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a b s t r a c t

The multivariate regular variation (MRV) is one of the most important tools in modeling
multivariate heavy-tailed phenomena. This paper characterizes the MRV distributions
through the tail dependence function of the copula associated with them. Along with
some existing results, our studies indicate that the existence of the lower tail dependence
function of the survival copula is necessary and sufficient for a random vector with
regularly varying univariate marginals to have a MRV tail. Moreover, the limit measure of
theMRV tail is explicitly characterized. Our analysis is also extended to somemore general
multivariate heavy-tailed distributions, including the subexponential and the long-tailed
distribution families.

© 2011 Elsevier Inc. All rights reserved.

1. Introduction

Heavy-tail analysis has played an increasingly important role in insurance, finance and risk management in recent years.
It is well known that financial returns are usually heavy-tailed, and thus the corresponding risk management often relies on
heavy-tail analysis. In the field of reinsurance, one often needs to assess some extreme values making heavy-tail analysis
techniques indispensable. For a comprehensive review on heavy-tailed distributions and their applications, we refer to
[1,5,8,17–19].

In the heavy-tail analysis, one of the most important classes of distributions is the regular variation class, which includes
all of the distributions (or equivalently random variables) with a regularly varying tail. The regular variation class has
been widely used in modeling heavy-tailed phenomena. In order to efficiently characterize the multivariate heavy-tailed
phenomena, the regularly varying distributions are extended to the multivariate case by de Haan and Resnick [6], leading
to the concept of multivariate regular variation (MRV). Since then, MRV has been widely used in a variety of fields including
queuing theory, stochastic networks, telecommunications, insurance and finance; see, for example, [10,14,9].

In the literature, one can find various equivalent formulations for the MRV distributions. In the present paper, we shall
establish another characterization of MRV via the concept of copula, which is defined as a multivariate distribution function
with uniformmarginal distributions over the unit interval [0, 1]; see [7,16]. The copula enables us to construct amultivariate
distribution function from the marginal (possibly different) distribution functions in a way that takes their dependence
structure into account.

Our research is motivated by the interplay of the copula and the MRV distributions in their concrete applications. One
typical situation arises in the assessment of aggregate risks, as discussed in [20]. Its mathematical setup is as follows.
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Let X := (X1, . . . , Xd) be a non-negative MRV random vector, representing various losses in a multivariate portfolio, and
consider the corresponding aggregate risk of a form ∥X∥, where ∥X∥ denotes an aggregation model such as

n
i=1 Xi andn

i=1 X
2
i

1/2. As we know, the MRV distributions are defined using some limiting properties; therefore, it is technically
challenging if we handle such assessment problems without imposing any additional assumptions. To establish meaningful
results, it is often necessary to conduct the assessment by specifying a copula for the dependence structure of X in the
existing literature.

In such cases, a question arises naturally: what conditions are required on a copula C and a set of marginal distributions
so that the resulting joint distribution of X has a MRV tail? Of course, we should assume that the univariate marginal
distributions of X are all regularly varying, since a MRV distribution must have regularly varying univariate marginals.
To the best of our knowledge, this question has remained open until today and the present paper aims to fill this gap.
For presentation convenience, we shall discuss the required conditions in terms of the survival copula of X instead of
its copula. One result relevant to the above question is the Theorem 2.3 by Li and Sun [13]. While their results are
expressed in terms of copulas, we can equivalently express those results in terms of the survival copulas as stated in
Theorem 3.1 below. According to Li and Sun [13], if X has a MRV tail, the lower tail dependence functions of the marginals
of any dimension of the survival copula exist, and can be explicitly expressed through the limit measure of the MRV
distribution.

In this paper, we have established the converse of the results from Li and Sun [13]. By Theorem 3.2 below, we formally
show that the existence of the lower tail dependence functions is also sufficient for X to have a MRV tail; moreover, the
limit measure can be explicitly expressed in terms of the lower tail dependence function. To illustrate our results, we
present Examples 3.1 and 3.2 to demonstrate that the tail dependence function of a general copula does not necessarily
exist, and that the joint of univariate regularly varying marginals without satisfying the tail dependence function existence
condition does not necessarily have a MRV tail. Moreover, we analyzed many important copula families, and found that
the tail dependence function existence condition is satisfied for all of them. Finally, our analysis has also been extended
to some other multivariate heavy-tailed distributions, which are more general than the MRV class and include both the
subexponential distribution family and the long-tailed distribution family.

