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Abstract

We propose q-versions of some basic concepts of continuous variational calculus such
Euler–Lagrange equation and its applications to the isoperimetric, Lagrange and optimal
problems (“the maximum principle”), and also to the Hamilton systems and commutation equ
 2003 Elsevier Inc. All rights reserved.

1. Introduction

In [3], Cadzow proposed a discrete version of some basic concepts of continuou
ational calculus such as the Euler–Lagrange equation and its applications to the i
metric, Lagrange and optimal control problems. In the time to follow, most of resea
in the area were mainly directed to the study of the complete integrability of the dis
Euler–Lagrange equation (see, e.g., [6–10,12]). That is to say that at our best know
the question of the generalization of the continuous (differential) variational calculu
the calculus of variation on lattices more general than the linear one (treated in [3]
never been considered. In this work we propose an extension of the continuous vari
calculus to the variational calculus on the q-linear latticex = Aqs + B, s ∈ Z, A, B some
constants. More precisely, we are concerned in the extremum problem for the funct

J
(
y(x)

) =
qβ∫

qα

F
(
x, y(x),Dqy(x), . . . ,D

k
qy(x)

)
dqx
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e
e

def= (1− q)

qβ∑
qα

xF
(
x, y(x),Dqy(x), . . . ,D

k
qy(x)

)
(1)

under the boundary constraints

y(qα) = y(qβ+1) = c0,

Dqy(q
α) = Dqy(q

β+1) = c1,

...

Dk−1
q y(qα) = Dk−1

q y(qβ+1) = ck−1, (2)

where

Dqf (x) = f (qx)− f (x)

qx − x
, 0< q < 1, k ∈ Z+, (3)

while the summation is performed byx on the set (we shall sometimes write simply
∑qβ

qβ

or
∑

L)

L = {qβ, qβ−1, . . . , qα+1, qα}, 0 � α < β � +∞. (4)

Forα ❀ 0, β ❀ +∞, (1) and (2) read

J
(
y(x)

) =
1∫

0

F
(
x, y(x),Dqy(x), . . . ,D

k
qy(x)

)
dqx

def= (1− q)

1∑
0

xF
(
x, y(x),Dqy(x), . . . ,D

k
qy(x)

)
(5)

and

Di
qy(0) = Di

qy(1), i = 0, . . . , k − 1, (6)

respectively. If the functioñF (x) = F(x, y(x),Dy(x), . . . ,Dky(x)) is Riemann-integrabl
on the interval[0,1], then it is easily seen that forq ❀ 1, the q-integral in Eq. (5) and th
constraints in Eq. (6) tends to the continuous integral

J
(
y(x)

) =
1∫

0

F
(
x, y(x),Dy(x), . . . ,Dky(x)

)
dx, (7)

whereDf (x) = (d/dx)f (x), and the boundary constraints

y(0) = y(1) = c0,

Dy(0) = Dy(1) = c1,

...

Dk−1y(0) = Dk−1y(1) = ck−1, (8)
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respectively. Hence the functional in Eq. (5) can be considered as a natural q-version
one in Eq. (7).

Remark 1. By carrying out in (1) the linear change of variable

t (s) = a + x(s)(b − a) = a + qs(b − a) (9)

(a, b finite for simplicity), we obtain a q-version of the integral obtained from (7) by
linear change of variable

t = a + x(b − a), (10)

and both the two new integrals have nowa andb as boundaries of integration. Clearly t
converse to (9) and (10) transformations are also valid. Hence in that sense, there is
of generalities considering in this work integrals of type (5) or (7) or even the little bit m
general integral in (1). This allows to avoid cumbersome treatments unessential in a
in the reasoning.

In the following, we derive a q-version of the Euler–Lagrange equation, derivin
Euler–Lagrange equation of the functional in Eq. (1) and showing that forq → 1 (α ❀ 0,
β ❀ +∞ in the boundary constraints), it tends to the Euler–Lagrange equation o
functional in Eq. (7). Next, we apply it to the continuous variational calculus, q-vers
of the isoperimetric, Lagrange and optimal control problems. Q-versions of some
connections between the Euler–Lagrange equation of variational calculus, Hamilto
Hamilton–Pontriaguine systems are also sketched. Equally as an application, a q-
of the commutation equations is also discussed. The reader will note that most o
used here are simply q-versions of similar ideas used in continuous or discrete vari
calculus. But as these ideas work, it means probably that this generalization of the cl
variational calculus is a natural one.

