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Abstract

We propose g-versions of some basic concepts of continuous variational calculus such as the
Euler—Lagrange equation and its applications to the isoperimetric, Lagrange and optimal control
problems (“the maximum principle”), and also to the Hamilton systems and commutation equations.
0 2003 Elsevier Inc. All rights reserved.

1. Introduction

In [3], Cadzow proposed a discrete version of some basic concepts of continuous vari-
ational calculus such as the Euler—Lagrange equation and its applications to the isoperi-
metric, Lagrange and optimal control problems. In the time to follow, most of researches
in the area were mainly directed to the study of the complete integrability of the discrete
Euler-Lagrange equation (see, e.g., [6-10,12]). That is to say that at our best knowledge,
the question of the generalization of the continuous (differential) variational calculus, to
the calculus of variation on lattices more general than the linear one (treated in [3]), had
never been considered. In this work we propose an extension of the continuous variational
calculus to the variational calculus on the g-linear latiice A¢® + B, s € Z, A, B some
constants. More precisely, we are concerned in the extremum problem for the functional

qﬂ
J(y(x)) = /F(x,y(x),qu(x),...,D](;y(x))dqx

qot
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qﬁ
def
= (L—q) ) xF(x,y(x), Dgy(x), ..., Diy(x)) (1)
th
under the boundary constraints
¥(q*) =y(q"™) =co,

Dyy(@®) = Dyy(gP™) =c1,

Dy ty(@®) =Dy (@ =1 )
where
Dy fy= LU= g 1 kezt, 3)
gx —x

while the summation is performed byon the set (we shall sometimes write sim@‘){;ﬁ
ory,)

L=1{q".q" ..., ¢° ¢q%), O0<a<p<+oo. (4)
Fora ~ 0, 8~ 400, (1) and (2) read

1
J(y(x)) = /F(x,y(x),qu(x),...,D];y(x))dqx
0

1
L 1-9) Y xF(x.y(). Dyy@)..... Diy() (5)
0

and
D,y©)=D,y(1), i=0,....k-1, (6)

respectively. If the functiodt (x) = F (x, y(x), Dy(x), ..., D¥y(x)) is Riemann-integrable
on the interval0, 1], then it is easily seen that fgr~ 1, the g-integral in Eq. (5) and the
constraints in Eq. (6) tends to the continuous integral

1
J(y(x))=/F(x,y(x),Dy(x),...,Dky(x))dx, (7)
0
whereDf (x) = (d/dx) f (x), and the boundary constraints

y(0) = y(1) = co,
Dy(0) = Dy(1) =y,

DF1y(0) = DMLy (1) = ¢4-1, (8)
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respectively. Hence the functional in Eq. (5) can be considered as a natural g-version of the
one in Eq. (7).

Remark 1. By carrying out in (1) the linear change of variable
ts)=a+x@s)b—a)=a+q'(b—a) 9)

(a, b finite for simplicity), we obtain a g-version of the integral obtained from (7) by the
linear change of variable

t=a+x(b—a), (10)

and both the two new integrals have newandb as boundaries of integration. Clearly the
converse to (9) and (10) transformations are also valid. Hence in that sense, there is no lost
of generalities considering in this work integrals of type (5) or (7) or even the little bit more
general integral in (1). This allows to avoid cumbersome treatments unessential in addition
in the reasoning.

In the following, we derive a g-version of the Euler—Lagrange equation, deriving the
Euler-Lagrange equation of the functional in Eq. (1) and showing that ferl (« ~ O,
B~ +o0 in the boundary constraints), it tends to the Euler-Lagrange equation of the
functional in Eq. (7). Next, we apply it to the continuous variational calculus, g-versions
of the isoperimetric, Lagrange and optimal control problems. Q-versions of some inter-
connections between the Euler-Lagrange equation of variational calculus, Hamilton and
Hamilton—Pontriaguine systems are also sketched. Equally as an application, a g-version
of the commutation equations is also discussed. The reader will note that most of ideas
used here are simply g-versions of similar ideas used in continuous or discrete variational
calculus. But as these ideas work, it means probably that this generalization of the classical
variational calculus is a natural one.

