
 Procedia Technology   25  ( 2016 )  76 – 83 

Available online at www.sciencedirect.com

ScienceDirect

2212-0173 © 2016 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license 
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
Peer-review under responsibility of the organizing committee of RAEREST 2016
doi: 10.1016/j.protcy.2016.08.083 

Global Colloquium in Recent Advancement and Effectual Researches in Engineering, Science and 
Technology (RAEREST 2016) 

Simulation and Analysis of Integral LQR Controller for Inner 
Control Loop Design of a Fixed Wing Micro Aerial Vehicle (MAV) 

Anjali B Sa*,Vivek Aa ,and Nandagopal J La 

,a Drepartment of Electrical and Electronics Engineering, Amrita Viswa Vidyapeetham ,Kollam-691001,India 

Abstract 

The focus of this paper is on the autopilot control loop design of fixed wing Micro Aerial Vehicles (MAVs).The control 
methodologies used to design the lateral and longitudinal control are based on Proportional Integral Derivative (PID) and Linear 
Quadratic Regulator (LQR) with integral action control techniques. The design of these controllers is based on the assumption 
that the system dynamics can be decoupled to longitudinal and lateral dynamics. A nominal model is chosen among many linear 
models linearized under various operating conditions. The resulting controllers are simulated in MATLAB® SIMULINK® 
workspace and results are studied. The simulation results show that both the controllers gives satisfactory performances with or 
without disturbances, but the LQR controller provides better disturbance rejection and exhibits better overall performance. 
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1. Introduction 

Micro Aerial Vehicles (MAVs) are typically a class of unmanned aerial vehicles (UAVs) with wing span less than 
450mm and are capable of operating at speeds of 30mph or less. These vehicles provide inexpensive and expandable 
platforms for surveillance and data collection. Some of the major applications of these aerial systems are monitoring 
the disaster areas, localization of victims, infrastructure inspection, tasks of surveillance and photography. MAVs 
operate at low velocities in low Reynolds number aerodynamic regimes, have small mass and moments of inertia, 
exhibit complex nonlinear dynamics and are very susceptible to winds and gusts. Hence, innovative methods are 
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needed for the control of MAVs. The PID controller, which has proportional, integral and derivative elements, is 
widely applied in feedback control of industrial processes. These controllers are described with their simple 
structure and principle providing good performance for various systems. They require tuning for each MAV, and 
quickly loose performance in the presence of actuator failures or changes in MAV dynamics [1] 

In this paper, an advanced control strategy, Integral Linear-Quadratic Regulator (LQI) optimal control is introduced 
to overcome the problems that are faced by PID controller. Linear Quadratic Regulator (LQR) is a control scheme 
that gives the best possible performance with respect to some given measure of performance [2]. The performance 
measure is a quadratic function composed of state vector and control input. As the considered control problem is 
tracking problem Linear Quadratic Regulator with Integral action (LQI) is proposed. 

 
Nomenclature 

θ         pitch angle 
Ψ                   yaw angle 
Φ         roll angle 
u, v, w           body axes velocities 
p, q. r            angular rates 
δe                  elevator deflection 
δa                  aileron deflection 
m                   aircraft mass 

2. Flight Dynamics of Micro Aerial Vehicle (MAV) 

A nonlinear model of the fixed wing MAV is generated from first-principles modeling approach [3]. The MAV 
models are developed with medium-complexity based on only basic flight dynamics. Satisfactory accuracy of the 
model can be achieved and the obtained model is adequate for flight simulations over a large portion of the flight 
envelope. 

2.1 Rigid Body Equations of Motions 

The rigid body equations for the Fixed Wing MAV obtained from Newton’s Second Law along with Euler’s 
rotational equations of motion is applied to establish the six degree of freedom (6Dof) rigid body dynamics of the 
MAV [4].The aircraft dynamics are simulated using the following math models describing the aircraft 6DoF 
equations of motion 

                                                                                                (1) 
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Here Fx, Fy and Fz are the aerodynamic forces along the different body axes and L, M and N are the aerodynamic 
moments about the centre of gravity. Φ, θ and Ψ are the 3 Euler angles and p, q and r are the 3 body angular rates. 
The linear models of the aircraft is deduced using these rigid body equations using proper assumptions. 
                                                                                                                                 
The control objective includes the stability of the system over complete flight envelope, disturbance rejection and to 
meet the performance specification like rise time, settling time with minimum overshoots.     
 
 
2.2. Aerodynamic data        
  
 The aircraft data used in the study and analysis corresponds to that of a fixed wing MAV developed at IIT Bombay 
[6], India is given in Table 1. The aerodynamic force and moment coefficients are given in Table 2 . 
                    