The outline of the paper is as follows. In Section 2, we present some preliminaries on the MRV distribution and copula.
Section 3 contains our main results, where a characterization of MRV class is established, and some examples are presented.
Section 4 investigates the subexponential and long-tailed distribution families. Finally, the Appendix presents the proof of
our main result Theorem 3.2.

2. Preliminaries

Ameasurable functionU:R → R is regularly varying at∞with indexρ, if it holds limt→∞
U(tx)
U(t) = xρ for any real number

x > 0. Here, ρ is called the exponent of variation, and if ρ = 0, U is called a slowly varying function. For convenience,
throughout the paper we use Rρ to denote the class of all survival functions that are regularly varying with index ρ. We
may also denote X ∈ Rρ if the random variable X has a survival distribution from the class Rρ . Denote the punctured space
Ed = [0,∞]d \ {0}, where 0 = (0, . . . , 0) ∈ Rd, and let {X,X1,X2, . . .} denote a sequence of independent and identically
distributed d-dimensional random vectors valued in [0,∞)d. In what follows, a lowercase bold letter, such as x, denotes a
real number vector (x1, . . . , xd) of an appropriate dimension d.

Definition 2.1. The distribution function of X in [0,∞]d has a multivariate regularly varying tail, if there exists a non-null
RadonmeasureµX on Bd, the Borel σ -field of Ed, and a normalizing function b(u):R → R with b(u)→∞ as u→∞, such
that

u Pr


X
b(u)
∈ ·


v
→µX(·), as u→∞,

in M+(Ed), where M+(Ed) denotes the space of non-negative Radon measures on Ed, and the symbol
v
→ stands for vague

convergence onM+(Ed).

Remark 2.1. In the above definition for the MRV distribution, we concentrate on the nonnegative random vectors. Beyond
the nonnegative orthant, readers may refer to [19].

Let C be a symmetric copula function, C: [0, 1]d → [0, 1] andC be the corresponding survival copula. We use Ck andCk

to denote the k-dimensional marginals of C andC respectively. For more details regarding copulas and survival copulas, we
refer to [16].

Remark 2.2. Technically, the symmetric condition on C is not necessary for our results. Imposing this condition is for
presentational convenience. For a general copula, its k-dimensional marginals may not have a uniform form, and this will
significantly complicate our analysis and the presentation of our results as well.
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Definition 2.2. The lower and upper tail dependence functions of a copula Ck, denoted by λ(l)k and λ(u)k respectively, are
defined as

λ
(l)
k (u1, . . . , uk) = lim

t→0+

Ck(tu1, . . . , tuk)

t
,

and

λ
(u)
k (u1, . . . , uk) = lim

t→0+

Ck(tu1, . . . , tuk)

t
,

provided that the corresponding limit exists, where uk ≠ 0 and 1 ≤ k ≤ d.

Remark 2.3. (1) Note that C is the copula of a random vector (−X1, . . . ,−Xn), if and only if C is the survival copula of the
random vector (X1, . . . , Xn).

(2) If a copula C has a lower tail dependence function λ(l) and an upper tail dependence function λ(u), then its survival
copula has a lower tail dependence function λ(u) and an upper tail dependence index λ(l); vice versa.

3. Multivariate regular variation

3.1. Conditions and main results

Without any loss of generality, we assumeX has a continuous joint distribution; thus, it has a unique copula and a unique
survival copula, according to the Sklar’s Theorem; see [16]. Hereafter, we letC be the survival copula associated with X, or
equivalently, the copula associated with −X ≡ (−X1, . . . ,−Xd). While all the theorems established in the present paper
can be extended to the casewith a general survival copula, we assume, for presentational convenience, thatC is a symmetric
survival copula in the sense that its marginals of the same dimension are identical. We write its k-dimensional marginal byCk, and denote its lower tail dependence function by

λk(u1, . . . , uk) := lim
t→0+

Ck(tu1, . . . , tuk)

t
,

for k = 1, . . . , d, provided that the limit exists. To proceed, we let Fi denote the univariate distribution of the ith component
Xi in the vector X for i = 1, . . . , d, and impose the following two conditions:

C1. The tail distribution F 1 is regularly varying at infinity with index−α < 0, denoted F 1 ∈ R−α , i.e. F 1(x) = x−αL1(x) for
some function L1 slowly varying at infinity.

