Case Report

Prominent ST-segment elevation in leads V1–V4 due to isolated right ventricular branch occlusion after primary percutaneous coronary intervention for right coronary artery

Sinan Altan Kocaman (MD)*, Yavuz Uğurlu (MD), Elif Ergül (MD), Engin Bozkurt (MD)

Rize Training and Research Hospital, Department of Cardiology, 53020 Rize, Turkey

Received 11 April 2010; received in revised form 11 May 2010; accepted 21 May 2010

Summary
Isolated right ventricular myocardial infarction (RVMI) rarely occurs. It accounts for only 3% of all infarctions. In the literature, there are several reported isolated RVMI cases with precordial ST-segment elevation. We describe a 55-year-old man with prominent ST-segment elevation in leads V1–V4 in whom isolated RVMI developed due to occlusion of the right ventricular branch during primary percutaneous coronary intervention to the right coronary artery for acute inferior myocardial infarction.

© 2010 Japanese College of Cardiology. Published by Elsevier Ireland Ltd. All rights reserved.

Introduction

Isolated right ventricular myocardial infarction (RVMI) infrequently occurs. It accounts for only 3% of all infarctions [1]. Isolated RVMI and an observation of ST elevation in anterior derivations caused by isolated right ventricular branch occlusion is rarely seen.

In the literature, there are several reported isolated RVMI cases with precordial ST-segment elevation [2–7]. We describe a 55-year-old man with prominent ST-segment elevation in leads V1–V4 in whom isolated RVMI developed due to occlusion of the RV branch during primary percutaneous coronary intervention to the right coronary artery (RCA) for acute inferior myocardial infarction.

Case report

A 55-year-old man with the symptoms of squeezing chest pain and breathlessness lasting for 2 h was admitted to the Rize Training and Research Hospital (Rize, Turkey). He was a smoker and had hyperlipidemia history. His blood pressure was 140/90 mmHg and his heart rate was 78 beats/min, with a regular rhythm. Except for a grade 1/6 apical systolic murmur, his cardiac examination findings were normal and his
Figure 1 Admission electrocardiogram shows prominent ST-segment elevations in the inferior leads (II, III, aVF), and reciprocal ST-segment depressions in the lateral leads (I, aVL) and anterior leads (V1–V3).

Figure 2 Cardiac catheterization and intervention. The patient had 10% stenosis in the left anterior descending (LAD) artery, 50% stenosis in the first diagonal branch, 70% stenosis in the distal left circumflex artery, and 70% stenosis in the third obtuse margin (a). The right coronary artery had a lesion which included the right ventricular branch of the right coronary artery (RCA) (red arrowhead) and just after was totally occluded (b). After the lesion was passed by the floppy guide-wire, RCA flow was achieved and the culprit lesion seen (c). After the stent deployment into the proximal and mid-RCA, control pose disclosed that RCA had Thrombolysis In Myocardial Infarction-3 flow but occlusion of the right ventricular branch had developed (d).
Figure 3 Post-intervention electrocardiograms (ECGs). First post-intervention ECG revealed total ST-segment resolution in the inferior leads, but anterior leads had prominent ST-segment elevations and PR segment depressions in leads V1–V4 (a). Repeated ECGs showed permanent ST elevations (b and c) and 8-h ECG after the percutaneous coronary intervention revealed a total ST-segment resolution in precordial leads V1–V4 (d).

Figure 4 Follow-up and pre-discharge electrocardiogram (ECG). Follow-up (a) and pre-discharge ECG showed no Q waves in the anterior leads (b).
lung fields were clear. Twelve-lead electrocardiogram (ECG) revealed prominent ST-segment elevations in the inferior leads (II, III, aVF), and reciprocal ST-segment depressions in the lateral leads (I, aVL) and anterior leads (V1–V3) (Fig. 1). Following pretreatment with 300 mg acetylsalicylic acid and 5000 IU unfractionated heparin, he was taken to the catheterization laboratory for primary percutaneous intervention. He had 10% stenosis in the left anterior descending (LAD) artery, 50% stenosis in the first diagonal branch, 70% stenosis in the distal left circumflex artery, and 70% stenosis in the third obtuse margin (Fig. 2a). The RCA had a lesion which included the RV branch of the RCA and just after the lesion was passed into the proximal and mid-RCA. The patient’s chest pain was totally alleviated. Acikel et al. [7] reported ST-segment elevations in lead V1–V3 caused by occlusion of the RV branch of the RCA while performing primary PCI in a case of acute inferior myocardial infarction. However, they did not report any change on PR segments. In our case, slight PR segment depressions were seen in leads V1–V4 as well as ST-segment elevations in these leads. PR segment depression may indicate atrial injury. In our case, there was not any change in PR segments on baseline ECG and it occurred after stent implantation into the mid-portion of the RCA. Additionally, an interesting ECG finding of our case is that precordial ST-segment elevations in leads V3 and V4 were higher than in V1 and V2 in some repeated ECGs. This may be related to a well-developed RV branch but we cannot find an exact explanation of this ECG finding in the literature.

Our case demonstrates that prominent ST segment elevation in leads V1–V4 may be a sign of well-developed RV branch occlusion after successful PCI to a totally occluded RCA. Although the appearance of ST segment elevation in precordial leads V1–V3 is highly suggestive of acute anteroseptal left ventricular infarction secondary to LAD occlusion, it may also represent isolated RVMI due to an occluded RV branch of the RCA.

References