
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector
Journal of Applied Logic 5 (2007) 144–169

www.elsevier.com/locate/jal

Open answer set programming for the semantic web

Stijn Heymans, Davy Van Nieuwenborgh, Dirk Vermeir ∗

Department of Computer Science, Vrije Universiteit Brussel, VUB, Pleinlaan 2, B1050 Brussels, Belgium

Received 18 May 2004; accepted 16 February 2006

Available online 3 May 2006

Abstract

We extend answer set programming (ASP) with, possibly infinite, open domains. Since this leads to undecidable reasoning, we
restrict the syntax of programs, while carefully guarding knowledge representation mechanisms such as negation as failure and in-
equalities. Reasoning with the resulting extended forest logic programs (EFoLPs) can be reduced to finite answer set programming,
for which reasoners are available.

We argue that extended forest logic programming is a useful tool for uniformly representing and reasoning with both ontological
and rule-based knowledge, as they can capture a large fragment of the OWL DL ontology language equipped with DL-safe rules.
Furthermore, EFoLPs enable nonmonotonic reasoning, a desirable feature in locally closed subareas of the Semantic Web.
© 2006 Elsevier B.V. All rights reserved.

Keywords: Answer set programming; Semantic web; Description logics; Open domain reasoning

1. Introduction

Answer set programming (ASP) [21] is a logic programming paradigm that captures knowledge by programs
whose answer sets express the intended meaning of this knowledge. The answer set semantics presumes that all
relevant domain elements are present in the program. Such a closed domain assumption is problematic if one wishes
to use ASP for ontological reasoning since ontologies describe knowledge in terms of concepts and interrelationships
between them, and are thus mostly independent of constants.

E.g., consider the knowledge that managers drive big cars, that one is either a manager or not, and that Felix is
definitely not a manager. This is represented by the program P :

bigCar(X) ← Manager(X)

Manager(X) ∨ not Manager(X) ←
¬Manager(felix) ←

Grounding with the only present constant, felix, yields the program

bigCar(felix) ← Manager(felix)

Manager(felix) ∨ not Manager(felix) ←

* Corresponding author. Tel.: +32 2 6293755, fax: +32 2 6293525.
E-mail addresses: sheymans@vub.ac.be (S. Heymans), dvnieuwe@vub.ac.be (D. Van Nieuwenborgh), dvermeir@vub.ac.be (D. Vermeir).
1570-8683/$ – see front matter © 2006 Elsevier B.V. All rights reserved.
doi:10.1016/j.jal.2006.02.001

https://core.ac.uk/display/82650923?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.elsevier.com/locate/jal
mailto:sheymans@vub.ac.be
mailto:dvnieuwe@vub.ac.be
mailto:dvermeir@vub.ac.be
http://dx.doi.org/10.1016/j.jal.2006.02.001

S. Heymans et al. / Journal of Applied Logic 5 (2007) 144–169 145
¬Manager(felix) ←
which has a single answer set {¬Manager(felix)} such that one wrongfully concludes that there are never managers
that drive big cars: the conclusions of the program depend on the present instance data.

We resolve this by introducing, possibly infinite, open domains. Under the open answer set semantics the example
has an open answer set

(
H = {felix,heather},M = {¬Manager(felix),Manager(heather),bigCar(heather)

})
,

where H is a universe for P that extends the constants present in P and M is an answer set of P grounded with H.
One concludes that it is possible that there are persons that are managers and thus drive big cars, corresponding
to the intended semantics of the program. The open answer set semantics enables data independent reasoning: an
ontology engineer does not need to introduce all significant constants in the program, which allows her to concentrate
on modeling the ontological knowledge only. Note the use of disjunction and negation as failure in the head of
Manager(X)∨not Manager(X) ←. Such rules will be referred to as free rules since they allow for the free introduction
of literals; answer sets are, consequently, not subset minimal.

The support for the presence of anonymous individuals, i.e., elements that are not constants in the program, allows
to bridge the semantics of logic programming and description logics [5]: open answer set programming enables both
a nonmonotonic semantics (typical for logic programming paradigms) and the use of open domains, one of the key
features for conceptual modeling, as present in classical logics.

The catch is that reasoning, i.e., satisfiability checking of a predicate, with open domains is, in general, undecidable.
In order to regain decidability, we restrict the syntax of programs while retaining useful knowledge representation
tools such as negation as failure and inequality. Moreover, the result, (local) extended forest logic programs (EFoLPs),
ensures a reduction of reasoning to finite, closed, ASP by virtue of the forest-model property and the bounded finite
model property. EFoLPs are thus amenable for reasoning with existing answer set solvers such as DLV [41] and
SMODELS [50].

Reasoning with both ontological knowledge, in the form of a description logic (DL) [5] knowledge base, and
rule-based knowledge has recently gained in interest in the Semantic Web community. The purpose of adding
rules to ontological knowledge is to have additional expressiveness. E.g., [45] extends a DL knowledge base with
DL-safe rules, i.e., Horn clauses where variables must appear in non-DL-atoms in the body of rules. DL-safe rules
can express triangular knowledge that is not expressible with DLs alone: uncle(a, c) ← brother(a,b),parent(b, c).
Note that DL-safe rules can contain variables but, by DL-safeness, the rules correspond to their grounded version
where the grounding is done w.r.t. the present constants and nominals in the rules and DL knowledge base. It does
not take into account anonymous domain elements, which is a serious limitation. On the other hand allowing for a
grounding with anonymous elements would immediately yield undecidability.

Reasoning with DL knowledge bases and DL-safe rules is monotonic. However, nonmonotonic reasoning may be
useful in applications that involve well-defined closed subareas of the Semantic Web, as illustrated in the following
example. Assume a business is setting up its website for processing customer feedback. It decides to commit to an
ontology O which defines that if there are no complaints for a product, it is a good product.

good_ product(X) ← not complaint(X)

The business has its particular business rules, e.g.,

i : invest(tps,10K) ← not good_ product(tps)

saying that if its particular top selling product tps cannot be shown to be a good product, then the business has to
invest 10K in tps. Finally, the business maintains a repository of dynamically changing knowledge, originating from
user feedback collected on the site, e.g., at a certain time the repository contains

R1 ≡ {
complaint(tps) ←}

,

with a complaint for tps.
If the business wants to know whether to invest more in tps it needs to check O ∪ {i} ∪ R1 |= invest(tps,10K), i.e.,

whether the ontology, combined with its own business rules, and the information repository, demand for an investment
or not.