C2. F 1, . . . , F d have equivalent tails:

lim
x→∞

F i(x)

F 1(x)
= ci,

for some constant ci > 0, i = 2, 3, . . . .

Remark 3.1. The equivalent tail condition C2 is usually not satisfied by the original data in specific applications. In heavy-
tail analysis, we often adopt certain monotone transformations to transform the original data to satisfy the equivalent tail
condition; for details, we refer to [19].

Let us temporarily assume that X has a MRV distribution and proceed to introduce a necessary condition on its survival
copulaC in terms of its tail dependence function. Such a condition is developed by Li and Sun [13] (also see [20]). Their
results are expressed in terms of the copula of X . For completeness, in the present paper, we rephrase their results in terms
of the survival copula and present them in the following Theorem 3.1. In the theorem, the functions τk are defined by

τk(x1, . . . , xk) := lim
u→∞

u Pr (X1 > b(u)x1, . . . , Xk > b(u)xk) , k = 1, . . . , d,

where the existence of the limit follows trivially from the definition of the MRV distributions.

Theorem 3.1. Let X = (X1, . . . , Xd) be a random vector, which possesses a survival copula C and univariate marginal
distribution functions Fi, i = 1, . . . , d, satisfying conditions C1 and C2. If, furthermore, X has a MRV distribution, then the lower
tail dependence functions λk(x1, . . . , xk) of C exist and are given by

λk(x1, . . . , xk) = τk

(c−11 x1)−1/α, . . . , (c−1k xk)−1/α


, (3.1)

for k = 1, . . . , d.
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Proof. See Theorem 2.3 by Li and Sun [13]. �

Remark 3.2. The expression of the lower tail dependence functions λk(x1, . . . , xk) in (3.1) corresponds to the upper tail
dependence functions of the copula of X presented in their Theorem 2.3 by Li and Sun [13]. Moreover, while the results
in [13] are expressed in terms of the limitmeasureµX, the expression forλk(x1, . . . , xk) given in (3.1) can be easily recovered
from their results.

As mentioned before, our main contribution in the present paper is to investigate the converse of the above Theorem 3.1.
We have the following Theorem 3.2, which implies that the existence of the lower tail dependence functions ofC is also
sufficient for X to have a MRV distribution; moreover, the limit measure of the resulting MRV distribution can be explicitly
expressed via these lower tail dependence functions.

Theorem 3.2. Let X = (X1, . . . , Xd) be a random vector, which possesses a survival copula C and univariate marginal
distributions Fi, i = 1, . . . , d, satisfying conditions C1 and C2. If, additionally, the joint distribution of X is continuous, and
the lower tail dependence functions of C

λk(u1, . . . , uk) exists for k = 1, . . . , d, (3.2)

then X has a MRV distribution; more specifically, we have

u Pr


X
b(u)
∈ ·


v
→µX(·), u→∞, (3.3)

where b(u) =


1
F1

←
(u) ≡ inf


t ≥ 0: 1

F1(t)
≤ u


, and the limit measure µX(·) is given by

µX([0, x]c) =
k

j=1

cjx−αj −


1≤i<j≤k

λ2(cix−αi , cjx−αj )+ · · · + (−1)k+1λd(c1x−α1 , . . . , ckx−αk ). (3.4)

Proof. See the Appendix. �

3.2. Remarks and examples

Remark 3.3. According to Theorems 3.1 and 3.2, the tail dependence function existence condition (3.2) is critical for
conclusion on whether the resulting joint distribution has a MRV tail or not. To demonstrate that condition (3.2) is not
generally satisfied by all copulas, we present Example 3.1 below; and to illustrate that conditions C1 and C2 without the
additional assumption of (3.2) may not be sufficient for X to have a MRV tail, we present a counterexample in Example 3.2
below.

