
b

err–AdS
allows

quation
l rotation

ric limit of

eodesic

ility of
art were

nd

se where

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 
Physics Letters B 628 (2005) 275–280

www.elsevier.com/locate/physlet

Special symmetries of the charged Kerr–AdS black hole ofD = 5
minimal gauged supergravity

Paul Davis, Hari K. Kunduri∗, James Lucietti

DAMTP, Centre for Mathematical Sciences, University of Cambridge, Wilberforce Rd., Cambridge CB3 0WA, UK

Received 16 September 2005; accepted 26 September 2005

Available online 30 September 2005

Editor: M. Cvetǐc

Abstract

In this Letter we prove that the Hamilton–Jacobi equation in the background of the recently discovered charged K
black hole ofD = 5 minimal gauged supergravity is separable, for arbitrary values of the two rotation parameters. This
us to write down an irreducible Killing tensor for the spacetime. As a result, we also show that the Klein–Gordon e
in this background is separable. We also consider the Dirac equation in this background in the special case of equa
parameters and show it has separable solutions. Finally, we discuss the near-horizon geometry of the supersymmet
the black hole.
 2005 Elsevier B.V.

It is a curious fact that the Kerr–Newman black hole possesses a hidden symmetry which renders g
motion integrable[1]. This is related to the existence of a second rank Killing tensorKµν ; by definition such
a tensor satisfies∇(µKνρ) = 0. Given a Killing tensor one may construct the quantityK = Kµνẋ

µẋν which is
conserved along geodesicsxµ(τ). Carter was the first to systematically analyse the consequence of separab
solutions to Einstein’s equations, and indeed this is how the Kerr–(A)dS black hole and its charged counterp
first discovered[2]. Higher-dimensional Kerr–(A)dS metrics have only been recently constructed[3]. The existence
of a Killing tensor has been verified in five dimensions for arbitrary rotation parameters[4] and in all dimensions
for the special cases of equal sets of rotation parameters[5,6]. This renders both the Hamilton–Jacobi (HJ) a
Klein–Gordon (KG) equations separable. The charged counterparts of the Kerr–AdS black holes inD = 5 minimal
gauged supergravity are far more difficult to construct. Progress was first made by tackling the special ca
the rotation parameters are equal[7], and a reducible Killing tensor for this black hole was found in[8]. Further, the
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same Killing tensor was found for black holes with equal rotation parameters in the more generalU(1)3 theory[9].
Only very recently has a charged Kerr–AdS black hole been found with arbitrary rotation parameters[10]. The
purpose of this Letter is to show that this black hole also has a Killing tensor rendering geodesic motion in
and the KG equation separable. We also show that the Dirac equation admits separable solutions in the sp
of equal rotation parameters. Finally, we discuss the near-horizon geometry of the supersymmetric limi
black hole. In the case of equal rotation parameters we show that it has a symmetry algebrasl(2,R)× su(2)×u(1)

as is the case for the BMPV black hole[11].
In [10] it was shown thatD = 5 minimal gauged supergravity with the Lagrangian density

(1)L= (
R + 12g2) ∗ 1− 1

2
F ∧ ∗F + 1

3
√

3
F ∧ F ∧ A,

whereF = dA, admits a black hole solution parameterised by its mass, charge and two rotation paramet
plicitly, the metric is given by:

(2)

ds2 = −∆θ [(1+ g2r2)ρ2 dt + 2qν]dt

ΞaΞbρ2
+ 2qνω

ρ2
+ f

ρ4

(
∆θ dt

ΞaΞb

− ω

)2

+ ρ2 dr2

∆r

+ ρ2 dθ2

∆θ

+ r2 + a2

Ξa

sin2 θ dφ2 + r2 + b2

Ξb

cos2 θ dψ2,

(3)A =
√

3q

ρ2

(
∆θ dt

ΞaΞb

− ω

)
,

where

ν = b sin2 θ dφ + a cos2 θ dψ, ω = a sin2 θ
dφ

Ξa

+ b cos2 θ
dψ

Ξb

, ρ2 = r2 + a2 cos2 θ + b2 sin2 θ,

∆θ = 1− a2g2 cos2 θ − b2g2 sin2 θ, ∆r = (r2 + a2)(r2 + b2)(1+ g2r2) + q2 + 2abq

r2
− 2m,

(4)f = 2mρ2 − q2 + 2abqg2ρ2, Ξa = 1− a2g2, Ξb = 1− b2g2.