146 S. Heymans et al. / Journal of Applied Logic 5 (2007) 144–169
One can use extended forest logic programming (EFoLP) to express the above knowledge. Intuitively, any
model of O ∪ {i} ∪ R1, must verify complaint(tps), and good_ product(X) ← not complaint(X) will not trigger and
good_ product(tps) will be false, which in turn, with rule i, allows to conclude that the business should indeed invest.

Evaluating the same query with an updated repository

R2 ≡ {
complaint(tps) ←,good_ product(tps) ←}

containing a survey result saying that tps is a good product, no matter what complaints of individual users there may
be, leads to

O ∪ {i} ∪ R2 �|= invest(tps,10K),

such that no further investments are necessary. Adding knowledge thus invalidates previous conclusions making rea-
soning nonmonotonic; similar scenarios can easily be imagined in any well-defined environment with dynamically
changing knowledge.

EFoLPs are defined as pairs (Q,R) consisting of, on the one hand, a forest logic program (FoLP) Q capable of
expressing conceptual knowledge, as in, e.g., DL knowledge bases, and, on the other hand, a finite arbitrary program
R which allows to relate constants/individuals in arbitrary ways. An EFoLP answer set of such a (Q,R) is defined as
an open answer set of Q ∪ R′, where R′ is the program R grounded with constants from Q ∪ R. On the semantical
level, an EFoLP corresponds to a FoLP with a finite set of ground arbitrary rules. Syntactically, however, the pair
notation allows for a more compact representation. Intuitively, an EFoLP consists of a syntactically restricted part
allowing open domain reasoning and an arbitrary part where reasoning is on the present constants only. In particular,
EFoLPs can simulate reasoning in the DL ALCHOQ(,
), a DL closely related to OWL [9], equipped with DL-safe
rules. Moreover, EFoLPs are capable, as indicated above, of nonmonotonic reasoning as well, since they allow for
negation as failure both in the FoLP part as in the arbitrary rule part.

Note that, although we allow for negation as failure, (E)FoLPs still have to satisfy rather strict syntactical restric-
tions to ensure the forest-model property. E.g., the above uncle relationship cannot be expressed with variables that
can be ground by anonymous elements. We do allow for arbitrary rules in EFoLPs, however, their variables must be
grounded with constants (either from the program or from the DL knowledge base), which makes their usefulness
rather limited. The alternative, i.e., loosening up the syntactical restrictions or allowing grounding with anonymous
elements in the arbitrary rules, easily leads to undecidability.

The remainder of the paper is organized as follows. In Section 2, we extend ASP with open domains, and in
Section 3, we define (local) EFoLPs, reduce reasoning to normal ASP, and establish complexity results. In Section 4,
we show the EFoLP simulation of an expressive class of DLs equipped with DL-safe rules. Section 5 relates other
work to our approach. Finally, Section 6 contains conclusions and directions for further research.

2. Open answer set programming

In Section 2.1, we introduce the open answer set semantics; Section 2.2 argues the undecidability of reasoning
under the open answer set semantics, and Section 2.3 defines the class of acyclic programs, which will be useful for
the simulation of DLs in Section 4.

2.1. Basic definitions and results

A term is either a constant or a variable, and is denoted by a string of letters where a constant starts with a lower-
case letter and a variable with an upper-case letter. An atom is of the form a(t) or f (s, t) where a is a unary predicate
name, f is a binary predicate name, and s and t are terms. A literal is an atom or an atom preceded with the classical
negation symbol ¬. We assume ¬¬a ≡ a for an atom a; for a set of literals α, ¬α ≡ {¬l | l ∈ α}.

An extended literal is a literal or a literal preceded by the negation as failure (naf) symbol not. We will often
denote a set of unary extended literals, ranging over a common term s, as α(s), e.g., {a(s), not b(s)} may be denoted as
{a,not b}(s). A set of binary extended literals can be similarly denoted as α(s, t). The positive part of a set of extended
literals β is β+ ≡ {l | l ∈ β, l literal}, the negative part is β− ≡ {l | not l ∈ β}, e.g., for β = {a,not ¬b,not c}, we
have that β+ = {a} and β− = {¬b, c}. Furthermore, we assume the existence of a binary predicate �=, with the usual
interpretation.

S. Heymans et al. / Journal of Applied Logic 5 (2007) 144–169 147
A disjunctive extended logic program (DLP) is a countable set of rules α ← β where α and β are finite sets of
extended literals and |α+| � 1; as usual, α is supposed to be a disjunction of extended literals and β a conjunction.
In contrast to the DLP we define here, classical DLP allows for α to be an arbitrary set of extended literals; our extra
condition ensures that the GL-reduct, defined below, is disjunction-free, which avoids the use of an extra NP oracle in
satisfiability checking, see Section 3.3. If α = ∅, we call the rule a constraint. The set α is the head of the rule while
β is called the body, denoted, for a rule r , as head(r) and body(r) respectively. As usual, atoms, (extended) literals,
rules, and programs that do not contain variables are ground. A set of ground literals X is consistent if X ∩ ¬X = ∅.
Note that programs with not in the head can be rewritten as equivalent programs without not in the head [39]. Since
the former programs have a non-minimal semantics, useful for introducing the types in conceptual models, while the
latter programs have not, they are more appropriate in the context of conceptual knowledge representation.

For a DLP P , let HP be the constants in P . A (possibly infinite) non-empty countable set of constants H such
that HP ⊆ H, is called a universe for P . We denote PH the ground program obtained from P by substituting every
variable in P by every possible constant in H such that the inequalities are true (and subsequently removed). For a
program P and its constants HP , we will denote PHP

often simply as ground(P).