2. Theq-Euler—Lagrange equation

We consider the g-integral functional

¢
T(y)=0=q) Y xF(x.y(x), Dgy(x), ..., D y(x)). (11)
th
Here the functionF' (x, yo(x), ..., yx(x)) is defined oM as a function ofc, together with
its first partial derivatives relatively to all its arguments. [Eebe the linear space of func-
tionsy(x) (¢* < x < ¢#) in which is defined the norm

)- (12)

= max (max D!
Iyl = max (max D y (o)
and letE’ be the linear manifold of functions belonging kand satisfying to the con-
straints in (2). We study the extremum problem for the functiohah the manifoldE’.
We first calculate the first variation of the functioabn the linear manifold:’:
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d
8J (y(x), h(x)) = E](y(x) +1h(x)) |,

B
= (1_q)%q2a:[xF(x,y(x)+th(x),---,D’,;y(X)-FfD];h(x))”r:o
q? q k
==Y S [¥Fi(x, y(@), Dyy(), ... Diy)) Dih(x)] (13)
q* i=0
where
Fi:g_; (F=F(@x,y0,y1,.... %)), i =0,....k. (14)

The variation is dependent on an arbitrary functkgm). Since the variation is performed
on the linear manifold:’, 2 (x) is such thay (x) +1A(x) belongs also to the linear manifold
E’ and in particular satisfies the constraints (2). A direct consequence of this is that the
functioni(x) satisfies the constraints
h(g®) =h(g"*h =0,
Dyh(q®) = Dyh(g"™) =0,

Dy 'hg®) = Dy th(gPth =0. (15)

From the relatiorD, (fg)(x) = f(gx)Dyg(x) + g(x)Dy f (x), one obtains the formula of
the g-integration by parts:

B B B
1-9q) qX:Xf(qX)Dqg(x) =l-q) qX:xDq(fg) -d-9 qX:xg(x)qu(x).
q* q* q* (16)
Using (15), and (16), (13) gives
@ &k
8J(y(@). h(0) = L= )Y x> (~1)iq'Z D} [Fi (¢ x. (g™ x), Dyy(g ),
q“ 0

L DEy(@T i) ). (17)

(Very important to distinguistD,, f (kx) which means hergD, f1(kx) with D,[ f (kx)]
meaningD, g(x) for g(x) = f(kx).) Next, it is necessary to note that the boundary con-
straints in Eq. (15) are equivalents to the following:

h(g®ty =h(gPT™H =0, i=01,.. k-1 (18)
Consequently, (17) gives
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qﬁ k i—1 . . . . .
57 (y@). h(0) =L—q) Y x Y (~q 7 Di[Fi(¢ x. y(g™'x). Dyy(g ).
qurk 0

..Diy(@7 D) ]hx).  (19)

For deriving the corresponding g-Euler—Lagrange equation, we need the following lemma,
which constitutes a g-version of what is called “fundamental lemma of variational calcu-
lus” (for the continuous version, see, e.g., [5]).

Lemma 2.1. Consider the functional
I(H=A=-q)) xf@)hx), (20)
B
whereB = {q",¢"*L,...,¢°}. If 1(f) =0, for all i defined onB, then f(x) = 0 on B.

Proof. As I(f) =0, Vh defined onB, we have that

4" F@Hhq) + - +q° Fg>)hi(g®) =0,
g f@Hhag") + -+ q° f(g*)ha(q*) =0,

4" f@hs—r11@) + -+ 4" F(g)hs—r+1(q") =0 (21)
for any choice of thés — r + 1)2 numbers

aij=hi(@Y, Lj=1...,5—r+1 (22)
This is a linear homogeneous system with the matrix

(i) ;4 (23)

and the vectof7; = q-”"lf(q-”r_l)]j;rl*l. Choosing the numbers

hi(g/t™Y, i j=1...,s—r+1, (24)

in such a way that the corresponding matrix in (23) does not be singular, (21)[give8,
j=1,...,s —r+1,orequivalentlyf(g/t""1) =0, j=1,...,s — r + 1, which proves
the lemma. O

Next, remark that (19) is written under the form

qﬁ
8 (y(x), h(x) =1(H)=L—q) Y xfx)h(x), (25)

qoc+k

where f represents the expression within the external brackets. Hence the necessary con-
dition for the extremum problem (1)—(4) can be written as

1(f)=0 (26)
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and this for allz(x) defined on

