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1. Introduction

The classical Riemann boundary value problem with Hölder continuous coefficients was discussed in different classes of
domains. Many well-known results on its solvability, mainly concern the case of a piece-smooth boundaries, was given by
Gakhov in [5] and by Lu in [12].

Further extensions of the problem are treated and have led to numerous important results not only for non-smoothly
bounded domain, which differs with the former, but for general assumptions on the data of the problem, such as generalized
Hölder coefficients or special subspaces of it. Moreover, the Riemann boundary value problem was studied for generalized
analytic functions, as well as for many other linear and nonlinear elliptic systems in the plane. The best general references
here are [2,6].

During the last decades, some results about the analytic Riemann boundary value problems on non-smooth or non-
rectifiable curves have arisen (see [10,11]).

The hyperanalytic Riemann boundary value problems on rectifiable curves were studied in [1,7,14] and in [15] a direct
generalization for non-rectifiable framework is given.

Our purpose is to get a sufficiently complete picture of solvability of the hyperanalytic Riemann boundary value problem
for a great generality dealing directly with the d-summability of the boundary as essential hypothesis for integration. In the
process of this study we find that basic results obtained in the aforementioned references are extended or improved to a
more suitable approach.

Throughout the paper we assume Ω to be a simply connected bounded open subset of C and γ is the boundary curve
of Ω . When necessary we shall use the temporary notation Ω+ := Ω , Ω− := C \ Ω .
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The hyperanalytic Riemann boundary value problem considered here is that of finding all functions Φ(z) hyperanalytic
in C \ γ satisfying the boundary condition

Φ+(t) = F (t)Φ−(t) + f (t), t ∈ γ , (1)

where F and f are two given continuous functions defined on γ , and Φ±(t) are the limit values of the desired function
Φ(z) at a point t as this point is approached from Ω± respectively.

A simplest particular case of (1) is the so-called jump problem:

Φ+(t) − Φ−(t) = f (t), t ∈ γ . (2)

When investigating the above-stated problem (1), it is required that the unknown functions are continuous up to the
boundary, for what is usually called the continuous hyperanalytic Riemann boundary value problem.

2. Preliminaries

2.1. Douglis algebras and hyperanalytic functions

A Douglis algebra is a class of functions which is generated by the elements i and e, it is a generalization of the complex-
valued function in the complex plane C. For details about this topic we refer the reader to [2,6,14]. The Douglis analysis is
then the study of the Douglis algebra-valued functions.

Let D be the Douglis algebra, the multiplication in D is governed by the rules:

i2 = −1, ie = ei, er = 0, e0 = 1,

where r is a positive integer.
Any arbitrary element a ∈ D may be written as a hypercomplex number in the form

a =
r−1∑
k=0

akek,

where each ak is a complex number, a0 is the complex part of a, meanwhile A = ∑r−1
k=1 akek its nilpotent part.

Let a be any hypercomplex number then its conjugation a is defined as a = ∑r−1
k=0 akek .

The algebraic norm in D is defined by |a| := ∑r−1
k=0 |ak|.

If the complex part a0 of a hypercomplex a is not null then the multiplicative inverse a−1 of a is given by

a−1 = a−1
0

r−1∑
k=0

(−1)k
(

A

a0

)k

.

If a0 = 0 then a is called nilpotent and it does not have multiplicative inverse.
Let f be a D-valued function then f may be written as f = ∑r−1

k=0 fkek , where fk are complex-valued functions.
The Douglis operator ∂

q
z is given by

∂
q
z := ∂z + q(z)∂z, z = x + iy,

where q(z) is a known nilpotent hypercomplex function and

∂z := 1

2
(∂x + i∂y), ∂z := 1

2
(∂x − i∂y).

Suppose Ω ⊂ C to be a domain, a smooth hypercomplex function f defined in Ω is said to be hyperanalytic in Ω if ∂
q
z f = 0

in Ω .
As an example for hyperanalytic function we take the generating solution of the Douglis operator given by

W (z) = z +
r−1∑
k=1

Wk(z)ek,

where its nilpotent part posses bounded and continuous derivate up to order two in C.
The following properties concerning with the generating solution will be used frequently:

∣∣W (z1) − W (z2)
∣∣ � c|z1 − z2|, 1 � c|z1 − z2|−1, z1 �= z2.
|W (z1) − W (z2)|
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Notation c will be used for constants which may vary from one occurrence to the next, in general these constants only
depend on q.