2. The q-Euler–Lagrange equation

We consider the q-integral functional

J
(
y(x)

) = (1− q)

qβ∑
qα

xF
(
x, y(x),Dqy(x), . . . ,D

k
qy(x)

)
. (11)

Here the functionF(x, y0(x), . . . , yk(x)) is defined onA as a function ofx, together with
its first partial derivatives relatively to all its arguments. LetE be the linear space of func
tionsy(x) (qα � x � qβ) in which is defined the norm

‖y‖ = max
0�i�k

(
max
x∈L

∣∣Di
qy(x)

∣∣), (12)

and letE′ be the linear manifold of functions belonging inE and satisfying to the con
straints in (2). We study the extremum problem for the functionalJ on the manifoldE′.
We first calculate the first variation of the functionalJ on the linear manifoldE′:
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d
ld
at the

f

on-
δJ
(
y(x),h(x)

) = d

dt
J
(
y(x)+ th(x)

)∣∣
t=0

= (1− q)
d

dt

qβ∑
qα

[
xF

(
x, y(x)+ th(x), . . . ,Dk

qy(x)+ tDk
qh(x)

)]∣∣
t=0

= (1− q)

qβ∑
qα

k∑
i=0

[
xFi

(
x, y(x),Dqy(x), . . . ,D

k
qy(x)

)
Di

qh(x)
]
, (13)

where

Fi = ∂F

∂yi

(
F = F(x, y0, y1, . . . , yk)

)
, i = 0, . . . , k. (14)

The variation is dependent on an arbitrary functionh(x). Since the variation is performe
on the linear manifoldE′, h(x) is such thaty(x)+ th(x) belongs also to the linear manifo
E′ and in particular satisfies the constraints (2). A direct consequence of this is th
functionh(x) satisfies the constraints

h(qα) = h(qβ+1) = 0,

Dqh(q
α) = Dqh(q

β+1) = 0,

...

Dk−1
q h(qα) = Dk−1

q h(qβ+1) = 0. (15)

From the relationDq(fg)(x) = f (qx)Dqg(x) + g(x)Dqf (x), one obtains the formula o
the q-integration by parts:

(1− q)

qβ∑
qα

xf (qx)Dqg(x) = (1− q)

qβ∑
qα

xDq(fg) − (1− q)

qβ∑
qα

xg(x)Dqf (x).

(16)

Using (15), and (16), (13) gives

δJ
(
y(x),h(x)

) = (1− q)

qβ∑
qα

x

k∑
0

(−1)iq
i−1

2 iDi
q

[
Fi

(
q−ix, y(q−ix),Dqy(q

−ix),

. . . ,Dk
qy(q

−ix)
)]
h(x). (17)

(Very important to distinguishDqf (kx) which means here[Dqf ](kx) with Dq [f (kx)]
meaningDqg(x) for g(x) = f (kx).) Next, it is necessary to note that the boundary c
straints in Eq. (15) are equivalents to the following:

h(qα+i ) = h(qβ+1+i ) = 0, i = 0,1, . . . , k − 1. (18)

Consequently, (17) gives
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mma,
alcu-

ry con-
δJ
(
y(x),h(x)

) = (1− q)

qβ∑
qα+k

x

k∑
0

(−1)iq
i−1

2 iDi
q

[
Fi

(
q−ix, y(q−ix),Dqy(q

−ix),

. . . ,Dk
qy(q

−ix)
)]
h(x). (19)

For deriving the corresponding q-Euler–Lagrange equation, we need the following le
which constitutes a q-version of what is called “fundamental lemma of variational c
lus” (for the continuous version, see, e.g., [5]).

Lemma 2.1. Consider the functional

I (f̂ ) = (1− q)
∑
B

xf̂ (x)h(x), (20)

whereB = {qr, qr+1, . . . , qs}. If I (f̂ ) = 0, for all h defined onB, thenf̂ (x) ≡ 0 onB.