Example 3.1. Consider the following diagonal copula:

Cδ(u1, u2) = min

u1, u2,

1
2
(δ(u1)+ δ(u2))


,

where

δ(u) =


1, u = 1,

u, u ≤
1
2
,

x2i−1, x2i−1 ≤ u < x2i,

x22i + 2(u− x2i), x2i ≤ u < x2i+1,

x1 = 1
2 , and x2i =

√
x2i−1 and x2i+1 = 2x2i − x22i for i = 1, 2, . . . . Kortschak and Albrecher [11] have formally showed that

Cδ satisfies all the conditions required in defining a copula. Nevertheless, the lower tail dependence function of its survival
copula does not exist, as explained below.

Clearly, the survival copula of Cδ is given byCδ(u1, u2) = u1 + u2 − 1+ Cδ(1− u1, 1− u2),

and simple manipulation leads toCδ(t, t)
t
= 1+min


0,

t − 1+ δ(1− t)
t


.
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We show the non-existence of limt→0+
Cδ(t,t)

t by deriving two different limits for two distinct sequences of t tending to 0.
In fact, for t = 1− x2i,

lim
i→∞

Cd(1− x2i, 1− x2i)
1− x2i

= 1+ lim
i→∞

min

0,
−x2i + x22i
1− x2i


= 1+ lim

i→∞
min (0,−x2i) = 0,

and for x = 1− x2i−1,

lim
i→∞

Cd(1− x2i−1, 1− x2i−1)
1− x2i−1

= 1+ lim
i→∞

min

0,

1
1− x2i−1


= 1.

Example 3.2. To show that conditions C1 and C2 are not sufficient for the resulting joint distribution to have a MRV tail, we
introduce an example from [3], where the example is used to show that a long-tailed distribution may not have a MRV tail.

For any x1, x2 ≥ 0, let

F(x1, x2) = Pr (X1 > x1, X2 > x2) =
1+ γ sin{log r1(x)} cos

 1
2πr2(x)


r1(x)

,

where r1(x) = 1+x1+x2, r2(x) = (x1−x2)/r1(x) and 0 < |γ | ≤ 1
12 . Clearly, X1 and X2 have the samemarginal distribution

F which is asymptotically Pareto:

F(x) = Pr(X1 > x) = Pr(X2 > x) ∼ x−1, as x→∞.

Thus, conditions C1 and C2 are satisfied by (X1, X2). However, according to [3], its joint distribution does not have a
MRV tail.

Remark 3.4. Although a general copula does not necessarily satisfy condition (3.2) as we have seen in Example 3.1, we find
that many important copula families actually satisfy this condition. Next, we shall analyze some of those copula families.

Example 3.3. Suppose thatC is a copula from the Farlie–Gumbel–Morgenstern family (abbreviated FGM), i.e.,

C(u1, . . . , ud) =


1+ θ

d
i=1

(1− ui)


d

i=1

ui,

with some parameter θ satisfying |θ | ≤ 1, or from the Cuadras–Augé family (abbreviated CA), i.e.,

C(u1, . . . , ud) = (min(u1, . . . , ud))
θ


d

i=1

ui

1−θ

,

with some parameter θ ∈ (0, 1). Then, it is easy to check that the tail dependence functions λk exist, and λk = 0 for
k = 2, . . . , d. Therefore, according to Theorem 3.2, if the random vector X satisfies conditions C1 and C2, and has a survival
copulaC from either the FGM family or the CA family, then X has a MRV tail with a limit measure µX defined by

µX([0, x]c) =
d

i=1

cix−αi , for x ∈ Rd
+
.

Example 3.4. Suppose thatC is the Fréchet–Hoeffding copula (abbreviated FH), i.e.C(u1, . . . , ud) = min(u1, . . . , ud).

Then, it is easy to verify

λk(x1, . . . , xk) = min(x1, . . . , xk),

for x ∈ Rk
+
and k = 2, . . . , d. Thus, according to Theorem 3.2, if the random vector X satisfies conditions C1 and C2, and has

a FH survival copulaC , then X has a MRV distribution with a limit measure µX defined by

µX([0, x]c) = max(c1x−α1 , . . . , cdx−αd ), for x ∈ Rd
+
.