         Table 1. Geometric, mass and inertial data                    Table 2.  List of Aerodynamic Force and Moment Coefficients 

 
    

2.2. Linear Models 
 
The nonlinear dynamic model of the MAV is to be linearized at certain operating points before applying the optimal 
control techniques. The aircraft equations of motion are trimmed for wings level flight conditions and were 
linearized at various operating conditions. The position and yaw of the MAV becomes significant only in the design 
of a higher level of control when performing navigation. Thus, the inputs are defined as [δe δa ]

T and the states are 
[ , , , , , , , ] . The operating conditions considered were velocities ranging from 10m/s to 20m/s. A typical 
nominal model corresponding to V=15m/s is chosen for analysis. Assuming the system dynamics can be decoupled 
along the lateral and longitudinal axes, the linearized nominal model is as given below 
 
Longitudinal Axis 
 
        Input vector  uT = [δe] 
        State vector  xT = [u w q θ]                                                                                                                                   (2) 
 
Lateral-Directional Axis 
 
 Input vector  uT = [δa] 
        State vector  xT = [v p r Φ]                                                                                                                                   (3) 
 
Units: - u, v, w --> m/sec     p, q, r--> rad/sec;    θ, Φ --> rad 

Aerodynamic 
Force 

Coefficients 

 
Values 

Aerodynamic 
Moment 

Coefficients 

 
     Values 

CL0  0.0530 Cm0 -0.0580 

CLα  2.6358 Cmα -0.9741 

CLδe  0.6143 Cmδe -0.3862 

CLmind  0.1651 Cmq -0.8757 

CLq  2.6818 Cnβ 0.4383 

CDmin 0.3170 Cnδa -0.0068 

CDδe 0.0894 Cnp -0.1337 

CDδa -0.0190 Cnr -0.1859 

CYβ -0.9099 Clp -0.1387 

CYp 0.4113 Clr 0.1491 

CYr 0.3382 Clδa -0.0977 

CYδa 0.0211 Clβ -0.5900 

Parameter Symbol Values 

Mass     m 0.290kg 

Wing Area     S 0.0612m2 

Mean Chord     c 0.25m 

Span      b 0.3m 

Moments of 
inertia: 
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3. Flight Control System Design 

The architecture of flight control system of the fixed wing MAV is illustrated in Fig. 1.  

 
Navigation 

Reference Output 
  
 States 
 states 
 
 
 
 
 
 

Fig.1 Architecture of Flight Control System 

The inner loop control applies PID/LQR techniques to internally stabilize the MAV and the outer loop performs the 
position and heading control in order to navigate the helicopter along the predefined trajectory with specified 
yawing angles [7]. In this section, we describe the PID and LQR controllers that have been designed for the control 
the fixed wing MAV. 

 
3.1. Proportional Integral Derivative (PID) Controller  
   
The Proportional-Integral-Derivative (PID) method is a type of feedback controller which is generally based on the 
error (e) between desired set point and actual value. The error is then used to adjust a chosen input to the plant in 
order to track its defined set point. Three parameters must be designed in the PID controller and each parameter has 
an effect on the error. They provide control signals that are proportional to the error between the reference signal 
and the actual output (proportional action), to the integral of the error (integral action), and to the derivative of the 
error (derivative action). The transfer function of the PID controller is written as: 
 
                                           t

d
i

p te
dt

d
Tde

T
teKtu

0

)()(
1

)()(
                                                                                 (4)                  

 
Where, Kp is the controller gain, Ti is the integral time and Td is the derivative time. It is important to determine 
appropriate parameters to guarantee stability and system performance. There are several methods for tuning PID 
parameters [8]. However, in this study the three parameters of PID controller values are computed by Zeigler-
Nicholas Method of tuning. 
 
 
3.2. Linear Quadratic Regulator with Integral Action (LQR) 
 
LQR is an optimal control technique that provides the best possible performance with respect to some given 
performance measure. The LQR design problem is to design a state feedback controller K such that the objective 
function J is minimized. In this technique a feedback gain matrix is designed which minimizes the objective function 
in order to achieve some compromise between the use of control effort, the magnitude, and the speed of response 
guaranteeing a stable system.  
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For a continuous-time linear system described as 
                                  

BuAxx                                                                                             (5) 
 
With a cost function defined as  

                                 
0

)( dtRuuQxxJ TT                                                                                    (6)                

where Q and R are the weight matrices, Q is required to be positive definite or positive semi-definite symmetry 
matrix; R is required to be positive definite symmetry matrix. One practical method is to Q and R to be diagonal 
matrix. The value of the elements in Q and R is related to its contribution to the cost function J. The feedback 
control law that minimizes the value of the cost function is given by 
 

                            u=-Kx                                                                                                    (7) 
 
where K is obtained as 
  

                            K=R-1BT P                                                                                                (8)  
  
and P is found by solving the continuous time Algebraic Riccati Equation (ARE) 
 

                           ATP+PA+Q-PBR-1BTP=0                                                                               (9) 
 
The design procedure for finding the feedback gain K for LQR can be formulated as given steps:  
 
• Selection of the design parameter matrices Q and R [12].  

     
In this paper trial and error method on weights is used to obtain tracking and to achieve less control effort. 

 
• Find P by solving ARE.  
 
• Find the state feedback matrix K using K= R-1 BT P. 
 