Other important example for hyperanalytic function is the so-called hypercomplex Cauchy kernel, i.e., the fundamental
solution of the Douglis operator, given by

ez(ζ ) := 1

2π

∂ζ W (ζ )

W (ζ ) − W (z)
, ζ �= z.

The nature of the singularity of ez(ζ ) is the same as that which the complex Cauchy kernel 1
ζ−z has at ζ = z.

We will denote by C(γ ) the set of all continuous hypercomplex functions defined on γ . Moreover, for f ∈ C(γ ) we
introduce the modulus of continuity for f being defined by

ω f (τ ) := τ sup
ρ�τ

ρ−1 max
t1,t2∈γ , |t1−t2|�ρ

∣∣ f (t1) − f (t2)
∣∣, τ > 0.

Let us consider also the subclass Hν(γ ) ⊂ C(γ ) of all functions f satisfying a Hölder condition ω f (δ) � cδν , δ ∈ (0, |γ |],
with exponent ν , 0 < ν � 1.

Here and subsequently, |E| denotes the diameter of E ⊂ C.
It is worth pointing out that a very successful tool in the theory of Riemann boundary value problems both for analytic

and hyperanalytic functions are the corresponding Cauchy type integral. Hence, it is not surprising the necessity to discuss
this concept in full generality concerning the geometric properties of the contour of integration.

If γ is a Jordan closed rectifiable curve, then for any f ∈ C(γ ), the customary hypercomplex Cauchy type integral

(Cγ f )(z) :=
∫
γ

ez(ζ )nq(ζ ) f (ζ )ds, z /∈ γ , (3)

where nq(ζ ) := n(ζ ) + n(ζ )q(ζ ) being n(ζ ) the exterior unit normal vector at the point ζ on γ in Federer’s sense (see [4]),
and ds denotes the arclength differential, exists and represents a hyperanalytic function in C \ γ .

At almost all (with respect to ds) points t ∈ γ this function has non-tangential boundary limit values from both sides,
and these values almost everywhere satisfy the relation(

C+
γ f

)
(t) − (

C−
γ f

)
(t) = f (t), t ∈ γ . (4)

If f ∈ Hν(γ ) and ν > 1
2 , then the function Cγ f has continuous boundary values on the whole γ (see [15]). If the curve is

Ahlfors David regular, then these properties are valid for any ν ∈ (0,1] (see [1]).
When assuming a much more pathological situation, e.g., γ is assumed to be a fractal then the definition (3) of the

Cauchy type integral falls, but the hyperanalytic Riemann boundary value problem is still suitable and the influence of the
geometry of the boundary on the solvability of the problem is necessarily revelled. In Section 3 we will look more closely
at this phenomenon.

We end this section by introducing some important facts of fractal geometry.

2.2. Box dimension and d-summable sets in C

The standard approach consider a fractal to be a set with a non-integer Hausdorff dimension. However, frequently the
box dimension is more appropriated dimension than those of Hausdorff to measure the roughness of a bounded set.

By definition the box dimension of a bounded set E ⊂ C is equal to

α(E) := lim
ε→0

log NE(ε)

− logε
, (5)

where NE(ε) stands for the least number of ε-balls needed to cover E.
The limit in (5) is unchanged if NE(ε) is taking as the number of squares needed to cover E with 2−k � ε < 2−k+1

intersecting E.
The set E is said to be d-summable if the improper integral

1∫
0

NE(x)xd−1 dx

converges. This geometric notion was introduced by Harrison and Norton in [8].
It is easy to check that any d-summable set E has box dimension α(E) � d. Moreover, the assumption α(E) < d implies

the d-summability of E.
To deal with appropriated extension for hypercomplex functions f defined on γ to the whole complex plane C we will

consider the Whitney extension operator denoted by E0, see [13,15]. Indeed, if f ∈ Hν(γ ), then its Whitney extension E0( f )
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belongs to Hν(C) and has partial derivatives of all orders at any point z ∈ C \ γ . Moreover, there exists a constant c > 0
such that∣∣∂q

z E0( f )(z)
∣∣ � c

(
dist(z, γ )

)ν−1
, z ∈ C \ γ . (6)

In particular, for ν = 1 the function ∂
q
z E0( f ) is bounded.

If X (z) denotes the characteristic function of the set Ω , we shall write f ω(z) = X (z)E0( f )(z).

3. The Cauchy type integral on d-summable curves

This section is aimed to present an alternative definition of the hypercomplex Cauchy type integral when the contour is
allowed to be a fractal.