Proof. As I (f̂ ) = 0, ∀h defined onB, we have that

qr f̂ (qr)h1(q
r) + · · · + qsf̂ (qs)h1(q

s) = 0,

qr f̂ (qr)h2(q
r) + · · · + qsf̂ (qs)h2(q

s) = 0,
...

qr f̂ (qr)hs−r+1(q
r) + · · · + qsf̂ (qs)hs−r+1(q

s) = 0 (21)

for any choice of the(s − r + 1)2 numbers

aij = hi(q
j+r−1), i, j = 1, . . . , s − r + 1. (22)

This is a linear homogeneous system with the matrix

(aij )
s−r+1
i,j=1 (23)

and the vector[Tj = qj+r−1f̂ (qj+r−1)]s−r+1
j=1 . Choosing the numbers

hi(q
j+r−1), i, j = 1, . . . , s − r + 1, (24)

in such a way that the corresponding matrix in (23) does not be singular, (21) givesTj = 0,
j = 1, . . . , s − r + 1, or equivalently,f̂ (qj+r−1) = 0, j = 1, . . . , s − r + 1, which proves
the lemma. ✷

Next, remark that (19) is written under the form

δJ
(
y(x),h(x)

) = I (f̂ ) = (1− q)

qβ∑
qα+k

xf̂ (x)h(x), (25)

wheref̂ represents the expression within the external brackets. Hence the necessa
dition for the extremum problem (1)–(4) can be written as

I (f̂ ) = 0 (26)



G. Bangerezako / J. Math. Anal. Appl. 289 (2004) 650–665 655

to

ntial

i.e.,

tinu-
n (32)
and this for allh(x) defined on

B = {qr, qr+1, . . . , qs}, r = α + k, β = s. (27)

By the fundamental lemma of the variational q-calculus (see Lemma 2.1), this leads

f̂ (x) ≡ 0. (28)

Thus the necessary condition for the extremum problem (1)–(4) reads

k∑
0

(−1)iq
i−1

2 iDi
q

[
Fi

(
q−ix, y(q−ix),Dqy(q

−ix), . . . ,Dk
qy(q

−ix)
)] = 0,

Di
qy(q

α) = Di
qy(q

β+1) = ci, i = 0, . . . , k − 1. (29)

For k = 1 andk = 2, for example, we have respectively

F0
(
x, y(x),Dqy(x)

) − Dq

[
F1

(
q−1x, y(q−1x),Dqy(q

−1x)
)] = 0,

y(qα) = y(qβ+1) = c0 (30)

and

F0
(
x, y(x),Dqy(x),D

2
qy(x)

) − Dq

[
F1

(
q−1x, y(q−1x),Dqy(q

−1x),D2
qy(q

−1x)
)]

+ qD2
q

[
F2

(
q−2x, y(q−2x),Dqy(q

−2x),D2
qy(q

−2x)
)] = 0,

y(qα) = y(qβ+1) = c0, Dqy(q
α) = Dqy(q

β+1) = c1. (31)

Let us note that while the q-integral (1) tends to the continuous integral (7) forq ❀ 1,
α ❀ 0, β ❀ +∞, the q-equation in (29) tends to the corresponding to (7) differe
Euler–Lagrange equation:

k∑
0

(−1)iDiFi

(
x, y(x),Dy(x), . . .,Dky(x)

) = 0,

Diy(0) = Diy(1) = ci, i = 0, . . . , k − 1. (32)

That is why it is convenient to call (29) theq-Euler–Lagrange equationcorresponding
to the q-integral (1). Equation (29) is a q-difference equation of degree 2k which is in
principle solved uniquely under the 2k boundary constraints.

Remark 2. If the functional in (11) is dependent on more than one variable
J = J (y1, . . . , yn), then the necessary extremum condition leads to type (29)n q-Euler–
Lagrange equations withy replaced byyi , i = 1, . . . , n.

3. Applications

3.1. On the continuous variational calculus

The direct application of the variational q-calculus is its application on the con
ous (differential) variational calculus: Instead of solving the Euler–Lagrange equatio
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for finding the extremum of the functional (7), it suffices to solve the q-Euler–Lagr
equation (29) and then pass to the limit whileq ❀ 1. Remark that thought this can appe
at the first glad as a contradiction (by the fact of the phenomenon of discretization
variational q-calculus is a generalization of the continuous variational calculus due
presence of the extra-parameterq (which may be physical, economical or another) in
first and its absence in the second.