The metric is written in Boyer–Lindquist type coordinates, although we should emphasise that it is in a non-
frame at asymptotic infinity. For general rotation parametersa and b this metric has three commuting Killin
vectors, namely∂t , ∂φ and∂ψ . Remarkably, one can check that the determinant of the metric is independent
charge parameterq and is thus given by the same expression as in the uncharged case,

(5)
√−detg = rρ2 sinθ cosθ

ΞaΞb

.

A tedious calculation allows one to write the inverse metric as:

ρ2gtt = − (a2 + b2)(2mr2 − q2)

r2∆r

− (r2 + a2)(r2 + b2)[r2(1− g2(a2 + b2)) − a2b2g2]
r2∆r

− 2ma2b2

r2∆r

− 2abqr2

r2∆r

− a2 cos2 θΞa + b2 sin2 θΞb

∆θ

,

ρ2gtφ = aq2 − [2ma + bq(1+ a2g2)](r2 + b2)

r2∆r

,

ρ2gtψ = bq2 − [2mb + aq(1+ b2g2)](r2 + a2)

2
,

r ∆r
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ρ2gφφ = a2g2q2

r2∆r

+ Ξa

sin2 θ
+ Ξa

r2∆r

(
1+ g2r2)(r2 + b2)(b2 − a2)

− 2m

r2∆r

(
a2g2r2 + b2) − 2abq

Ξbr2∆r

(
Ξbg

2(r2 − a2) − b4g4 + 1
)
,

ρ2gψψ = b2g2q2

r2∆r

+ Ξb

cos2 θ
+ Ξb

r2∆r

(
1+ g2r2)(r2 + a2)(a2 − b2)

− 2m

r2∆r

(
b2g2r2 + a2) − 2abq

Ξar2∆r

(
Ξag

2(r2 − b2) − a4g4 + 1
)
,

ρ2gφψ = abg2q2 − (1+ g2r2)(2mab + (a2 + b2)q)

r2∆r

,

(6)ρ2gθθ = ∆θ, ρ2grr = ∆r.

An important fact, that we will use shortly, is that the component functionsρ2gµν are additively separable a
functions ofr andθ .

The Hamiltonian describing the motion of free uncharged particles in the background metricgµν is simply
H = 1

2gµνpµpν . The corresponding Hamilton–Jacobi equation is then

(7)
∂S

∂τ
+ 1

2
gµν ∂S

∂xµ

∂S

∂xν
= 0,

whereS is Hamilton’s principal function andτ is the parameter along the worldline of the particle. Due to
presence of the isometries one may immediately separate out the dependence ont , φ, ψ leaving

(8)S = 1

2
M2τ − Et + L1φ + L2ψ + F(r, θ),

whereM2, E andLi are constants. Remarkably, it turns out thatS is completely separable soF(r, θ) = Sr(r) +
Sθ (θ). The proof of this simply relies on the non-trivial fact thatρ2gµν is additively separable as a function ofr

andθ . This implies that the HJ equation is separable after multiplying it through byρ2. Theθ -dependent part o
the HJ equation is

(9)∆θ

(
dSθ

dθ

)2

+ L2
1Ξa

sin2 θ
+ L2

2Ξb

cos2 θ
− E2

∆θ

(
a2Ξa cos2 θ + b2Ξb sin2 θ

) + M2(a2 cos2 θ + b2 sin2 θ
) = K,

whilst ther-dependent part is

(10)∆r

(
dSr

dr

)2

+ V (r;E,Li,M) = −K,

whereK is the separation constant, and we have defined an “effective” potentialV which is a complicated functio
of r ; as we shall not use it directly, we shall not display it for the sake of brevity. From theθ equation one may
easily read off a Killing tensor for the spacetime usingK = Kµνpµpν andgµνpµpν = −M2. This gives

Kµν = −gµν
(
a2 cos2 θ + b2 sin2 θ

) − 1

∆θ

(
a2Ξa cos2 θ + b2Ξb sin2 θ

)
δ
µ
t δν

t + Ξa

sin2 θ
δ
µ
φ δν

φ + Ξb

cos2 θ
δ
µ
ψδν

ψ

(11)+ ∆θδ
µ
θ δν

θ .