Example 1. The program P

sel(I,S) ∨ not sel(I,S) ← av(i) ←
av(I) ← sel(I,S)

expresses that an item is sold by a seller or not, an item is available if it has a seller, and we have a particular available
item i. The constants in P are HP = {i}; some of the universes for P are H1 = {i, s} or an infinite H2 = {i, x1, x2, . . .}.

Let LP be the set of literals that can be formed from a grounded program P , preds(P) are the predicate names
in P , and upreds(P) and bpreds(P) the unary and binary predicate names respectively; unless specified otherwise,
¬p, for a predicate name p, is also considered to be a predicate name.

An interpretation I of a ground P is any consistent subset of LP . For a ground literal l, we write I |= l, if l ∈ I ,
which extends to I |= not l if I �|= l, and, for a set of ground extended literals X, I |= X if I |= x for every x ∈ X.
A ground rule r : α ← β is satisfied w.r.t. I , denoted I |= r , if I |= l for some l ∈ α whenever I |= β , i.e., r is applied
whenever it is applicable. A ground constraint ← β is satisfied w.r.t. I if I �|= β . For a ground program P , I is a
model of P if I satisfies every rule in P . We define the GL-reduct [42] w.r.t. I as P I , where P I contains α+ ← β+
for α ← β in P , β− ∩ I = ∅ and α− ⊆ I . I is an answer set of a ground P if I is the subset minimal model of P I .
An open interpretation of P is a pair (H,M) where H is a universe for P and M is an interpretation of PH. An open
answer set of P is then an open interpretation (H,M) with M an answer set of PH. We denote this as (H,M) |= P .

Example 2. Considering the program P from Example 1, we have that, with a universe H = {i, s, x} for P , (H,M1 =
{av(i), sel(x, s),av(x)}) and (H,M2 = {av(i)}) are some open answer sets of P . Since M1 contains a literal sel(x, s),
the GL-reduct P

M1
H contains sel(x, s) ←, which motivates the presence of sel(x, s) in M1. On the other hand, since

sel(x, s) /∈ M2, sel(x, s)∨not sel(x, s) ← is satisfied and is not in the GL-reduct. Intuitively, sel(I,S)∨not sel(I,S) ←
can be used to freely introduce sel-literals, provided no other rules prohibit this, e.g., a constraint ← sel(x, s) would
make sure that no answer set contains sel(x, s). We call a predicate f free if f (X,Y) ∨ not f (X,Y) ← or f (X) ∨
not f (X) ← is in the program, or is silently assumed to be in it, for a binary or unary f respectively. Similarly, a
ground literal l is free if we have l ∨ not l ←.

In the following, we usually omit the “open” qualifier and assume that programs are finite unless they are the result
of grounding with an infinite universe. A program P is consistent if it has an answer set. For a unary predicate p,
appearing in P , p is satisfiable w.r.t. P if there exists an answer set (H,M) of P such that p(a) ∈ M for some a ∈H.
Consistency checking can be reduced to satisfiability checking by introducing some new predicate: for a program
P and a program P ′ = P ∪ {p(X) ∨ not p(X) ←} with p not appearing in P , we have that P is consistent iff p is
satisfiable w.r.t. P ′. For a ground literal α, we have P |= α if for all answer sets (H,M) of P , α ∈ M . Checking
whether P |= α is called query answering. We can reduce query answering to consistency checking, i.e., P |= α iff
P ∪ {not α ←} is not consistent.

There are programs such that a predicate is only satisfiable w.r.t. that program by an infinite open answer set.

148 S. Heymans et al. / Journal of Applied Logic 5 (2007) 144–169
Example 3. The program

r1: restore(X) ← crash(X), y(X,Y),backSucc(Y)

r2: backSucc(X) ← ¬crash(X), y(X,Y),not backFail(Y)

r3: backFail(X) ← not backSucc(X)

r4: ← y(Y1,X), y(Y2,X),Y1 �= Y2

r5: y(X,Y) ∨ not y(X,Y) ←
r6: crash(X) ∨ not crash(X) ←
r7: ¬crash(X) ∨ not ¬crash(X) ←

represents the knowledge that a system that has crashed on a particular day, can be restored on that day if a backup of
the system on the day before succeeded. Backups succeed, if the system does not crash and it cannot be established
that the backups at previous dates failed. Rules r1, r2, and r3 express the above knowledge, and r4 ensures that for
a particular today there can be only one tomorrow (y stands for yesterday). Every open answer set (H,M) of this
program that makes restore satisfiable, i.e., such that there is a restore(x) ∈ M for x ∈ H, must be infinite. An example
of such an answer set M is (we omit H if it is clear from M)

{
restore(x), crash(x),backFail(x), y(x, x1),

backSucc(x1),¬crash(x1), y(x1, x2)

backSucc(x2),¬crash(x2), y(x2, x3), . . .
}

One sees that every backSucc literal with element xi enforces a new y-successor xi+1 since none of the previously
introduced universe elements can be used without violating rule r4.

Although we allow for infinite universes, we can finitely motivate the presence of literals in answer sets. We
express the motivation of a literal more formally by an immediate consequence operator T that computes the closure
of a set of literals w.r.t. a GL-reduct. For a DLP P and an interpretation (H,M) of P , TPM

H
:LPM

H
→ LPM

H
is

defined as T (B) ≡ B ∪ {a | a ← β ∈ P M
H ∧ β ⊆ B}, where we omitted the subscript from TPM

H
. Additionally, we have

T 0(B) ≡ B , and T n+1(B) ≡ T (T n(B)). We usually write T n instead of T n(∅).

Theorem 4. Let P be a DLP and (H,M) an open answer set of P . Then, ∀a ∈ M · ∃n < ∞ · a ∈ T n.