Example 3.5. In this example, we consider the well-known Archimedean copula family. If we let C be an Archimedean
copula, then it admits the following representation:C(u1, . . . , ud) = ψ (ψ

←(u1)+ · · · + ψ
←(ud)) ,
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where ψ: [0,∞] → [0, 1] is a nonincreasing and continuous function, strictly decreasing on [0, inf{x:ψ(x) = 0}) and
satisfying the conditions ψ(0) = 1 and limx→∞ ψ(x) = 0, and ψ←(u) = inf{x ≥ 0:ψ(x) ≤ u} with ψ←(∞) = 0 and
ψ←(0) = inf{u:ψ(u) = 0} by convention. As demonstrated by McNeil and Nešlehová [15] in their Example 2.1, a functionC possessing the above representation is not necessarily an appropriate copula. According to [15], a necessary and sufficient
condition forC to be an appropriate copula is that the generator ψ is d-monotone on [0,∞).

The extremal behaviours of Archimedean copulas are usually characterized by the limiting properties of either the
generator ψ or its inverse ψ←. In particular, as shown by Charpentier and Segers [2] in their Theorem 3.1, the lower tail
dependence function of an Archimedean copula always exists when the inverse of its generator is regularly varying at 0,
or equivalently the generator is regularly varying at 1. It is worth noting that the monograph [16] by Nelsen lists as many
as twenty two bivariate Archimedean copulas in its Table 4.1, and almost all of their generators can be easily verified as
regularly varying. Nevertheless, the conjecture that all the Archimedean copulas have a lower tail dependence function is
wrong. Counterexamples include Examples 3 and 4 from [12].

Next, we assume thatC is the survival copula of X, and that X satisfies conditions C1 and C2. Moreover, we suppose that
the generator ψ ofC is regularly varying at 1. Then, by Theorem 3.1 from [2], we can obtain the explicit forms of the lower
tail dependence functions λk ofC as shown in the following three cases.We shall then further apply Theorem3.1 to conclude
that X has a MRV tail, and obtain its limit measure µX as shown below for each case.

(a) Supposeψ ∈ R−ρ with ρ > 0, or equivalentlyψ← ∈ R−ρ−1 . Then, according to [2], λk(x1, . . . , xk) =
k

i=1 x
−ρ−1

i

−ρ
for k ≥ 2, and consequently our Theorem 3.2 implies that X has a MRV distribution with a limit measure µX given by

µX([0, x]c) =
k

j=1

cjx−αj −


1≤i<j≤k


(c1x−α1 )

−
1
ρ + (c2x−α2 )

−
1
ρ

−ρ
+ · · · + (−1)d+1


d

i=1

(cix−αi )
−

1
ρ

−ρ
.

(b) Suppose ψ ∈ R0, or equivalently ψ← ∈ R−∞, i.e.,

lim
t→0

ψ←(tx)
ψ←(t)

=


0, if x > 1,
∞, if 0 < x < 1.

Then, according to [2], λk(x1, . . . , xk) = min{x1, . . . , xk} for k ≥ 2, and consequently our Theorem 3.2 implies that X
has a MRV distribution with a limit measure µX given by µX([0, x]c) = max{x1, . . . , xd}.

(c) Suppose ψ ∈ R−∞, or equivalently ψ← ∈ R0. Then, according to [2], λk(x1, . . . , xk) ≡ 0 for k ≥ 0, and consequently
our Theorem 3.2 implies that X has a MRV distribution with a limit measure µX given by µX([0, x]c) =

d
i=1 cix

−α
i .

4. Other multivariate heavy-tailed families

In this section, we shall extend our results established in Section 3 to two other important multivariate heavy-tailed
families of distributions: the long-tailed family and the subexponential family. The MRV class of distributions is a subset of
either of these two families. In the univariate case, they are defined as follows.

Definition 4.1. (1) The survival function F of a random variable is in class L(α) (called long-tailed class) for some α ≥ 0,
denoted F ∈ L(α), if and only if

lim
x→∞

F(x− y)

F(x)
= eαy, for y > 0.