Example. Suppose it is desirable to find the extremum of the integration functional

J
(
y(x)

) =
1∫

0

(
xνy + 1

2
(Dy)2

)
dx, ν > 0, (33)

under the boundary constraintsy(0) = c, y(1) = c̃. The q-version of the problem consis
in finding the extremum of the q-integration functional

J
(
y(x)

) = (1− q)

1∑
0

x

[
xνy + 1

2
(Dqy)

2
]
, ν > 0, (34)

under the same boundary constraints. According to (30), the q-Euler–Lagrange eq
of the latter problem reads

xν −Dq

[
Dqy(q

−1x)
] = 0, (35)

which solution is

y(x) = xν+2
[

(1− q)2qν+1

(1− qν+1)(1− qν+2)

]

+
[
y(1)− y(0)− (1− q)2qν+1

(1− qν+1)(1− qν+2)

]
x + y(0). (36)

As it can be verified, forq ❀ 1, the function in (36) tends to the function

y(x) = xν+2

(ν + 1)(ν + 2)
+

[
y(1)− y(0)− 1

(ν + 1)(ν + 2)

]
x + y(0), (37)

solution of the Euler–Lagrange equation of the functional in (33).

3.2. The q-isoperimetric problem

Suppose that it is required to find the extremum of the functional

J
(
y(x)

) = (1− q)

qβ∑
qα

xf
(
x, y(x),Dqy(x), . . . ,D

k
qy(x)

)
,

Di
qy(q

α) = Di
qy(q

β+1) = ci, i = 0,1, . . . , k − 1, (38)

under the constraints
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J̃i

(
y(x)

) = (1− q)

qβ∑
qα

xf i
(
x, y(x),Dqy(x), . . . ,D

k
qy(x)

) = Ci,

i = 1, . . . ,m. (39)

To solve this problem we need to consider the following generalities. LetJ (y) and
J̃1(y), . . . , J̃m be some differentiable functionals on the normed spaceE, or on its mani-
fold E′. We have the following theorem (see, e.g., [5]).

Theorem 3.1. If a functionalJ (y) attains its extremum in the point̄y under the addi-
tional conditionsJ̃i(y) = Ci , i = 1, . . . ,m, and ȳ is not a stationary point for any on
of the functionalsJ̃i (δJ̃i(ȳ, h) �= 0, i = 1, . . . ,m, identically) while the functionalsδJ̃i

(i = 1, . . . ,m) are linearly independent, then̄y is a stationary point for the functiona
J − ∑m

i=1λi J̃i where theλi are some constants.

Thus by this theorem, the necessary extremum condition for the functionalJ (y) under
the additional constraints̃Ji(y) = Ci , i = 1, . . . ,m, verifying the conditions of the theore
(let us note that considering the formula (17), a type (11) functional, i.e., satisfyin
same definition conditions, is differentiable onE′), is given by Eq. (29) with

F = f −
m∑

i=1

λif
i. (40)

It is a q-difference equation of order 2k containingm unknown parameters. It is in princip
solved uniquely under the 2k boundary constraints and the additionalm conditions.

Example. Suppose it is required to solve the problem of finding the extremum o
q-integration functional

J
(
y(x)

) = (1− q)

qβ∑
qα

x
[
ax2(D2

qy
)2 + b(Dqy)

2], a, b > 0, (41)

under the boundary constraints

Di
qy(q

α) = Di
qy(q

β+1) = ci, i = 0,1, (42)

and an additional condition thatJ1(y(x)) = c, c some constant, whereJ1 is a q-integration
functional given by

J1
(
y(x)

) = (1− q)

qβ∑
qα

x2y. (43)

According to Theorem 3.1, the problem is equivalent to that of finding the extremu
the q-integration functional

J
(
y(x)

) = (1− q)

qβ∑
α

x
[
ax2(D2

qy
)2 + b(Dqy)

2 − λxy
]
, (44)
q
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for some constantλ, under the same boundary constraints (42). The correspondi
Euler–Lagrange equation reads

−λx − 2bDq

[
Dqy(q

−1x)
] + 2aq−3D2

q

[
x2D2

qy(q
−2x)

] = 0, (45)

or equivalently after reduction and integration (c1, c2 constants of integration)

y(x)− [
q(q − 1)2b/a + q + 1

]
y(q−1x) + qy(q−2x)

= (1− q)2

2a

(
c1x + c2 + λx3

(q + 1)(q2 + q + 1)

)
. (46)

This is a constant coefficients linear nonhomogeneous second-order q-difference e
which can be solved uniquely (under the constraints (42)) by methods similar to t
analogous differential or difference equations.