Proof. Assume ∃a1 ∈ M · ∀n < ∞ · a1 /∈ T n. One can then construct an infinite sequence {a1, a2, . . .} ⊆ M such
that ∀i · ∀n < ∞ · ai /∈ T n. The constructed answer set M ′ ≡ M \ {a1, a2, . . .} is a model of P M

H , contradicting the
minimality of M . �

More detail than the T -operator is provided by the support of a literal a in an answer set (H,M), which ex-
plicitly indicates the literals that support the presence of a in the answer set. For the least n such that a ∈ T n, we
inductively define the support Sk(a) on a certain level 1 � k � n as Sn(a) ≡ {a} and Sk(a) ≡ {β | b ← β ∈ P M

H ,

β ⊆ T k,β � T k−1, b ∈ Sk+1(a)}, 1 � k < n. The support for a is S(a) ≡ ⋃n
k=1 Sk(a).

Example 5. For Example 3, {crash(x), y(x, x1),¬crash(x1), y(x1, x2)} ⊆ T 1, backSucc(x1) ∈ T 2, and
restore(x) ∈ T 3, such that

S
(
restore(x)

) = S3(restore(x)
) ∪ S2(restore(x)

) ∪ S1(restore(x)
)

= {
restore(x)

} ∪ {
crash(x), y(x, x1),backSucc(x1)

}

∪ {¬crash(x1), y(x1, x2)
}

indicates which literals were responsible for the presence of restore(x) in the answer set.

S. Heymans et al. / Journal of Applied Logic 5 (2007) 144–169 149
2.2. Undecidability

Satisfiability checking for DLPs under the open answer set semantics is undecidable since the undecidable domino
problem [6] can be reduced to it. In the domino problem, one has a finite set of domino types D = {D1, . . . ,Dm} and
two relations indicating which domino types may be placed side by side horizontally, H ⊆ D × D, and vertically,
V ⊆ D × D. The domino problem is the search for a tiling, compatible with H and V , of the plane N × N, i.e., a
t : N × N → D s.t. (t (m,n), t (m + 1, n)) ∈ H and (t (m,n), t (m,n + 1)) ∈ V for every m,n ∈ N.

We omit the detail of the reduction but note the representation of the plane since this already unveils an important
source of undecidability. The plane N × N can be represented by predicates h and v, where h(X,Y) and v(X,Y)

indicate that Y is X + 1 for X along the horizontal (resp. vertical) axis. Every tile has only one h-successor, such
that we have a ← h(X,Y1), h(X,Y2), Y1 �= Y2, and every tile has at least one such successor: h1(X) ← h(X,Y) and
← not h1(X). The same holds for v. Furthermore, taking one step in the vertical direction followed by a horizontal
step should be the same as the opposite action: seq(X,Z) ← h(X,Y), v(Y,Z); seq(X,Z) ← v(X,Y),h(Y,Z); ←
seq(X,Z1), seq(X,Z2),Z1 �= Z2.

Checking for a compatible tiling can then be done by introducing unary predicates for each domino type, checking
the compatibility locally at each tile, and making sure that each tile can be reached. The main problem, however,
are the 2 seq-rules which express composition of binary predicates; without those, we would have a DLP for which
satisfiability checking is decidable.

2.3. Acyclic programs

For the translation of description logics to open answer set programming in Section 4, we need the additional
terminology of acyclic programs, i.e., programs that do not allow recursion through positive literals.

Formally, a dependency graph DGP for a DLP P is defined by edges between predicates a and b such that a → b

iff there is a rule α ← β ∈ P such that a is a predicate from α+ and b is a predicate from β+. A DLP P is positively
acyclic, acyclic for short, if DGP does not contain cycles. An important distinction with stratified programs [7] is that
recursion through negated literals is still allowed.

A useful property of acyclic programs, as we will see in Section 4, is that they can be rewritten such that there
appear no positive unary literals in the body anymore; one replaces them by a double negation. Formally, for an
acyclic program P , we define φ(P) as the program P with rules r :α ← β,γ , for α �= ∅ and β the unary literals of
body(r), replaced by α ← not β ′, γ and b′(X) ← not b(X), for all b′(X) ∈ β ′ where β ′ = {b′(X) | b(X) ∈ β}.

Theorem 6. Let P be an acyclic program and p ∈ upreds(P). p is satisfiable w.r.t. P iff p is satisfiable w.r.t. φ(P).

Proof. For the “only if” direction, assume p is satisfiable w.r.t. P , i.e., there is an open answer set (H,M) of P such
that p(a) ∈ M . One can show that (H,M ′) with M ′ = M ∪ {b′(x) | b(x) /∈ M,b′ ∈ φ(P)} is an answer set of φ(P).

For the “if” direction, assume p is satisfiable w.r.t. φ(P), i.e., there is an open answer set (H,M) of φ(P) such
that p(a) ∈ M . Define M ′ = M \ {b′(x)}, then (H,M ′) is an answer set of P and p(a) ∈ M ′. �
Example 7. Take the program P

a(X) ← b(X),f (X,Y),not c(Y)

b(X) ∨ not b(X) ←
f (X,Y) ∨ not f (X,Y) ←

The dependency graph of this program is {a → b, a → f } such that P is acyclic. The translation φ(P) is then

a(X) ← not b′(X),f (X,Y),not c(Y)

b′(X) ← not b(X)

b(X) ∨ not b(X) ←
f (X,Y) ∨ not f (X,Y) ←

150 S. Heymans et al. / Journal of Applied Logic 5 (2007) 144–169
which has, among others, the answer set ({x, y}, {a(x), b(x), f (x, y), b′(y)}), corresponding to an answer set
({x, y}, {a(x), b(x), f (x, y)}) of P .

Theorem 6 is in general not valid for programs that are not acyclic.

Example 8. Consider the program P

a(X) ← a(X)

This is not an acyclic program and φ(P) is the program

a(X) ← not a′(X)

a′(X) ← not a(X)

with an answer set ({x}, {a(x)}), which does not correspond to any answer set of P .