(2) The survival function F of a random variable is in class S(α) (called the subexponential class) for some α ≥ 0, denoted
by F ∈ S(α), if and only if F ∈ L(α) and

lim
x→∞

F ∗ F(x)

F(x)
= D,

where F ∗ F denotes 1− F ∗ F , F ∗ F is the twofold convolution of F , and D is a constant.

When α = 0 in the above definition, the resulting classes L(0) and S(0) are actually large enough to contain all the
regularly varying distributions. They satisfy the following inclusion relations:

R−α ⊂ S(0) ⊂ L(0).

For more details, we refer to [1,4,8]. In the multivariate case, the long-tailed class and subexponential class of distributions
are defined as follows.

Definition 4.2. (1) A randomvectorX in [0,∞)d belongs to themultivariate long-tailed classL(ν, b), denotedX ∈ L(ν, b),
if and only if there exist a non-null Radon measure ν on Bd, the Borel σ -field of Ed, and a function vector b(u) :=
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(b1(u), . . . , bd(u)) satisfying bi(u)→∞ as u→∞ for i = 1, . . . , d, such that

u Pr [X− b(u) ∈ ·] v
→ ν(·). (4.1)

inM+(Ed).
(2) A random vector X in [0,∞)d belongs to the multivariate subexponential class S(ν, b), denoted X ∈ S(ν, b), if and

only if the following two conditions are satisfied:

(i) X ∈ L(ν, b);
(ii) there exists a function vector b(u) := (b1(u), . . . , bd(u)) satisfying bi(u)→∞ as u→∞ for i = 1, . . . , d, such that

u Pr [X1 + X2 − b(u) ∈ ·] v
→ ν(2)(·), (4.2)

where X1 and X2 are two independent copies of the random vector X, and 1
2ν

(2)
= ν ∗ F denoting the convolution of

measure ν and the joint distribution F of X.

According to [3], if a random vector X belongs to the multivariate long-tailed class (or the multivariate subexponential
class), then the univariate marginal distributions of X are still long-tailed (or subexponential). In other words, if (4.1)
(or (4.2)) holds, then there are some constants αi ≥ 0 such that Xi ∈ L(αi) (or Xi ∈ S(αi)) for i = 1, . . . , d. In the present
paper, we are interested in the converse result as stated in the following Theorems 4.1 and 4.2. Theorem 4.1 can be proved
in a way very similar to that used for Theorem 3.2, and hence we omit its proof.

Theorem 4.1. Assume that all the conditions in Theorem 3.2 are satisfied except replacing condition C1 by the following one:

C1’. The univariate survival distribution F i ∈ L(αi) for some αi ≥ 0, i = 1, . . . , d.

Then, X belongs to the multivariate long-tailed class; more specifically,

u Pr (X− b(u) ∈ ·) v
→ νX(·), u→∞,

where b(u) = (b(u), . . . , b(u)), b(u) =


1
F1

←
(u), and the limit measure νX(·) is defined by

νX([0, x]c) =
k

j=1

cje−αjxj −


1≤i<j≤k

λ2(cie−αixi , cje−αjxj)+ · · · + (−1)k+1λd(c1e−α1x1 , . . . , cke−αkxk).

Remark 4.1. Let αi = 0 in Theorem 4.1, i.e., Xi ∈ L(0), for i = 1, . . . , d. Then, for any x ∈ Rd
+
,

νX([0, x]c) =
k

j=1

cj −


1≤i<j≤k

λ2(ci, cj)+ · · · + (−1)k+1λd(c1, . . . , ck), (4.3)

which implies that the limit measure νX is degenerate when the marginal distributions are all from class L(0).

Theorem 4.2. Assume that all the conditions in Theorem 3.2 are satisfied except replacing condition C1 by the following one:

C1’’. The univariate survival distribution F i is from class S(αi) for some αi ≥ 0, i = 1, . . . , d.

Then, X belongs to the multivariate subexponential class S(νX, b), where the limit measure νX and the normalizing function b
are as defined in Theorem 4.1.