B:{qr,qr"'l,...,qs}, r=a+k, B=s. (27)
By the fundamental lemma of the variational g-calculus (see Lemma 2.1), this leads to
fy=o. (28)

Thus the necessary condition for the extremum problem (1)—(4) reads

k e ' ' ' '
> (=D 2 Di[Fi(q " x. (g7 x), Dgy(q~'x). ... Dfy(g 7 x))] =0,
0

Diy(q*)=Diy(q"H=c¢;, i=0,... k-1 (29)
Fork =1 andk = 2, for example, we have respectively

Fo(x, y(x), Dgy(x)) — Dg[Fi(q tx, y(¢ %), Dgy(g~1x))] =0,
y(@9) =y =co (30)
and

Fo(x, y(x), Dgy(x), D2y(x)) — Dg[F1(q " x, y(¢ %), Dgy(q~ %), D2y(g )]
+qDZ[F2(q~2x. y(q~ %), Dgy(q~%x), D3y(q~%x))] =0,

Y@ =y@q" ™ =co.  Dyy(q*)=Dyy(g"™) =c1. (31)

Let us note that while the g-integral (1) tends to the continuous integral (@) forl,

a~ 0, B~ 400, the g-equation in (29) tends to the corresponding to (7) differential
Euler-Lagrange equation:

k
Y (=)' D'Fi(x, y(x), Dy(x), ..., D y(x)) =0,
0
D'y =Dyl =¢;, i=0,...,k—1 (32)
That is why it is convenient to call (29) thep Euler—Lagrange equationorresponding
to the g-integral (1). Equation (29) is a g-difference equation of degkeetich is in
principle solved uniquely under thé& Boundary constraints.

Remark 2. If the functional in (11) is dependent on more than one variable i.e.,
J=J(1,...,yn), then the necessary extremum condition leads to typeA28Euler—
Lagrange equations withreplaced by;,i =1, ...,n.

3. Applications

3.1. On the continuous variational calculus

The direct application of the variational g-calculus is its application on the continu-
ous (differential) variational calculus: Instead of solving the Euler—Lagrange equation (32)



656 G. Bangerezako / J. Math. Anal. Appl. 289 (2004) 650-665

for finding the extremum of the functional (7), it suffices to solve the g-Euler—Lagrange
equation (29) and then pass to the limit whjle» 1. Remark that thought this can appear

at the first glad as a contradiction (by the fact of the phenomenon of discretization), the
variational g-calculus is a generalization of the continuous variational calculus due to the
presence of the extra-paramegefwhich may be physical, economical or another) in the
first and its absence in the second.

Example. Suppose it is desirable to find the extremum of the integration functional

1
1
J(Y(x))=/<x”y+§(Dy)2> dx, v>0, (33)
0

under the boundary constrainté0) = ¢, y(1) = ¢. The g-version of the problem consists
in finding the extremum of the g-integration functional

1
" 1
J(y(x))=(1—q)20:x[x y+§(qu)2}, v >0, (34)
under the same boundary constraints. According to (30), the g-Euler-Lagrange equation
of the latter problem reads
x" — Dy[Dgy(g*x)] =0, (35)

which solution is

(1— q)2q"*+!
(1—g"thH(1— q”+2)}

(1 —q)%q"*+t
1- qv+1)(1 _ qv+2)
As it can be verified, fog ~ 1, the function in (36) tends to the function

y(x) =x”+2[

+ [y(l)—y(o) - }X+y(0)- (36)

v+2

X
I 1) —y(0)— —
@) (v+1)(v+2)+[y() YO - o2

solution of the Euler—Lagrange equation of the functional in (33).

:|x + ¥(0), (37)

3.2. The g-isoperimetric problem

Suppose that it is required to find the extremum of the functional

qﬁ
J(y() =1—) Y xf(x,y(x), Dgy(x), ..., Dy (x)),

q
Diy(g®) =Dy =c, i=01.. k-1 (38)

under the constraints
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qﬂ
Ji(y)=A=q) Y _xf (x,y(x), Dgy(x), ..., Dy(x)) = C,
th

i=1,...,m. (39)
To solve this problem we need to consider the following generalities. Ji¢g) and
J1(y), ..., J, be some differentiable functionals on the normed spacer on its mani-

fold E’. We have the following theorem (see, e.qg., [5]).