3. Extended forest logic programs

In Section 3.1, we introduce the forest-model property and define a syntactically restricted class of programs,
forest logic programs (FoLPs) [28], satisfying this property. We show in Section 3.2 that a particular type of FoLPs,
FoLPs with the local model property, has the bounded finite model property, which enables a reduction to finite ASP.
Section 3.3 identifies an upper bound for the complexity of reasoning. Finally, in Section 3.4, we extend FoLPs with
an arbitrary finite set of rules that can only be grounded with constants present in the program, resulting in EFoLPs
[29], and show that properties such as the forest-model property and the bounded finite model property remain valid.

3.1. Forest-model property

As seen in the previous section, open answer set programming is rather powerful, even to the extent that satisfia-
bility checking in the general case is undecidable. As in modal logics, the so-called tree-model property will prove
to be a critical factor in showing decidability of satisfiability checking [53]. Roughly, a program has the tree-model
property if one has that if there are answer sets that make a predicate satisfiable there must also be answer sets with
a tree-structure that make the predicate satisfiable. A generalization of this property is the forest-model property: if
there is an answer set that makes a predicate satisfiable, then there is an answer set that has the form of a set of trees,
a forest. A similar property arises for DLs that include nominals, e.g., SHOQ(D) [34].

For a x ∈ N∗
0, i.e., a finite sequence of natural numbers, we denote the concatenation of a number c ∈ N to x as

x · c, or, abbreviated, as xc. Formally, a (finite) tree T is a (finite) subset of N∗
0 such that if x · c ∈ T for x ∈ N∗

0 and
c ∈ N0, we have that x ∈ T . Elements of T are called nodes and the empty word ε is the root of T . For a node x ∈ T

we call x · c ∈ T , c ∈ N0, successors of x. By convention, x · 0 = x and (x · c) · −1 = x (ε · −1 is undefined). If every
node x in a tree has k successors we say that the tree is k-ary. E.g. T1 = {ε, ε1, ε2, ε11} is a finite tree with root ε,
two successors ε1 and ε2, and ε11 a successor of ε1; T1 will also be written as {ε,1,2,11}. A labeled tree over an
alphabet Σ is a tuple (T , t) where T is a tree and t :T → Σ is a labeling function; usually we will identify the tree
(T , t) with t and we will write tx for trees where the root is identified with x: if the root in T1 is a constant a, we write
it as {a, a1, a2, a12}, and a labeling function for T1 is denoted as ta . A forest F is a finite multi-set {tx1 , . . . , txn}, with
each txi

:Txi
→ Σ a labeled tree such that Txi

and Txj
are mutually disjoint for txi

�= txj
.

Example 9. Consider the program P representing the knowledge that a company can be trusted for doing business
with if it has the ISO 9000 quality certificate and at least two different trustworthy companies are doing business with
it:

trust(C) ← t_bus(C,C1), t_bus(C,C2),C1 �= C2,qual(C, iso9000)

← t_bus(C,D),not trust(D)

with t_bus and qual free predicates, and iso9000 a constant. The first rule states a sufficient condition on the trust of
some C: if different C1 and C2 are doing trustworthy business with C (t_bus(C,C1), t_bus(C,C2)) and C has the ISO

S. Heymans et al. / Journal of Applied Logic 5 (2007) 144–169 151
Fig. 1. Forest-model.

9000 quality certificate (qual(C, iso9000)), then C can be trusted as well (trust(C)). Moreover, using the minimality of
open answer sets, this single rule also expresses that in order for C to be trusted it should be doing trustworthy business
with different companies and have the ISO 9000 quality label.1 The constraint encodes the inherent property of t_bus
(doing trustworthy business) that if C is doing trustworthy business with D, then D must be a trusted company.

An answer set, e.g.,

M = {
trust(x1), t_bus(x1, x2), t_bus(x1, x3),qual(x1, iso9000), trust(x2), . . .

}

is such that for every trusted company xi in M , i.e., trust(xi) ∈ M , there must be t_bus(xi, xj), t_bus(xi, xk) and
trust(xj), trust(xk) with xj �= xk ; additionally, every trusted company has the iso9000 quality label. This particular
answer set has a forest shape, as can be seen from Fig. 1: we call it a forest-model. The forest in Fig. 1 consists of two
trees, one with root x1 and one, a single node tree, with root iso9000. The labels of a node x in a tree, e.g., {trust}
for x2, encode which literals are in the corresponding answer set, e.g., trust(x2) ∈ M , while the labeled edges indicate
relations between domain elements. The dashed arrows, describing relations between anonymous domain elements
x ∈ H \HP , and constants, appear to be violating the forest structure; their labels can, however, be stored in the label
of the starting node, e.g., qual(x2, iso9000) can be kept in the label of x2 as qualiso9000. Since there are only a finite
number of constants, the number of different labels in a forest is still finite. In particular, we have that the roots of
the trees in a forest-model may be arbitrarily interconnected. To be formally correct, the forest should not have any
labeled edges; we solve this by keeping the label on an edge from x to y in the label of y, and assume that binary
predicates in labels refer to edge labels from the predecessor node to the current node, e.g., for t_bus(x1, x2) we keep
t_bus in the label of x2.

Definition 10. A p ∈ upreds(P) is forest-satisfiable w.r.t. P if there exists an open answer set (H,M) and a forest
F = {tε}∪{ta | a ∈HP } where the tx :Hx ≡ dom(tx) → 2preds(P)∪{f a |a∈HP ∧f ∈bpreds(P)} are labeled trees with bounded
arity such that H = ⋃

x Hx and p ∈ tε(ε). Furthermore, z · i ∈ Hx , i > 0, iff there is some f (z, z · i) ∈ M . For y ∈ Hx ,
q ∈ upreds(P), f ∈ bpreds(P), we have that

• q(y) ∈ M iff q ∈ tx(y), and
• f (y,u) ∈ M iff (u = y · i ∧ f ∈ tx(u)) ∨ (u ∈HP ∧ f u ∈ tx(y)).

We call (H,M) a forest-model and a DLP P has the forest-model property if the following property holds: if
p ∈ upreds(P) is satisfiable w.r.t. P then p is forest-satisfiable w.r.t. P . The label of a node z ∈ Hx is L(z) = {q | q ∈
tx(z), q ∈ upreds(P)}; for nodes z and u we have that z < u if z is some prefix of u, � is defined as usual.