Proof. Clearly, F i ∈ S(αi) implies F i ∈ L(αi), and hence, by Theorem 4.1, X ∈ L(νX, b). Consequently, using Corollary 2.4
in [3], we immediately obtain X ∈ S(νX, b). �

Remark 4.2. Let αi = 0 in Theorem 4.2, i.e., Xi ∈ S(0) for i = 1, . . . , d. Then, by Remark 4.1, the limit measure νX is
degenerate as shown in (4.3), and hence its convolution with the joint distribution F of X is itself. Therefore, in this case,
we have

u Pr [X1 + X2 − b(u) ∈ ·] v
→ 2ν(0),

where ν(0) denotes the degenerate measure given by the right hand side of Eq. (4.3).

Acknowledgments

Both authors gratefully acknowledge valuable comments from two anonymous referees and an editor. Weng thanks the
financial support from the University of Waterloo Start-up Grant and the NSERC grant. Zhang acknowledges the research
support by the grant NSFC (70871103). Both authors thank the MOE Project of Key Research Institute of Humanities and
Social Sciences at Universities (No: 11JJD790053).



C. Weng, Y. Zhang / Journal of Multivariate Analysis 106 (2012) 178–186 185

Appendix

Proof of Theorem 3.2. We first note that conditions C1 and C2 imply

(x−α − ε1)F i(t) ≤ F i(tx) ≤ (x−α + ε1)F i(t), (A.1)

and

(ci − ε2)F 1(t) ≤ F i(t) ≤ (ci + ε2)F 1(t) (A.2)

for any x > 0, ε1 > 0, ε2 > 0, large enough t , and i = 1, 2, . . . , d. Recall thatCk is the k-dimensional marginals ofC . Thus,Ck(u1, . . . , uk) is nondecreasing in each of its arguments ui, and this fact, combined with the second inequalities in (A.1) and
(A.2), further implies thatCk


F i1(txi1), . . . , F ik(txik)


≤ lim

ε1→0+,ε2→0+
Ck


(x−αi1
+ ε1)(ci1 + ε2)F 1(t), . . . , (x−αik

+ ε1)(cik + ε2)F 1(t)


= Ck


ci1x
−α
i1

F 1(t), . . . , cikx
−α
ik

F 1(t)

,

where {i1, . . . , ik} denotes a subset of {1, . . . , d} for k ≤ d, and the last equality is due to the assumption that X has a
continuous distribution. The last display implies

lim sup
t→∞

Ck

F i1(txi1), . . . , F ik(txik)


F 1(t)

≤ lim sup
t→∞

Ck


ci1x
−α
i1

F 1(t), . . . , cikx
−α
ik

F 1(t)


F 1(t)

= λk


ci1x
−α
i1
, . . . , cikx

−α
ik


, (A.3)

in a similar way, by using the first inequalities in (A.1) and (A.2), we can obtain

lim inf
t→∞

Ck

F i1(txi1), . . . , F ik(txik)


F 1(t)

≥ λk


ci1x
−α
i1
, . . . , cikx

−α
ik


. (A.4)

Combining (A.3) and (A.4) yields

lim
t→∞

Ck

F i1(txi1), . . . , F ik(txik)


F 1(t)

= λk


ci1x
−α
i1
, . . . , cikx

−α
ik


,

and hence

lim
u→∞

u Pr

Xi1 > b(u)xi1 , . . . , Xik > b(u)xik


= λk


ci1x
−α
i1
, . . . , cikx

−α
ik


.

So, for any x ∈ Rd
+
,

u Pr


X
b(u)
∈ [0, x]c


= u Pr


d

k=1


Xk

b(u)
> xk



=

d
k=1

u Pr


Xk

b(u)
> xk


−


1≤k<j≤d

u Pr


Xk

b(u)
> xk,

Xj

b(u)
> xj



+ · · · + (−1)d+1u Pr


d

k=1


Xk

b(u)
> xk



→

d
k=1

ckx−αk −


1≤k<j≤d

uλ2(ckx−αk , cjx−αj )+ · · · + (−1)d+1λd(c1x−α1 , . . . , cdx−αd ),

as u→∞. By this, the proof is complete. �
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