Theorem 3.1. If a functional J (y) attains its extremum in the poist under the addi-
tional conditionsJ; (y)=C;,i=1,...,m,andy is not a stationary point for any one
of the functionals/; (8J;(3,h) #0, i =1, ..., m, identically) while the functionals J;

(i =1,...,m) are linearly independent, thep is a stationary point for the functional
J=Y", 1: J; where the); are some constants.

Thus by this theorem, the necessary extremum condition for the functignalunder
the additional constraints (y) = C;,i = 1, ..., m, verifying the conditions of the theorem
(let us note that considering the formula (17), a type (11) functional, i.e., satisfying the
same definition conditions, is differentiable @), is given by Eq. (29) with

F=f=Y nf'. (40)
i=1

Itis a g-difference equation of ordek 2ontainingn unknown parameters. Itis in principle
solved uniquely under thekboundary constraints and the additionatonditions.

Example. Suppose it is required to solve the problem of finding the extremum of the
g-integration functional

qf
J(y0) = A=) Y x[ax?(DZy)* + b(Dg»)?].  a.b>0, (41)
qO(
under the boundary constraints
Dly(q*)=Dy(q"™=c;, i=01, (42)
and an additional condition thdi (y(x)) = ¢, ¢ some constant, whetg is a g-integration
functional given by
qf
J(y@)=0-9)) x%. (43)
qO(
According to Theorem 3.1, the problem is equivalent to that of finding the extremum of
the g-integration functional
qﬂ
J(yx)=1A-q) Zx[axz(DSy)z + b(qu)2 —Axy], (44)
th
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for some constant, under the same boundary constraints (42). The corresponding g-
Euler-Lagrange equation reads

—Ax —2bD, [qu(q_lx)] + Zaq_quz [xzDgy(q_zx)] =0, (45)
or equivalently after reduction and integratian,(c2 constants of integration)

y@) = [q(g —D?bja+q +1]y(qg ) + qy(g %)

1—q)? Ax3
= d-q) <c1x +c2+ z ) (46)
2a (g+D@+q+21

This is a constant coefficients linear nonhomogeneous second-order g-difference equation
which can be solved uniquely (under the constraints (42)) by methods similar to that of
analogous differential or difference equations.

3.3. The g-Lagrange problem

Suppose now that it is required to find the extremum of the functional
b
T @) = L= g) > xf(x, y2(x). ... yn(x),
Dyy1(x), ..., Dgyn(x)) (47)
under the constraints
fi(xa )’l(x), L] yl‘l(-x)a Dl]yl(x)7 M qun(x)) = 07 l = 17 e, m<n,
yi(@®) =yi@h=c, i=1..,n (48)

This problem can be transformed in the g-isoperimetric one as follows: First, multiply
everyith equation in (48) by an arbitrary function(x) defined as all the remaining on
L=/{qP, ..., ¢ and then apply the g-integration @non the result:

q?

Ti(y1(0), - yn () = A=) Y xdi (0 fF(x, y1(x), ..., yn (),

q
Dyyi(x), ..., qun(x)) =0,
i=1,...,m. (49)

The remaining question is that of knowing if the two constraints (48) and (49) are equiva-
lent. The answer is yes since obviously from (48) follows (49). Finally, it is by the funda-
mental lemma of the variational g-calculus (see Lemma 2.1) that (48) follows from (49).

Example. Suppose that the problem consists in finding the extremum of the functional

B
1 q
T, um)=5A-q) Y tlu*@) —x*0)] (50)
th

under the constraints
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Dix=u, x(@)=x@™M=c.  Dyx(¢")=Dyx(@"h =¢. (51)

The problem is equivalent to the g-Lagrange problem of finding the extremum of the func-
tional

B
1 . 2 2

J(x(@), y(0), z(0)) = 5(1_Q)qzat[z (1) — x*(1)] (52)
under the constraints

Dyx =y, D,y =z,

x(@) =x@"M=c,  y@H=y@"hH=ec (53)
Hence the problem is equivalent to that of finding the extremum of the functional

qﬁ
TG, y. 201, 02) = (L= ) Y _tF(x(6), (1), 2(t), ha(0), ha()), (54)

q
where

F(x (@), y(@), z(t), A1(0), A2(1))
1
= E(Zz(t) — xz(t)) + A1) (Dgx () — y(1)) + 22(t) (Dgy (1) — z(1)) (55)

under the boundary constraints

(@) =x@"hH=c.  y@gH=y@’hH=¢ (56)
The corresponding g-Euler—Lagrange equations give