Definition 1. Let d ∈ (1,2] and let Ω be a domain with d-summable boundary γ and suppose ν > d − 1. We define the
hypercomplex Cauchy type integral of f ∈ Hν(γ ) by the formula(

C∗
γ f

)
(z) = f ω(z) −

∫
Ω

ez(ζ )∂
q
ζ

E0( f )(ζ )dξ dη, z ∈ C \ γ , (7)

with ζ = ξ + iη.

The following proposition makes this definition legitimate.

Proposition 1. The hypercomplex function (7) is correctly defined for any z ∈ C \ γ and its value does not depend on the particular
choice of E0( f ).

Proof. It is enough to prove that∫
Ω

∣∣∂q
ζ

E0( f )(ζ )
∣∣dξ dη < ∞.

We follow [13] in considering the Whitney decomposition of Ω , W = ⋃
k W k , which consists of disjoint squares Q satisfying

|Q | � dist(Q , γ ) � 4|Q |.
Then we have∫

Ω

∣∣∂q
ζ

E0( f )(ζ )
∣∣dξ dη =

∑
Q ∈W

∫
Q

∣∣∂q
ζ

E0( f )(ζ )
∣∣dξ dη

� c
∑

Q ∈W

∫
Q

(
dist(ζ,γ )

)ν−1
dξ dη,

being the last inequality a consequence of (6).
Consequently∫

Ω

∣∣∂q
ζ

E0( f )(ζ )
∣∣dξ dη � c

∑
Q ∈W

|Q |ν+1.

At this stage we exploit Lemma 2 in [8] to obtain the finiteness of the last sum by using the d-sumability of γ together
with the fact that ν + 1 > d.

Now suppose that E 1
0 ( f ) and E 2

0 ( f ) are two different Whitney extensions of f . Then E0(g) := E 1
0 ( f ) − E 2

0 ( f ), is also an
extension of Whitney type, but of the null function and hence E0(g)|γ = 0.

If we prove that the hypercomplex function

gω(z) −
∫
Ω

ez(ζ )∂
q
ζ

E0(g)(ζ )dξ dη (8)

vanishes in C \ γ , the assertion follows.
Define

Ωk = {
x ∈ Q : Q ∈ W j for some j � k

}
and �k = Ω \ Ωk . The boundary of Ωk , denoted by γk , is actually composed by certain sides of some squares Q ∈ W k .
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We have∫
Ω

ez(ζ )∂
q
ζ

E0(g)(ζ )dξ dη = lim
k→∞

(∫
Ωk

+
∫
�k

)
ez(ζ )∂

q
ζ

E0(g)(ζ )dξ dη. (9)

Let z ∈ Ω and let k0 be so large chosen that z ∈ Ωk0 and dist(z, γk) � |Q 0| for k > k0, where Q 0 is a square of W k0 .
By Borel–Pompeiu formula we deduce

gω(z) −
∫
Ωk

ez(ζ )∂
q
ζ

E0(g)(ζ )dξ dη =
∫
γk

ez(ζ )nq(ζ )gω(ζ )ds, z ∈ Ωk. (10)

Next, let ζ ∈ γk , Q ∈ W k a square containing ζ , and ζ∗ ∈ γ such that |ζ − ζ∗| = dist(ζ, γ ).
Since E0(g)|γ = 0, we have∣∣E0(g)(ζ )

∣∣ = ∣∣E0(g)(ζ ) − E0(g)(ζ∗)
∣∣ � c|ζ − ζ∗|ν � c|Q |ν .

If Σ denotes a side of γk and Q ∈ W k is the k-square containing Σ , we have for k > k0∣∣∣∣
∫
Σ

ez(ζ )nq(ζ )gω(ζ )ds

∣∣∣∣ � c

|Q 0|
∫
Σ

∣∣gω(ζ )
∣∣ds � c

|Q 0| |Q |ν+1.

As it was noticed before, each side of γk is one of those 4 of some Q ∈ W k . Therefore, for k > k0∣∣∣∣
∫
γk

ez(ζ )nq(ζ )gω(ζ )ds

∣∣∣∣ � c

|Q 0|
∑

Q ∈W k

|Q |ν+1.

The finiteness of
∑

Q ∈W |Q |ν+1 implies

lim
k→∞

∫
γk

ez(ζ )nq(ζ )gω(ζ )ds = 0.