This is an irreducible Killing tensor. Note that this has a smooth limit asg → 0 and whenq = 0 coincides with
the Killing tensor found in[4], up to terms which are outer products of the Killing vectors. In contrast to[4],
here it was unnecessary to add outer products of Killing vectors to the Killing tensor in order to obtain a
limit. This is presumably related to the fact that we are in a non-rotating frame at infinity, whereas the
in [4] was in a rotating frame. It is a curious result that the Killing tensor does not depend explicitly on the c
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although this does also occur for the four-dimensional Kerr–Newman solution. Moreover, as we will discuss
there exist supersymmetric solutions witha �= b. Such black holes thus possess anirreducible Killing tensor, as
do the supersymmetric Kerr–Newman–AdS black holes in four dimensions[12]. We should note that from th
Hamiltonian point of view the functionsH , K , pt , pφ , pψ are in involution thus establishing Liouville integrabilit
The general solution to geodesic motion can easily be deduced from the generating functionS by differentiating
with respect toK , M2, E, Li , respectively.

As in the uncharged case, the additive separability ofρ2gµν allows for separable solutions to the Klein–Gord
equation which governs quantum field theory of massive, spinless particles on this background. Writing
equation as

(12)
1√−detg

∂µ

(√−detggµν∂νΦ
) = M2Φ,

and taking the following standard ansatzΦ = e−iωt eiαφeiβψR(r)Θ(θ), renders the KG equation separable. T
details of this are rather similar to the uncharged Kerr–(A)dS[4]. By making the change of variablez = sin2 θ , the
θ equation can be rewritten as

d2Θ

dz2
+

(
1

z
+ 1

z − 1
+ 1

z − d

)
dΘ

dz

+
[
ω2(a2Ξa + z(b2Ξb − a2Ξa))

4z(1− z)∆2
z

− 1

4z(1− z)∆z

(
α2Ξa

z
+ β2Ξb

1− z

)
+ M2

4g2z(1− z)
− k′

4z(1− z)∆z

]
Θ

(13)= 0,

whered = Ξa/(g
2(b2 − a2)), ∆z = Ξa + g2z(a2 − b2) andk′ = k + M2/g2 with k being the separation constan

This equation has four regular singular points and can easily be put in the form of Heun’s equation. The
casea = b simplifies this equation and the solutions are Jacobi polynomials.

Having discussed the separability of the Klein–Gordon equation, the next thing to consider is the Dirac e
on this background. We find that the Dirac equation separates in the special case of equal rotation pa
a = b, and can be written as

(14)(Dr + Dθ ′)Ψ = 0,

whereDr andDθ ′ are linear differential operators depending only onr andθ ′ respectively, once the followin
ansatz has been made:

(15)Ψ = e−iωt eim1φ
′
eim2ψ

′
χ(r, θ ′).

The angular coordinates(θ ′, φ′,ψ ′) are Euler angles following the notation of[8]. This then admits solutions whic
are separable in the sense that

(16)χ(r, θ ′) =



R1(r)S+(θ ′)
R2(r)S−(θ ′)
R3(r)S+(θ ′)
R4(r)S−(θ ′)


 ,

where the radial functions form a complicated, coupled system and the functionsS± are eigenfunctions of th
differential operators

(17)∂2
θ ′ + cotθ ′ ∂θ ′ − 1

2 sin2 θ ′ ∓ i(m1 cosθ ′ − m2)

sin2 θ ′ + cot2 θ ′

4
+ (m1 − m2 cosθ ′)2

sin2 θ ′ .

In four dimensions the separability of the Dirac equation leads to the construction of an operator that co
with the Dirac operator, and is intimately related to the existence of a Yano tensor for the spacetime[13]. Remark-
ably, the four-dimensional Kerr–Newman Killing tensor admits a decomposition in terms of a Yano tensor,
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from the fact that there is a non-trivial supersymmetry on the worldline of a spinning particle[14]. It is not hard
to show that the five-dimensional Schwarzschild’s Killing tensorK does not admit a Yano tensor, and hence
suggests that the full black hole we have been considering does not either. However, one actually shou
construct an operator that commutes with the Dirac operator. One expects this to exist due to the prese
extra (separation) constant of the system. In four dimensions this is readily achieved, but seems to rely cru
the existence of Weyl spinors, and we have been unable to find such an operator in the five-dimensional c

Finally, we will briefly discuss the near-horizon geometry of the supersymmetric limit of the black ho
discussed in[10], the metric given in Eq.(2) can be rewritten as:

(18)ds2 = − ∆r∆θr
2 sin2 2θ

4(ΞaΞb)2BφBψ

dt2 + ρ2
(

dr2

∆r

+ dθ2

∆θ

)
+ Bψ(dψ + ν1 dφ + ν2 dt)2 + Bφ(dφ + ν3 dt)2,

where

(19)Bψ = gψψ, Bφ = gφφ − g2
φψ

gψψ

, ν1 = gφψ

gψψ

, ν2 = gtψ

gψψ

, ν3 = gtφgψψ − gφψgtψ

gφφgψψ − g2
φψ

.