YO =Dgx(t), () =xa)=Dix(1), @) =-¢’D[x(g '], (57)

—x(t) +¢°D[x(qg~?)] =0. (58)

Hence it is sufficient to solve Eq. (58). Searching its solution as an integer power series
x(1) =Yg C,t", oneis led to the following fourth-order difference equation for the coef-
ficientc,:

1- 1- 1— 1—
— ,2n—=5 q q q q
Chn=q"" <1_qn><1_qn—1)(1_qn_2><1_qn_3)cn_4, (59)

with the coefficientso, C1, C2, C3 determined by the four boundary constraints (56). The
solution of (59) reads

(n—n¢)/4

- 1_q ne i)—
C":H(l—qi) [T ¢ (60)

i=nc i=1

wheren =n. mod 4, 0< n. < 3.
To obtain the four basic elements for the space of solutions of (58), one can make the
following four independent choices for the constafigs C1, C2, C3: Choosing (a)C, =
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1/n! forn =0,...,3 leads tox(¢) = e;; (b) C, = (—1)"*/n! forn=0,...,3 leads to
x(t) = e;f; (€) C = (—=D)"2[(1)" + (—=1)"1/2n! for n =0, ..., 3 leads tax(r) = Ccos; ¢,
(d) C, = (=1)"=D/2[(1)" — (=1)"]/2n! forn =0, ..., 3 leads tax(¢) = sin, 1.

The functionsef, e, cos, t and siny t have in the integer power series, the indicated
coefficients fom =0, ..., 3 and the coefficients in (60) far> 3. As it can be verified, for
g ~ 1, these functions have as limits the functiehs~’, cosr and sirr, respectively. The
latter are nothing else than a basis of the space of solutions of a similar to (58) differential
equation for the corresponding continuous problem.

3.4. The g-optimal control problem

Suppose that it is given/aorder g-difference equation of the type

£Ox, y(x), Dgy(x). ..., Diy(x),u(x)) =0. (61)

The equation is said to be controlled,x) andy(x) the control function and control tra-
jectory, respectively. Le¥ (y(x), u(x)) be a controlled g-integral functional in the sense
that it depends on the control functianx):

qﬂ
Ty, u@) = 1= xf(x.y(x), Dgy(x). ..., Diy(x), u(x)). (62)

q
The optimal control problem consists in that among all admissible control funatians
for which the corresponding solution of the g-difference equation in (61) satisfies the
boundary constraints
Diy(g*) =Dy ™ =c, i=01.. k-1 (63)

find that for which the solution in question is an extremum for the functional in (62). For
that it is convenient to reduce the g-difference equation (61) in a first-order g-difference
system of rangé (supposing that Eq. (61) is solvable in rapport vvl]?t’;y(x)): Letting

21 =y(x), 22=Dyy(x), ..., 7 = Dy Ly(x), and

(61) and (63) can be written simply

Dyz(x) = fO(x, 2(x), u(x)),

2@ =z" =C, (64)
and the functional in (62) takes the form

qﬁ
T, u@) =A-q) ) xf(x,2(x), ux)). (65)

q
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We note by passing that the algorithms for the evaluatiorf®fand f are elementary
ones. Thus following the g-Lagrange problem, our extremum problem consists in finding
the extremum of the functional under the constraints below (remark that as there is no any
derivative ofu(x), no boundary constraints for it are needed):
qﬂ
Ty, um)=1-g) Y x{fx,z,u) = a0 [ O, 2,u) — Dy2]},

q
2q*) =z2(qP) = C. (66)
According to (30), the corresponding g-Euler-Lagrange system reads
(f: =20 f2) = Dg[ag™ )] =0,
fu —2x)fo=0. (67)

Combining (67) with the first equation in (64), we conclude that the solution of the problem
satisfies the system

Dyz =+H,,

Dy[Mg™ )] = —H,

0=H,, (68)
where

H(x,z, k1) = —f(x, 2,u) + A(x) fOx, 7, u). (69)