3.3. The q-Lagrange problem

Suppose now that it is required to find the extremum of the functional

J
(
y1(x), . . . , yn(x)

) = (1− q)

qβ∑
qα

xf
(
x, y1(x), . . . , yn(x),

Dqy1(x), . . . ,Dqyn(x)
)

(47)

under the constraints

f i
(
x, y1(x), . . . , yn(x),Dqy1(x), . . . ,Dqyn(x)

) = 0, i = 1, . . . ,m, m< n,

yi(q
α) = yi(q

β+1) = ci, i = 1, . . . , n. (48)

This problem can be transformed in the q-isoperimetric one as follows: First, mu
everyith equation in (48) by an arbitrary functionλi(x) defined as all the remaining o
L = {qβ, . . . , qα} and then apply the q-integration onL on the result:

J̃i

(
y1(x), . . . , yn(x)

) = (1− q)

qβ∑
qα

xλi(x)f
i
(
x, y1(x), . . . , yn(x),

Dqy1(x), . . . ,Dqyn(x)
) = 0,

i = 1, . . . ,m. (49)

The remaining question is that of knowing if the two constraints (48) and (49) are eq
lent. The answer is yes since obviously from (48) follows (49). Finally, it is by the fu
mental lemma of the variational q-calculus (see Lemma 2.1) that (48) follows from (

Example. Suppose that the problem consists in finding the extremum of the function

J
(
x(t), u(t)

) = 1

2
(1− q)

qβ∑
qα

t
[
u2(t) − x2(t)

]
(50)

under the constraints
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func-
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D2
qx = u, x(qα) = x(qβ+1) = c, Dqx(q

α) = Dqx(q
β+1) = c̃. (51)

The problem is equivalent to the q-Lagrange problem of finding the extremum of the
tional

J
(
x(t), y(t), z(t)

) = 1

2
(1− q)

qβ∑
qα

t
[
z2(t) − x2(t)

]
(52)

under the constraints

Dqx = y, Dqy = z,

x(qα) = x(qβ+1) = c, y(qα) = y(qβ+1) = c̃. (53)

Hence the problem is equivalent to that of finding the extremum of the functional

J (x, y, z, λ1, λ2) = (1− q)

qβ∑
qα

tF
(
x(t), y(t), z(t), λ1(t), λ2(t)

)
, (54)

where

F
(
x(t), y(t), z(t), λ1(t), λ2(t)

)
= 1

2

(
z2(t) − x2(t)

) + λ1(t)
(
Dqx(t) − y(t)

) + λ2(t)
(
Dqy(t) − z(t)

)
(55)

under the boundary constraints

x(qα) = x(qβ+1) = c, y(qα) = y(qβ+1) = c̃. (56)

The corresponding q-Euler–Lagrange equations give

y(t) = Dqx(t), z(t) = λ2(t) = D2
qx(t), λ1(t) = −q2D3

q

[
x(q−1t)

]
, (57)

−x(t) + q5D4
q

[
x(q−2t)

] = 0. (58)

Hence it is sufficient to solve Eq. (58). Searching its solution as an integer power
x(t) = ∑∞

0 Cnt
n, one is led to the following fourth-order difference equation for the c

ficient cn:

Cn = q2n−5
(

1− q

1− qn

)(
1− q

1− qn−1

)(
1− q

1− qn−2

)(
1− q

1− qn−3

)
Cn−4, (59)

with the coefficientsC0,C1,C2,C3 determined by the four boundary constraints (56). T
solution of (59) reads