In the supersymmetric limit, some simplification of the metric occurs due to the constraints imposed up
parametersq andm, namely,

(20)q = m

1+ ag + bg
, m = (a + b)(1+ ag)(1+ bg)(1+ ag + bg)

g
.

With these restrictions in place, we find that at the horizonr2
0 = g−1(a + b + abg), ν3 + g = 0, g + gν1 + ν2 = 0

and all the other functions in the metric are complicated functions ofθ and the rotation parameters. To investig
the near-horizon geometry of this metric we first need to go to a frame which is corotating with the horizo
is effected by the redefinitions̃t = t , φ̃ = φ − gt , andψ̃ = ψ − gt . Then we setr − r0 = εR andt̃ = T/ε and take
the limit ε → 0. The near-horizon geometry is then

ds2
NH = ρ2(θ)

(
−c1R

2 dT 2 + c2
dR2

R2
+ dθ2

∆θ

)
+ Bψ(θ)

(
dψ̃ + ν1(θ) dφ̃ + f (θ)R dT

)2

(21)+ Bφ(θ)(dφ̃ + c3R dT )2,

where, in general, we denoteF(θ) ≡ F(r0, θ). The functionf (θ) as well as the constantsc1, c2, c3 are complicated
and rather unenlightening. The resulting geometry is similar to the product ofAdS2 with a squashed sphere, whi
appears to be a generic property of extremal, rotating (possibly charged) black holes[15]. A trivial time rescaling
T = √

c2/c1T̃ puts theT̃ R part of the metric into a form conformal toAdS2 in Poincaré coordinates. Thus,
addition to the obvious isometries generated by∂/∂T̃ , ∂/∂φ̃, and∂/∂ψ̃ , (21) is also invariant under dilation
T̃ → αT̃ , R → R/α. An obvious question is whether the near-horizon limit has all the symmetries ofAdS2.
Following [15], one might try to introduce global coordinates on theAdS2, in order to show the near-horizon lim
has an (analogue) of the global time translation. This needs to be accompanied by a corresponding c
transformation for(ψ̃, φ̃). We find that this method does not work in this case, due to theθ -dependence of th
metric.

Nevertheless, we can show that the near-horizon limit has all the symmetries ofAdS2 in the special casea = b

as follows. Let us write the near-horizon limit in terms of left-invariant forms onSU(2) as in[16]. It is of the form

(22)ds2 = −(R dτ + jσ3)
2 + dR2

R2
+ L2(σ 2

1 + σ 2
2

) + λ2σ 2
3 ,

wherej , λ, L are constants related to the horizon radius and the cosmological constant. One should note
metric is a deformation of the near-horizon limit of BMPV as found in[11]. One may easily check that in additio
to the time translationk = ∂ and the dilation operatorl = −τ ∂ +R ∂ , there is a third isometry analogous to t
∂τ ∂τ ∂R
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(23)m = 2

R2

(
1− j2

λ2

)
∂τ + 2τ2∂τ − 4τR∂R + 4j

Rλ2
∂ψ ′ .

One may check that these Killing vectors satisfy

(24)[l, k] = k, [l,m] = −m, [k,m] = −4l.

Furthermore, the gauge fieldA is regular in the near-horizon limit and one can easily check that £kF = £lF =
£mF = 0. Therefore, the algebra of the isometry group of the near-horizon limit which preserves the field st
in thea = b case, issl(2,R)× su(2)×u(1). It would be most interesting to see whether the general case reta
the symmetries ofAdS2. Further, an interesting problem is to determine the full superalgebra of the near-h
limit, as was done for the BMPV case in[11].

The coordinates we are using are not really suitable on the horizon. One should really be using Gaus
coordinates adapted to the Killing horizon, which would also allow direct comparison with the near-horizon g
tries derived in[16]. One expects the “parameter”∆ used therein to be non-constant for the metric at hand and
would fall outside their analysis.

While we have studied certain special symmetries of the general charged Kerr–AdS black holes, we do
the short list presented here is exhaustive. The existence of supersymmetric black hole solutions with s
topology having non-equal angular momentum in two orthogonal planes seems unique to gauged supe
Given the natural link between supersymmetry and special geometric structures, it seems likely there ar
non-trivial symmetries of these black holes.
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