Seeing the similarities of the problem posed and the formula obtained (Egs. (68)—(69)),
with their analogs in the continuous optimal control, one can say that we were dealing with
a g-version of one of the version of themé&ximum principlé(see [11] or [5], for example).
Hence we can refer té/l in (69) as the g-Hamilton—Pontriaguine function, (68) as the g-
Hamilton—Pontriaguine system. Recall that the reference to Pontriaguine is linked to the
“maximum principle” in [11], the one to Hamilton is linked to the fact that in the case of
pure calculus of variation (the control function and system are not present explicitly), the
Hamilton and Hamilton—Pontriaguine systems are equivalent (see the following section for
the g-situation).

Example (g-Linear—quadratic probleim Suppose that the problem is that of finding a

control functionu (x) such that the corresponding solution of the controlled system

D,y =—ay(x)+u(x), a>0, (70)

satisfying the boundary conditiongg®) = y(¢#*1) = ¢, is an extremum element for the
g-integral functional ¢-quadratic cost functional

qf

1
Ty, u() =50-9) 3 x(y*(0) +u’w). (72)
ql)l

According to (68) and (69), the solution of the problem satisfies
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qu = H)L,

D, [)»(qilx)] =—H,,
where

1

H(y,ou) = =5 (7% +u®) + (—ay + (). (73)
(72) and (73) give

Dl]y = _ay + Ma

Dgi(x) =qy(gx) +aqr(qx),

In term of y(x), this system can be simplified in the following:

DZy(x) +aDyy(x) = (a®+ Dqy(qx) + ag Dy y(qx). (75)

Searching the solution of (75) under the form of an integer power series

Y =) cax” (76)
0

one is led to a variable coefficient linear homogeneous second-order difference equation
for ¢,:

(1—¢)?
(1-g"HA—-gM
This difference equation can naturally be solved recursively starting from the initial data
co andcy.

However, even without solving it, we can search for what gives the corresponding func-
tion in (76), in the limiting case wheq~> 1. In (77), forqg ~ 1, the factor of,,_1 gives
zero, while that of:,_» gives(a® + 1)/n(n — 1). Hence forg ~ 1, (77) gives

cn=a(g —Dep—1+ Q(az +1) Cn—2. (77)

2
ac+1
= n(n—l)cniz’ n=2.... (78)

Choosingeo andc; (this is equivalent to that choosingg®) andy(¢#*1)) asco =1 and
c1=+a?+1orc1=—+a?+1, (78) gives as solutions
2 1 n/2 2 1 n/2
:(a +1) or cn=(—1)"(a +1)
n! n!

and the corresponding power series gives

y(x)=exp(va?+1x) or y(x)=exp—va?+1r),

respectively. As it can be verified, the latter are the solutions ey in the corresponding
continuous problem.

Cn



G. Bangerezako / J. Math. Anal. Appl. 289 (2004) 650-665 663

3.5. Interconnection between the variational g-calculus, the g-optimal control and the
g-Hamilton system

Here, we want to show that for the simplest case of finding the extremum of the func-
tional

qﬁ
T(y®))=1=q)Y_ xF(y(x), Dgy(x)),
qO(
y(g@*) =y(q" ") = co, (79)

the three kinds of problems are equivalents, i.e., are equivalent the g-Euler—Lagrange equa-
tion, the g-Hamilton—Pontriaguine and the g-Hamilton systems. We show this in three
steps:

(a) We first show how to obtain the g-Hamilton system from the g-Euler—Lagrange
equation. For the functional in (79), the g-Euler—Lagrange equation reads

B+1

Fo(y(x), Dgy(x)) — Dy[ F1(y(¢~%x), Dyy(g*x))] =0. (80)
Letting

A(x) = F1(y(x), Dgy(x)) (81)
and

H=—F+x(x)Dyy, (82)

then we get from (80), (81) and (82) the g-Hamilton system
qu = +HA()’(X)’ )\'a Dl]y)7
Dy[Mg™ )] = —Hy(y(x), &, Dgy). (83)

(b) To get the g-Hamilton—Pontriaguine system from g-Hamilton system (83), it suffices
to suppose:(x) = D, y(x) to be the control g-equation for the given initial noncontrolled
extremum problem. In that case, (83) gives