Cn =
n∏

i=nc

(
1− q

1− qi

) (n−nc)/4∏
i=1

q2(nc+4i)−5Cnc , (60)

wheren ≡ nc mod 4, 0� nc � 3.
To obtain the four basic elements for the space of solutions of (58), one can ma

following four independent choices for the constantsC0,C1,C2,C3: Choosing (a)Cn =
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1/n! for n = 0, . . . ,3 leads tox(t) = etq ; (b) Cn = (−1)n/n! for n = 0, . . . ,3 leads to

x(t) = e−t
q ; (c) Cn = (−1)n/2[(1)n + (−1)n]/2n! for n = 0, . . . ,3 leads tox(t) = cosq t ;

(d) Cn = (−1)(n−1)/2[(1)n − (−1)n]/2n! for n = 0, . . . ,3 leads tox(t) = sinq t .
The functionsetq , e−t

q , cosq t and sinq t have in the integer power series, the indica
coefficients forn = 0, . . . ,3 and the coefficients in (60) forn > 3. As it can be verified, fo
q ❀ 1, these functions have as limits the functionset , e−t , cost and sint , respectively. The
latter are nothing else than a basis of the space of solutions of a similar to (58) diffe
equation for the corresponding continuous problem.

3.4. The q-optimal control problem

Suppose that it is given ak-order q-difference equation of the type

f 0(x, y(x),Dqy(x), . . . ,D
k
qy(x),u(x)

) = 0. (61)

The equation is said to be controlled,u(x) andy(x) the control function and control tra
jectory, respectively. LetJ (y(x),u(x)) be a controlled q-integral functional in the sen
that it depends on the control functionu(x):

J
(
y(x),u(x)

) = (1− q)

qβ∑
qα

xf
(
x, y(x),Dqy(x), . . . ,D

k
qy(x),u(x)

)
. (62)

The optimal control problem consists in that among all admissible control functionsu(x)

for which the corresponding solution of the q-difference equation in (61) satisfie
boundary constraints

Di
qy(q

α) = Di
qy(q

β+1) = ci, i = 0,1, . . . , k − 1, (63)

find that for which the solution in question is an extremum for the functional in (62)
that it is convenient to reduce the q-difference equation (61) in a first-order q-diffe
system of rangek (supposing that Eq. (61) is solvable in rapport withDk

qy(x)): Letting

z1 = y(x), z2 = Dqy(x), . . . , zk = Dk−1
q y(x), and

z =



z1
...

zk


 ,

(61) and (63) can be written simply

Dqz(x) = f̃ 0(x, z(x), u(x)),
z(qα) = z(qβ) = C, (64)

and the functional in (62) takes the form

J̃
(
z(x),u(x)

) = (1− q)

qβ∑
α

xf̃
(
x, z(x), u(x)

)
. (65)
q
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We note by passing that the algorithms for the evaluation off̃ 0 and f̃ are elementary
ones. Thus following the q-Lagrange problem, our extremum problem consists in fi
the extremum of the functional under the constraints below (remark that as there is
derivative ofu(x), no boundary constraints for it are needed):

Ĵ
(
y(x),u(x)

) = (1− q)

qβ∑
qα

x
{
f̃ (x, z, u)− λ(x)

[
f̃ 0(x, z,u)− Dqz

]}
,

z(qα) = z(qβ) = C. (66)

According to (30), the corresponding q-Euler–Lagrange system reads(
f̃z − λ(x)f̃ 0

z

) − Dq

[
λ(q−1x)

] = 0,

f̃u − λ(x)f̃ 0
u = 0. (67)

Combining (67) with the first equation in (64), we conclude that the solution of the pro
satisfies the system

Dqz = +Hλ,

Dq

[
λ(q−1x)

] = −Hz,

0 = Hu, (68)

where

H(x, z,λ,u) = −f̃ (x, z, u)+ λ(x)f̃ 0(x, z,u). (69)

Seeing the similarities of the problem posed and the formula obtained (Eqs. (68)–
with their analogs in the continuous optimal control, one can say that we were dealin
a q-version of one of the version of the “maximum principle” (see [11] or [5], for example)
Hence we can refer toH in (69) as the q-Hamilton–Pontriaguine function, (68) as th
Hamilton–Pontriaguine system. Recall that the reference to Pontriaguine is linked
“maximum principle” in [11], the one to Hamilton is linked to the fact that in the cas
pure calculus of variation (the control function and system are not present explicitly
Hamilton and Hamilton–Pontriaguine systems are equivalent (see the following sect
the q-situation).