1 Note that adding extra rules with trust as the head predicate may change the meaning of trust, i.e., the body of the current rule is not necessarily
applied (one could apply the body of an added rule). This differs from other Knowledge Representation formalisms such as Description Logics,
where one can express modular sufficient and necessary conditions (by equivalence axioms). Such a modular expression does not seem to be
possible with (open) answer set programming.

152 S. Heymans et al. / Journal of Applied Logic 5 (2007) 144–169
Fig. 2. Formal forest-model.

Example 11. The forest-model of Example 9, drawn according to Definition 10, is then as in Fig. 2.

In effect, a forest-model is a set of trees, with arbitrary connections from elements to constants. As a consequence,
the connections between constants, i.e., the roots of the trees, may form an arbitrary graph. A particular class of
programs with this forest-model property are forest logic programs (FoLPs).

Definition 12. A FoLP is a DLP such that a rule is of one of the following types:

• free rules l ∨ not l ← for a literal l, which allow for the free addition of the literal l, if not prohibited by other
rules,

• unary rules a(s) ← β(s),
⋃

m γm(s, tm),
⋃

m δm(tm),
⋃

i �=j ti �= tj , such that, if γm �= ∅ then γ +
m �= ∅, and, in case

tm is a variable: if δm �= ∅ then γm �= ∅,
• binary rules f (s, t) ← β(s), γ (s, t), δ(t) with γ + �= ∅ if t is a variable,
• constraints ← a(s),

where i and j are within the range of m.

We write unary rules, for compactness, as

a(s) ← β(s), γm(s, tm), δm(tm), ti �= tj ,

with variables assumed to be pairwise different.
The program in Example 9 is a FoLP, while the seq-rules from Section 2.2 are not FoLP rules, which is consistent

with the undecidability of the domino simulation and the decidability of (local) FoLPs, cf. infra. Intuitively, the syn-
tactical restrictions on the rules in a FoLP are designed to ensure the forest-model property, and, to a lesser extent,
the bounded finite model property (cf. infra), while ensuring a high degree of expressiveness, e.g., to simulate expres-
sive DLs, see Section 4. E.g., q(s) ← not f (s, t),¬q(t) is not allowed, since one cannot transform an answer set to a
forest-model: assuming ¬q is free, we have that ({x, y}, {q(x),¬q(y)}) is an answer set, however, it is impossible to
make a tree out of this, since we need at least two domain elements, but we do not have a binary predicate to connect
them. A similar reason makes q(s) ← ¬q(t) impossible if t is variable. However, when t is a constant, one does not
need an explicit connection between the s-node and t -node since t is the root of its own tree, and thus not part of the
tree for s. The latter implies that q(X) ← f (X,Y),p(Y), e(a) for a constant a is allowed.

Moreover, f (X,Y) ← v(X) is not allowed, since this may impose connections between x and y without y being a
successor of x, f (X,a) ← v(X) for a constant a on the other hand is allowed. The idea of ensuring such connectedness
of models in order to have desirable properties, like decidability, is similar to the motivation behind the guarded
fragment of predicate logic [3].

We can ease the syntactical restrictions on FoLPs by allowing for more general bodies, e.g., by unfolding them,
resulting in bodies with a tree-like structure. Complicated constraints ← β can be simulated by a unary rule a(s) ← β

and a constraint ← a(s).
A unary rule r :a(s) ← β(s), γm(s, tm), δm(tm), ti �= tj is a live rule if there is a γm �= ∅ with tm a variable. A unary

predicate a is live if there is a live rule r with a in head(r) and a is not free. The intuition behind a live predicate
a is that a new individual y might need to be introduced in order to make a(x) true for an existing x. We denote

S. Heymans et al. / Journal of Applied Logic 5 (2007) 144–169 153
the set of live predicates for a program P with live(P). A degree for the liveliness of a rule r , i.e., how many new
individuals might need to be introduced to make the head true, is degree(r) = |{m | γm �= ∅ ∧ tm a variable}|. The
degree of a live predicate a in P is degree(a) = max{degree(r) | a ∈ head(r)}. E.g., if we only have a rule r :a(X) ←
f (X,Y1), g(X, c) then a is live and degree(r) = degree(a) = 1.

FoLPs indeed have the forest-model property.

Theorem 13. Forest logic programs have the forest-model property.

Proof. Take a FoLP P and p ∈ upreds(P) s.t. p is satisfiable, i.e., there exists an open answer set (H,M)

with p(u) ∈ M . Let n = ∑
a∈live(P) degree(a), i.e., the sum of the degrees of the live predicates. We will de-

fine θx : {x} · {1, . . . , n}∗ → H as functions from the full tree with branching n and root x ∈ {ε} ∪ HP if u /∈ HP

and x ∈ HP else. The labeled trees tx : dom(θx) → 2preds(P)∪{f a |a∈HP ∧f ∈bpreds(P)} are then defined by tx(z · i) =
{q | q(θx(z · i)) ∈ M} ∪ {f | f (θx(z), θx(z · i)) ∈ M} ∪ {f a | f (θx(z · i), a) ∈ M}.

Initially, we assume dom(θx) = ∅, i.e., θx is not defined anywhere. The function θx is constructed as follows:
take θx(x) = x if x �= ε and else θx(x) = u ∈ H \ HP , and assume we have already considered, as in [54], every
member of {x} · {1, . . . , n}k , as well as z · 1, . . . , z · (m − 1) for z ∈ {x} ∪ {1, . . . , n}k and z ∈ dom(θx). For every
live q ∈ tx(z), we have that q(θx(z)) ∈ M and q(θx(z)) ∈ T n, and since M is an answer set we have that there is
a q(θx(z)) ← β+(θx(z)), γ

+
m (θx(z), ym), δ+

m(ym), with the body true in M and in T n−1. If for all i either γi = ∅ or
yi ∈ HP , i.e., we do not have a live rule, then we continue with the next q ∈ tx(z), otherwise, for i, γi �= ∅ and
yi /∈ HP , if there is a zj ∈ {z · 1, . . . , z · (m − 1)} with θ(zj) = yi then θ remains undefined on z · (m + i), otherwise
θ(z · (m + i)) = yi . Note that tx(z) �= ∅, since θx is defined on z.