In order to obtain zero steady state error an integral action is included in the LQR Control. The basic approach in 
integral feedback is to create a state within the controller that computes the integral of the error signal, which is then 
used as a feedback term. It is done by augmenting the description of the system with a new state z: 
                                                         

rCx

BuAx

ry

BuAx

z

x

dt

d                                                               (10) 

                
The final compensator is given by 
 

                                                         u = −K(x – xe) – Ki z + ud                                                                                                                   (11)                
                                                                            ryz  
 
where we have now included the dynamics of the integrator as part of the specification of the controller  
 
4. Simulation Results 
 
Simulations were performed using decoupled linearized models of MAV in MATLAB/SIMULINK. Separate 
controllers were employed for longitudinal and lateral motions. Disturbances were injected to the system through the 
input channel and the performances of the controllers were evaluated. For the given MAV system for a flight 
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condition with roll input equal to 20 degrees and pitch input equal to 11 degrees, the inner loop control required 
performance specifications are, the settling time less than 6secs, peak overshoot less than 10 percent and steady state 
error equal to zero. A 2 degree of elevator and aileron disturbances were injected at 73 seconds. The control 
constraint is fixed to be less than 30 degrees for aileron deflection and less than 20 degrees for elevator deflection. 
 The inner loop control should have good disturbance rejection capability.  

4.1. PID Controller Response 
     
The response of the system with PID controller is shown in Figure 2. Figure 2(a) and Figure2 (b) gives the 
longitudinal and lateral response respectively. The control effort using PID is as shown in Figure2(c) and Figure2 
(d) 

 
 

    
 

Fig 2. (a) Longitudinal Response (in degrees) with PID; (b) Lateral Response (in degrees) with PID;   (c) Elevator deflection (in radians); (d) 
Aileron deflection (in radians) 

 
 
Figure 2 shows a reasonably good response obtained by tuning the PID controller. The tuning of the controller was 
done using Zeigler-Nicholas Method. The PID controller gives satisfactory responses with the linearized aircraft 
models [8]. The aileron and elevator deflections are within limits. However, the overshoot and settling time of both 
lateral and longitudinal responses are quite higher than the required limits. 
 
 
4.2 Integral –LQR Controller Response 
 
The Integral LQR controller gives a much stable and robust response for the system [10]. The response of the 
system with LQR controller is given in Figure 3. Figure 3(a) shows the longitudinal response and Figure 3(b) shows 
the lateral response. The SVFB gain K for the system is found using lqr command in Matlab and the gain was given 
in the Simulink model to obtain the output.  
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(i)The value of Q, R and Klong  matrices which gave the best pole placement for longitudinal was 
 
 
 
                                                    , R=100 and Klong= [-0.0053    0.0299   -0.1941   -3.1618    0.0000]                     (12) 
 
 
                       
                            (ii) The value of Q, R and  Klat  matrices which gave the best pole placement for lateral was  
 
 
 
                                                    , R= 100 and Klat = [0 0.0295   -0.2484   -0.0581   -3.1450    0.0000]                   (13) 
          
 

                
 
 

 
 
 

 
Fig 3. (a) Longitudinal Response(in degrees) with Integral LQR;  (b) Lateral Response(in degrees) with Integral LQR ;  (c) Elevator deflection(in 

radians); (d) Aileron deflection (in radians) 
 
There is a considerable reduction in overshoot and settling time with the LQR controller. The response is more 
stable and robust. The control effort using Integral LQR is satisfactory and within limits. 
 
 
4.3 Stability and Performance 
 
The stability and performance of both controllers can be analysed using step response plots. Figure 4 shows the step 
response plots with PID and LQR Controllers. Figure 4(a) shows longitudinal step response of the system and 
Figure 4(b) shows the lateral step response of the system. In the case of PID Controller the overshoot (O S) and 
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settling time(Ts) is greater than 5 percent and 6 seconds respectively for both lateral (O S=6.86%,Ts=6.18s) and 
longitudinal (O S=9.33%,Ts=7.03s). In the case of LQR Controller, the overshoot and settling time is less than 5 
percent and 6 seconds respectively for both longitudinal(O S=0%,Ts=3.44s) and lateral(O S=1.92%,Ts=2.04s) as 
seen in Fig 4 (a) and Fig 4 (b) 
 

   
Fig 4. Step response plot (a) Longitudinal; (b) Lateral 

 
5. Conclusions and Future Works 
 
The Integral LQR control methodology is investigated and its control performance is compared with that of the 
traditional PID Controller in the dynamic system. PID controller for the proposed system model is showing only a 
very narrow region of stability. When the gains are increased, the system is settled fast but the overshoot is very 
high. Here, adding integral action to the LQR inner loop controller is proposed.  The simulation results validate the 
proposed LQR methodology and display a better dynamic performance in terms of transition time and speed 
overshoot and also stronger robustness of LQR control methodology than that of traditional PID controller. This 
approach provided the desired results and it should be extended to the other controllers as this should result in better 
performance in the case of uncertainties. Future works include proposing an optimal sliding mode control against 
uncertainties. 
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