Combining (9) with (10) yields that (8) vanishes for z ∈ Ω .
The same conclusion can be drawn for z ∈ C \ Ω . The only point now is to note that dist(z, γk) � dist(z, γ ) for z ∈

C \ Ω . �
Remark 1. After some necessary modifications due to the presence of the hypercomplex Cauchy kernel the proof of Propo-
sition 1 could be given more directly, since the previously introduced Cauchy transform C∗

γ f could be rewritten by using
the well-defined contour integration according to [9]. However, this topic exceeds the scope of this paper.

We will conclude the section with two theorems concerning the question on the resolvability of the problem on recon-
struction of a hyperanalytic function in C \ γ by its jump (i.e., by the boundary condition (2)) on a d-summable curve γ , to
be used mainly in Section 4.

Theorem 1. Let γ be a d-summable curve and f ∈ Hν(γ ). If ν > d
2 then the Cauchy type integral (7) has continuous limits values on

γ from both domains Ω± .

Proof. The function ∂
q
z E0( f ) is integrable in C with any degree not exceeding 2−d

1−ν , i.e., under the assumption ν > d
2 then

2−d
1−ν > 2 and ∂

q
z E0( f ) is integrable with some exponent p > 2. From this it follows that the integral term in (7) represents a

continuous hypercomplex function in C satisfying there a Hölder condition with exponent 1 − 2
p (see Theorem 1.25 in [6]).

Consequently, (C∗
γ f )(z) represents a hyperanalytic function in C \ γ whose restrictions (C∗

γ f )|Ω+ and (C∗
γ f )|Ω− are

continuous in Ω+ and Ω− , respectively. The boundary values of these restrictions (C∗
γ

± f ), thought of the usual continuous
limit values, are given by

(
C∗
γ

+ f
)
(t) = f (t) −

∫
Ω

et(ζ )∂
q
ζ

E0( f )(ζ )dξ dη, t ∈ γ ,

(
C∗
γ

− f
)
(t) = −

∫
Ω

et(ζ )∂
q
ζ

E0( f )(ζ )dξ dη, t ∈ γ .

Thus, the proof is complete. �
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Note that the proof above gives more, namely (C∗
γ f )(z) is a solution of the jump problem (2)

(
C∗
γ

+ f
)
(t) − (

C∗
γ

− f
)
(t) = f (t), t ∈ γ .

To ensure uniqueness of the solution of (2) we need to introduce some additional requirements.
The function Φ , hyperanalytic in C \ γ must satisfy a Hölder condition with exponent μ, 0 < μ < 1 on each of the sets

Ω± , i.e. the restrictions Φ|Ω+ and Φ|Ω− must be μ-Hölder continuous in the closed domains respectively, and the boundary
vales of these restrictions Φ± are the usual continuous limit values.

It is essential to point out that,
∫
Ω

et(ζ )∂
q
z E0( f )(ζ )dξ dη ∈ Hμ(C) with

μ <
2ν − d

2 − d
. (11)

At the same time the desired uniqueness of (2) follows from the removability of the curve γ under the condition that

μ > αH (γ ) − 1, (12)

where αH (γ ) denotes the Hausdorff dimension of γ .
To be specific, let us to state the analogue of Dolzhenko’s theorem (see [3]) for hyperanalytic functions, which may be

proved in much the same way as the former: If U ⊃ γ is a domain in C and a function Ψ ∈ Hμ(U ), μ > αH (γ ) − 1, is
hyperanalytic in U \ γ , then it is hyperanalytic in U .

A function Φ , being μ-Hölder continuous on Ω± whenever μ satisfies the conditions (11) and (12), is said to be of
class Hμ .

Summarizing, we have

Theorem 2. Under the hypotheses of Theorem 1, if moreover

αH (γ ) − 1 < μ <
2ν − d

2 − d
,

then there exists a unique solution of the jump problem (2) in the class Hμ .

4. Solvability of the hyperanalytic Riemann boundary value problem

It is our purpose in this section to develop a theory of the well-posed continuous Riemann boundary value problem for
hyperanalytic functions by assuming that the given continuous coefficients defined on γ have to agree with the desired
boundary behaviour of the solutions, i.e., the solutions including their boundary values on γ are continuous functions too.

The curve γ is assumed to be d-summable and let us consider the problem (1), requiring F , f ∈ Hν(γ ). Without loss
of generality we can assume that 0 ∈ Ω+ . Moreover, F will be regarded as a hypercomplex function with complex part F0
never vanishing on γ . Then the integer

κ := 1

2π

[
arg F0(ζ )

]
γ

has significant importance, and is called the index of F with respect to γ , also called index of the Riemann problem. Note
that the index of the function W κ with respect to γ is κ , and hence the index of W −κ F is zero.