One can show that (
⋃

x dom(tx), {q(z) | q ∈ tx(z)} ∪ {f (z, z · i) | f ∈ tx(z · i)} ∪ {f (z, a) | f a ∈ tx(z)}) is an open
answer set of P such that F = ⋃

x{tx} is a forest satisfying the conditions from Definition 10. �
3.2. Bounded finite model property

Satisfiability checking w.r.t. the FoLPs in [31] was shown to be decidable by a reduction to two-way alternating
tree automata [54]. However, the current definition of FoLPs includes constants, which were not allowed in [31], such
that the automata reduction cannot be readily applied. Moreover,while automata provide an elegant characterization,
there are few implementations available, e.g., [32] implements a specific type, looping alternating automata, using a
translation to description logics.

An alternative approach is to identify a particular class of FoLPs, satisfying the local model property, that allow for
satisfiability checking with existing answer set solvers such as DLV [41] or SMODELS [50], since they have the bounded
finite model property. This property enables the transformation of an (infinite) answer set into a finite one, and, more
specifically, it establishes a bound on the number of domain elements that are needed for such a construction.

FoLPs with the local model property are such that they are satisfiable by forest-models where the presence of each
literal in such a model is locally motivated by the involved node, a successor of the node, and/or a constant.

Definition 14. Let P be a FoLP and for a literal l, HS(l) the domain elements in S(l), the support of l. A forest-
model (H,M) of P is locally supported if ∀l = q(x) ∈ M ∨ l = f (x, y) ∈ M · (HS(l) ⊆ {x, xi} ∪ HP) ∧
(∀f (z, a) ∈ S(l), a ∈HP · z �= xi), i.e., the support for a literal involves only the domain element x under consid-
eration, successors x · i, or constants. p ∈ upreds(P) is locally satisfiable w.r.t. P if there is a locally supported
forest-model, a local model for short, (H,M) such that p(ε) ∈ M for a root ε in H. A FoLP P has the local model
property if the following holds: if p ∈ upreds(P) is satisfiable w.r.t. P then it is locally satisfiable.

In the above definition, the extra condition, ∀f (z, a) ∈ S(l), a ∈HP ·z �= xi, makes sure that constants do not sneak
around the locality by providing support for a literal at x via xi. As we will indicate below, cutting a tree at an xi may
remove f (xi, a). If f (xi, a) were then in the support of a literal in x, that literal would end up without support in the
cut tree.

154 S. Heymans et al. / Journal of Applied Logic 5 (2007) 144–169
Fig. 3. Bounded finite model.

Example 15. Take the program from Example 9. The forest-model in Fig. 1 is a locally supported forest-model, e.g.,
a support

S
(
trust(x1)

) = {
trust(x1), t_bus(x1, x2), t_bus(x1, x3),qual(x1, iso9000)

}

such that no other domain elements than the domain element under consideration, its immediate successors or con-
stants motivate the presence of a literal.

Infinite forest-models can be turned into finite answer sets: cut every path in the forest from the moment there are
duplicate labels and copy the connections of the first node in such a duplicate pair to the second node of the pair.
Intuitively, when we reach a node that is in a state we already encountered, we proceed as that previous state, instead
of going further down the tree. This cutting is similar to the blocking technique for DL tableaux [5], but the minimality
of answer sets makes it non-trivial and only valid for FoLPs with the local model property, as we indicate below.

Example 16. Considering the forest-model in Fig. 1, we can cut everything below x2 and x3 since they have the
same label as x1. Furthermore, since t_bus(x1, x2), t_bus(x1, x3), and qual(x1, iso9000), we have that t_bus(xi, x2),
t_bus(xi, x3), and qual(xi, iso9000) for i = 2 and i = 3, resulting in the answer set depicted in Fig. 3.

Formally, a FoLP P has the bounded finite model property if the following holds: if p ∈ upreds(P) is satisfiable
w.r.t. P then there is a finite answer set (H,M) of P and a nonnegative integer k, defined as a function of P , such
that p(x) ∈ M and |H| < k. The bounded finite model property is similar to the small model property found in the
temporal logic CTL [19] where a CTL formula is satisfiable iff it is satisfiable by a model that has a number of states
at most exponential in the length of the formula.

Theorem 17. Let P be a FoLP with the local model property. Then, P has the bounded finite model property.

Proof. Assume p is satisfiable w.r.t. P . Since P has the local model property, there is a locally supported forest-
model (H,M) with p(ε) ∈ M . H is a multi-set of trees

⋃
x Hx with roots x, for x ∈ {ε} ∪ HP , where possibly ε is

some a ∈ HP . Let m be the number of different labels in the forest-model. For a path P of length at least m + 1 in a
Hx , define zP ∈ Hx as the minimal node (w.r.t. the prefix relation <) s.t. ∃y < zP ∈ y /∈HP ∧L(y) = L(zP). Denote
this unique y with z̄P . Since we have a finite number m of different labels, we must have that for every path P of
length m there are two nodes with the same label, moreover, in the worst case we only need a path of length m + 1
to make sure that z̄P is not a constant. Note that zP nor z̄P can be a constant, since constants may be introduced by
rules containing no variables in the head, which, consequently, cannot be used to motivate the presence of literals at
anonymous nodes: it might be that a rule t (a) ← introduces t in the label of some constant a, however, such a rule
cannot be used to motivate the presence of t lower in the tree. Below the root, we would not have this problem as t

there would be motivated by a rule with head t (X), which can be matched against any lower node.
Define H′

x = {z ∈ Hx | (z ∈ P ∧ |P| > m ⇒ z � zP }, i.e., cut the tree Hx at zP for every path P that has
length at least m + 1, and let H′ = ⋃

x H′
x . Define M ′ = {q(z) | z ∈ H′, q(z) ∈ M} ∪ {f (z, y) | z ∈ P ⇒ z < zP ,

f (z, y) ∈ M} ∪ {f (zP , y) | f (z̄P , y) ∈ M}.
From Theorem 13, we have that the branching of a Hx is at most

n ≡
∑

degree(a),
a∈live(P)