Example (q-Linear–quadratic problem). Suppose that the problem is that of finding
control functionu(x) such that the corresponding solution of the controlled system

Dqy = −ay(x)+ u(x), a > 0, (70)

satisfying the boundary conditionsy(qα) = y(qβ+1) = c, is an extremum element for th
q-integral functional (q-quadratic cost functional)

J
(
y(x),u(x)

) = 1

2
(1− q)

qβ∑
qα

x
(
y2(x) + u2(x)

)
. (71)

According to (68) and (69), the solution of the problem satisfies
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Dqy = Hλ,

Dq

[
λ(q−1x)

] = −Hy,

Hu = 0, (72)

where

H(y,λ,u) = −1

2
(y2 + u2) + (−ay + u)λ(x). (73)

(72) and (73) give

Dqy = −ay + u,

Dqλ(x) = qy(qx)+ aqλ(qx),

λ = u. (74)

In term ofy(x), this system can be simplified in the following:

D2
qy(x)+ aDqy(x) = (a2 + 1)qy(qx)+ aqDqy(qx). (75)

Searching the solution of (75) under the form of an integer power series

y(x) =
∞∑
0

cnx
n (76)

one is led to a variable coefficient linear homogeneous second-order difference eq
for cn:

cn = a(q − 1)cn−1 + q(a2 + 1)
(1− q)2

(1− qn−1)(1− qn)
cn−2. (77)

This difference equation can naturally be solved recursively starting from the initia
c0 andc1.

However, even without solving it, we can search for what gives the corresponding
tion in (76), in the limiting case whenq ❀ 1. In (77), forq ❀ 1, the factor ofcn−1 gives
zero, while that ofcn−2 gives(a2 + 1)/n(n − 1). Hence forq ❀ 1, (77) gives

cn = a2 + 1

n(n − 1)
cn−2, n = 2, . . . . (78)

Choosingc0 andc1 (this is equivalent to that choosingy(qα) andy(qβ+1)) asc0 = 1 and
c1 = √

a2 + 1 or c1 = −√
a2 + 1, (78) gives as solutions

cn = (a2 + 1)n/2

n! or cn = (−1)n
(a2 + 1)n/2

n!
and the corresponding power series gives

y(x) = exp
(√

a2 + 1x
)

or y(x) = exp
(−√

a2 + 1x
)
,

respectively. As it can be verified, the latter are the solutions fory(x) in the corresponding
continuous problem.
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3.5. Interconnection between the variational q-calculus, the q-optimal control and th
q-Hamilton system

Here, we want to show that for the simplest case of finding the extremum of the
tional

J
(
y(x)

) = (1− q)

qβ∑
qα

xF
(
y(x),Dqy(x)

)
,

y(qα) = y(qβ+1) = c0, (79)

the three kinds of problems are equivalents, i.e., are equivalent the q-Euler–Lagrang
tion, the q-Hamilton–Pontriaguine and the q-Hamilton systems. We show this in
steps:

(a) We first show how to obtain the q-Hamilton system from the q-Euler–Lagr
equation. For the functional in (79), the q-Euler–Lagrange equation reads

F0
(
y(x),Dqy(x)

) − Dq

[
F1

(
y(q−1x),Dqy(q

−1x)
)] = 0. (80)

Letting

λ(x) = F1
(
y(x),Dqy(x)

)
(81)

and

H = −F + λ(x)Dqy, (82)

then we get from (80), (81) and (82) the q-Hamilton system

Dqy = +Hλ

(
y(x), λ,Dqy

)
,

Dq

[
λ(q−1x)

] = −Hy

(
y(x), λ,Dqy

)
. (83)

(b) To get the q-Hamilton–Pontriaguine system from q-Hamilton system (83), it su
to supposeu(x) = Dqy(x) to be the control q-equation for the given initial noncontrol
extremum problem. In that case, (83) gives

Dqy = +Hλ

(
y(x), λ,u(x)

)
,

Dq

[
λ(q−1x)

] = −Hy

(
y(x), λ,u(x)