We may verify directly that the function

X(z) :=
{

X+(z) = exp (C∗
γ ln[W −κ F ])(z), z ∈ Ω+,

X−(z) = W (z)−κ exp (C∗
γ ln[W −κ F ])(z), z ∈ Ω−

is a hyperanalytic function in C \ γ which satisfies (1) for f ≡ 0, if 1 > ν > d
2 or ν = 1. Hence

X+(t) = F (t)X−(t), t ∈ γ .

More details about the hypercomplex exponential and logarithmic functions can be found for instance in [6].
By a hypercomplex polynomial we mean a0 + a1W (z) + · · · + as W s(z), s � 0.
It follows that X ∈ Hμ , being assumed ν > d

2 and μ < 2ν−d
2−d . If Φ is an arbitrary solution of (1) for f ≡ 0 in the class

Hμ then so Ψ = Φ
X ∈ Hμ .

For μ > αH (γ )−1 the hyperanalicity of Ψ in C follows from the hypercomplex version of the Dolzhenko’s theorem men-
tioned above. From the hypercomplex version of the general Liouville theorem Ψ is seen to be a hypercomplex polynomial
of degree at most κ , if κ � 0 and Ψ ≡ 0 for κ < 0.
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Now we consider the general case, i.e., f �= 0. Standard transformations bring the problem (1) to the form

Φ+(t)

X+(t)
− Φ−(t)

X−(t)
= f (t)

X+(t)
, t ∈ γ .

Although this can be thought of as a jump problem we are not in a position to use the approach showed before for the
solvability of such problems. Note that the Hölder index of the function X+(t) and thus, that of f (t)

X+(t) is less that ν , and, in

general, ∂
q
z (

f
X+ ) is not integrable in a power greater than two.

The function

Ψ (z) = f ω(z) − X(z)

∫
Ω+

ez(ζ )
(
∂

q
ζ

f ω
)
(ζ )X−1(ζ )dξ dη

can easily be shown to be a solution of the problem (1) if κ � −1 and ν > d
2 or ν = 1.

Rewriting Ψ in the form Ψ = X(z)Ψ0, where

Ψ0(z) = ψ(z) −
∫

Ω+

ez(ζ )∂
q
ζ
ψ(ζ )dξ dη,

ψ(z) = f ω(z)X−1(z) we check at one that Ψ ∈ Hμ satisfies (1) and is hyperanalytic in C \ γ , besides for κ � −1 also
in C \ γ . Consequently, we can deduce the general form of a solution for κ � −1.

In order that Ψ for κ < −1 behaves hyperanalytic at infinity it is necessary and sufficient that it has a zero of order κ ,
i.e., the first −κ − 1 coefficients of the series representation near infinity Ψ0(z) = ∑∞

k=1 ck W −k(z) vanish.
Regarding a radius R sufficiently large

ck = 1

2π i

∫
|ζ |=R

Ψ0(ζ )W k−1(ζ )dW (ζ ),

thus the solvability conditions are seen to be

∫
Ω+

∂ζ W (ζ )
(∂

q
ζ

f ω)(ζ )

X+(ζ )
W k−1(ζ )dξ dη = 0, k = 1, . . . ,−κ − 1. (13)

In case when solutions vanishing at infinity are looked for moreover c−k has to vanish.
We can now formulate the results proved.

Theorem 3. Suppose that ν > d
2 and αH (γ ) − 1 < μ < 2ν−d

2−d or ν = 1 and αH (γ ) − 1 < μ < 1.

1. Let f ≡ 0. If κ � 0 then the general solution of the problem (1) is given by

Φ(z) = X(z)Pκ (z),

where Pκ is an arbitrary hypercomplex polynomial of degree κ . However, for κ < 0 this problem has no solutions except 0 in the
class Hμ .

2. Let f �= 0. For κ � 0 the general solution of the problem (1) in the class Hμ has the form Φ(z) = Ψ (z) + X(z)Pκ (z), where Pκ is
an arbitrary hypercomplex polynomial of degree κ . When κ = −1 the function Ψ is the unique solution of (1) in this class. Under
the above assumptions and if κ < −1 the problem (1) is solvable if and only if the conditions (13) are satisfied.

Note that the index κ counts the number of linear independent solutions to the problem (1), f ≡ 0.
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