Dl]y = +HA()’(X)’ )\'a u(x)),

Dy Mg~ )] = —Hy(y(x), &, u(x)), (84)
with

H (y(x), A(x), u(x)) = = F (y(x), u(x)) + 2(x)u(x), (85)
the g-Hamilton—Pontriaguine function, and from (81) we get the third equation in (68):

(c) Finally we show how to obtain the g-Euler-Lagrange equation (80) from the g-
Hamilton—Pontriaguine system (84)—(86). From (85) and (86), we have

) = Fi(y(x), u(x)) = F1(y(x), Dgy(x)), (87)
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while from (84) we get

Dy[r(g ™ )] = Fo(y(x), u(x)) = Fo(y(x), Dgy(x)). (88)
Finally, (87) and (88) give the g-Euler—Lagrange equation (80).

3.6. A g-version of the commutation equations

Let L = —D?+ y(x), whereDf (x) =df (x)/dx = f'(x), be the Schrédinger operator
and letA,, be a sequence of differential operators of order21,m =0, 1, 2, ..., which
coefficients are arbitrary differential polynomials of the potential). By commutation
equations, one understands the equatiéns,,] = LA,, — A,,L = 0 in the coefficients of
the operators. It is known since [1,2] that for anym =0, 1, 2, ..., there exists such an
operatorA,, of order 2n + 1, such that the operatpk, A,,] = LA,, — A, L is an operator
of multiplication by a scalar functioft,, (v, y', y”,..): [L, Aml = fiu(y,y,y”,...). The
corresponding commutation equations then read

[LaAm]:fm(yay/7y”a"')20' (89)

Its nontrivial solutions are elliptic or hyperelliptic (or their degenerate cases) functions
form =1 andm > 1, respectively (see [1,2]). Since the 70s of the last century (see, e.g.,
[4, 830], itis known that the commutation equations (89) are equivalent to type (32) Euler—
Lagrange equations for the functionals

b

In(y(x) = f L (), y' (), ..., yP(x)) dx (90)

a

with L,, related toA,, in a known way (see, e.g., [4]).
If m =1, for exampleL1(y, y') = y'2/2+ y3 + c1y% + c2y (c1, c2: constants) and the
corresponding Euler-Lagrange equation (commutation equation) reads:

y" =3y 4 2c1y + ca. (91)

Up to a linear transformation — c3y + ¢4, its solution is the well known Weierstrass
functionP (x).
Considering now the g-functional

qﬁ
In(y(@) =(1=q) Y xLn(y(x), Dgy(x), ..., Diy(x)) (92)
th

we obtain that the corresponding to type (29) g-Euler-Lagrange equatiogsvarsions
of the commutation equatioi89). For example, fom = 1, we havel1(y(x), Dgyy(x)) =
[qu]2/2 + y3 4 ¢1y% + c2y and the corresponding g-Euler—-Lagrange equation reads

3y%+ 21y + c2— g D3[y(q )] =0, (93)
or equivalently

¥(gx) = (g + Dy(x) + (gx — x)?(3y%(x) + 2c1y(x) + c2) — gy (g 2x). (94)



G. Bangerezako / J. Math. Anal. Appl. 289 (2004) 650-665 665

Obviously, the g-Euler—Lagrange equation (93) (or (94)) tends to the Euler-Lagrange one
in (91), whileg ~ 1. One will note that thought we up to now do not know an analytical
resolution of this equation, its solution satisfying given boundary constraints can be found
recursively. Here is naturally the main advantage of the analysis on lattices.

Remark 3. What we done in this section is to give a g-version of the commutation equa-
tions in terms of the g-Euler-Lagrange equations of g-integration functionals. One may
ask why do not give g-versions of commutation equations in terms of commutation equa-
tions of g-difference operators, i.e., operators obtained from differential ones replacing
by D,. The situation is that this line of attack is not hopeful especially because of the ab-
sence of symmetries in most of operations with the g-derivative. For example, the simple
fact that the formuleD, fg = f(gx)D,g + g(x) D, f is not symmetric in rapport witlf

andg is tedious in classical g-analysis. Clearly, a study of the g-commutation equations
using the g-variational method needs an independent consecration.
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