)
, (84)

with

H
(
y(x), λ(x),u(x)

) = −F
(
y(x),u(x)

) + λ(x)u(x), (85)

the q-Hamilton–Pontriaguine function, and from (81) we get the third equation in (68

Hu = 0. (86)

(c) Finally we show how to obtain the q-Euler–Lagrange equation (80) from th
Hamilton–Pontriaguine system (84)–(86). From (85) and (86), we have

λ(x) = F1
(
y(x),u(x)

) = F1
(
y(x),Dqy(x)

)
, (87)
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while from (84) we get

Dq

[
λ(q−1x)

] = F0
(
y(x),u(x)

) = F0
(
y(x),Dqy(x)

)
. (88)

Finally, (87) and (88) give the q-Euler–Lagrange equation (80).

3.6. A q-version of the commutation equations

LetL = −D2 + y(x), whereDf (x) = df (x)/dx = f ′(x), be the Schrödinger operat
and letAm be a sequence of differential operators of order 2m+ 1,m = 0,1,2, . . . , which
coefficients are arbitrary differential polynomials of the potentialy(x). By commutation
equations, one understands the equations[L,Am] = LAm −AmL = 0 in the coefficients o
the operators. It is known since [1,2] that for anym, m = 0,1,2, . . . , there exists such a
operatorAm of order 2m+ 1, such that the operator[L,Am] = LAm −AmL is an operato
of multiplication by a scalar functionfm(y, y ′, y ′′, . . .): [L,Am] = fm(y, y ′, y ′′, . . .). The
corresponding commutation equations then read

[L,Am] = fm(y, y ′, y ′′, . . .) = 0. (89)

Its nontrivial solutions are elliptic or hyperelliptic (or their degenerate cases) func
for m = 1 andm> 1, respectively (see [1,2]). Since the 70s of the last century (see
[4, §30], it is known that the commutation equations (89) are equivalent to type (32) E
Lagrange equations for the functionals

Jm

(
y(x)

) =
b∫

a

Lm

(
y(x), y ′(x), . . . , y(k)(x)

)
dx (90)

with Lm related toAm in a known way (see, e.g., [4]).
If m = 1, for example,L1(y, y

′) = y ′2/2+ y3 + c1y
2 + c2y (c1, c2: constants) and th

corresponding Euler–Lagrange equation (commutation equation) reads:

y ′′ = 3y2 + 2c1y + c2. (91)

Up to a linear transformationy → c3y + c4, its solution is the well known Weierstra
functionP(x).

Considering now the q-functional

Jm

(
y(x)

) = (1− q)

qβ∑
qα

xLm

(
y(x),Dqy(x), . . . ,D

k
qy(x)

)
(92)

we obtain that the corresponding to type (29) q-Euler–Lagrange equations areq-versions
of the commutation equations(89). For example, form = 1, we haveL1(y(x),Dqy(x)) =
[Dqy]2/2+ y3 + c1y

2 + c2y and the corresponding q-Euler–Lagrange equation read

3y2 + 2c1y + c2 − qD2
q

[
y(q−1x)

] = 0, (93)

or equivalently

y(qx) = (q + 1)y(x)+ (qx − x)2(3y2(x)+ 2c1y(x)+ c2
) − qy(q−1x). (94)
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Obviously, the q-Euler–Lagrange equation (93) (or (94)) tends to the Euler–Lagrang
in (91), whileq ❀ 1. One will note that thought we up to now do not know an analyt
resolution of this equation, its solution satisfying given boundary constraints can be
recursively. Here is naturally the main advantage of the analysis on lattices.

Remark 3. What we done in this section is to give a q-version of the commutation e
tions in terms of the q-Euler–Lagrange equations of q-integration functionals. One
ask why do not give q-versions of commutation equations in terms of commutation
tions of q-difference operators, i.e., operators obtained from differential ones replacD

by Dq . The situation is that this line of attack is not hopeful especially because of th
sence of symmetries in most of operations with the q-derivative. For example, the s
fact that the formulaDqfg = f (qx)Dqg + g(x)Dqf is not symmetric in rapport withf
andg is tedious in classical q-analysis. Clearly, a study of the q-commutation equa
using the q-variational method needs an independent consecration.
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