbcjg;y;XcÞ / a�
nc
2 g�

nc
2 jM cj�

1
2

� exp � 1

2ag
ðbc �H cÞTM�1

c ðbc �H cÞ
� �

:

ðA:14Þ
That is bcjg; y;Xc � NðH c; agM cÞ. Therefore, (7) holds.
After integrating out g in (A.12), we have

pðyjcÞ ¼
Z
g

Z
bc

pðyjbc; g;XcÞpðbcjgÞpðgÞdbc

( )
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/ a�
mþnc

2 jRcj�
1
2jM j
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2

Z
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mþmþ2
2
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/ a�
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2 jRcj�
1
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1
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2 : ðA:15Þ

We set Rc,ðXT
cXcÞ�1

, then M c ¼ ð1þ aÞ�1ðXT
cXcÞ�1

,

and then jRcj�
1
2jM cj

1
2 ¼ ð1þ aÞ�

nc
2 . Hence, pðyjcÞ

/ a�
mþnc

2 ð1þ aÞ�
nc
2 Sðc; yÞ�

mþm
2 , i.e., (4) holds.
Appendix B. Fast computation

B.1. Computation of p(cj|y,X,ci „ j) in (8)

Because cj only takes 0 or 1, we can re-consider

p (cj = 1|y,X, i „ j) and p (cj = 0|y,X, i „ j). Let c1 =
(c1, . . . ,cj � 1,cj = 1, cj + 1, . . . ,cn) and c0 =

(c1, . . . ,cj � 1,cj = 0, cj + 1, . . . ,cn). According to (8), we

have

pðcj ¼ 1jy;X ; ci6¼jÞ / a�
mþn

c1

2 ð1þ aÞ�
n
c1

2 Sðc1jy;XÞ�
mþm
2 pj;

pðcj ¼ 0jy;X ; ci6¼jÞ

/ a�
mþn

c0

2 ð1þ aÞ�
n
c0

2 Sðc0jy;XÞ�
mþm
2 ð1� pjÞ:

Since p (cj = 1|y,X,ci „ j) + p (cj = 0|y,X,ci „ j) = 1, some

straightforward computation yields

pðcj ¼ 1jy;X ; ci6¼jÞ /
1

1þ h
; ðB:1Þ

with h ¼ 1� pj

pj
ðaþ a2Þ

1
2

Sðc1jyXÞ
Sðc0jy;XÞ

	 
mþm
2

: ðB:2Þ

If c = c0 before cj is generated, meaning we have ob-

tained S (c0|y,X), then we only need to compute

S (c1|y,X), and vice versa.
B.2. Fast computation of S(c,y) in (3)

The key to speed up the whole computation is to

compute S (c,y) fast where a gene variable is added or

removed from c. Denote

Eðc; yÞ,yTy� yTXcðXT
cXcÞ�1

XT
c y: ðB:3Þ

The (B.3) can be computed using the fast QR decompo-

sition, QR-delete and QR-insert algorithms when a var-

iable is added or removed [27] (Ch. 10.1.1b). Now we

want to estimate S (c,y) in (3). After straightforward

computation, S (c,y) is given by

Sðc; yÞ ¼ mþ ayTyþ Eðc; yÞ
að1þ aÞ : ðB:4Þ

Thus, after computing E (c,y) using QR decomposition,

QR-delete or QR-insert algorithms, we then can obtain

S (c,y).
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