S. Heymans et al. / Journal of Applied Logic 5 (2007) 144–169 155
such that the number of nodes in H′
x is at most

∑m+1
i=0 ni . We have that H′ contains at most c + 1 trees H′

x , where
c ≡ |HP |, such that the cardinality of H′ is at most (c + 1)

∑m+1
i=0 ni . Note that m � 2u with u = |upreds(P)| such

that the cardinality of H′ is at most

(1)k ≡ (c + 1)

2u+1∑

i=0

ni,

where k is calculated as a function of P only.
Further note that p(ε) ∈ M ′, such that it only remains to show that (H′,M ′) is an answer set. �
The local model property is a necessary property, i.e., the described cutting technique does not work for arbitrary

FoLPs.

Example 18. Consider rules a(X) ← f (X,Y), a(Y) and a(X) ← b(X) with b and f free predicates. A forest-model
of this program is

{
a(ε), f (ε,1), a(1), f (1,11), a(11), b(11)

}
.

Since ε and 1 have the same label we cut the tree at 1. In the resulting structure {a(ε), f (ε,1), a(1), f (1,1)}, a(ε)

nor a(1) are motivated, as b(11) is no longer present. The resulting structure is thus not minimal.

FoLPs with the local model property solve this by making sure that a literal a(x) is always motivated by x itself,
successors y of x, or constants, such that, upon cutting, no motivating literals for literals higher up in the tree are cut
away.

Satisfiability checking w.r.t. FoLPs with the local model property can then be done by standard answer set solvers.
Intuitively, we introduce a large enough number of constants, such that every bounded finite model, that is guaranteed
to exist by the local model property, can be mapped to these constants.

Theorem 19. Let P be a FoLP with the local model property. p ∈ upreds(P) is satisfiable w.r.t. P iff there
is a 0 � h � k and an answer set M of ψh(P) containing a p-atom, where k is as in (1) and ψh(P) ≡
P ∪ {cte(xi) ←| 1 � i � h}.

Proof. For the “only if” direction, assume p is satisfiable w.r.t. P , such that, by Theorem 17, there is an open an-
swer set (H′,M ′) of P , with |H′| � k. Define h ≡ |H′| − |cts(P)|, i.e., the number of anonymous elements in H′.
Define a bijection F :H′ → Hψh(P) such that F(a) = a for a ∈ HP . Define M ≡ {a(F (x)) | a(x) ∈ M ′} ∪ {f (F (x),

F (y)) | f (x, y) ∈ M ′} ∪ {cte(xi) | 1 � i � h}. Intuitively, we identify the forest H′ with the constants in ψh(P). One
can show that M is an answer set of ψh(P).

For the “if” direction, assume there exists an answer set M of ψh(P) containing a p-atom. Define H′ ≡ Hψh(P),
one can show that (H′,M ′ ≡ M \ {cte(xi) | 1 � i � h}) is an open answer set of P . �

Note that standard answer set solvers such as DLV or SMODELS do not allow negation as failure in the head, but
this can be solved with the transformation of such programs to programs without not in the head [39].

The local model property is a semantic property which makes Theorem 19 non-trivial to use. However, a particular
syntactic class of FoLPs that have the local model property are local FoLPs.

Definition 20. A local FoLP is a FoLP where rules

a(s) ← α(s), γm(s, tm),βm(tm), ti �= tj

and

f (s, t) ← α(s), γ (s, t), β(t)

are such that for every b ∈ β+
(m), either b(t(m)) ∨ not b(t(m)) ←∈ P or for all rules r :b(s) ← body(r), body(r)+ = ∅.

156 S. Heymans et al. / Journal of Applied Logic 5 (2007) 144–169
Example 21. The program from Example 9 is a local FoLP while the program from Example 18 is not. Note that the
latter example does not have the local model property either; in Example 23, we give a non-local program that does
have the local model property.

Intuitively, local FoLPs can motivate an a(s) (f (s, t)) in an answer set, by descending at most one level in the
tree, where one can locally prove a(s) (f (s, t)), i.e., without the need to go further down the tree. Of course, in the
level below s one may need to check more literals which could amount to going further down the tree, but whilst
doing this one does not need to remember which literals need to be proved above in the tree. In a way a local FoLP
has limited memory: it only remembers the previous (predecessor) state. A similar intuition applies to algorithms
that check satisfiability of certain modal logics. E.g., [27, Theorem 6.11] defines a PSPACE algorithm for checking
satisfiability of the modal logic Kn, based on a marking that assigns satisfiable to a state depending solely on the label
of that state and the marking of the successors. Such an algorithm makes the decision to mark a state satisfiable in a
local way. Analogously, predicates in the label of a node in a forest-model are motivated by looking at the label of the
node and labels of the successor nodes. Note that the algorithm in [27] is an extension for Kn (a modal logic with n

agents) of the modal logic K (for one agent) in [40].

Theorem 22. Every forest-model of a local FoLP is locally supported, and, as a consequence, local FoLPs have the
local model property.

There are FoLPs with the local model property that are not local FoLPs, making the syntactical restriction less
expressive than the semantical characterization.

Example 23. Take the FoLP

a(X) ← f (X,Y), b(Y)

a(X) ← c(X)

b(X) ← c(X)

← b(X)

with f and c free. This program is not local as b in the first rule does not satisfy the necessary conditions. However,
every predicate is satisfiable by a locally supported forest-model such that the program has the local model property.
Intuitively, the first rule, which is problematic for syntactical locality, will never be applicable in an open answer
set since the constraint ← b(X) prohibits this. The example suggests that finding a syntactical characterization that
corresponds to the semantical characterization (local iff local model property) is not trivial: the local supportedness
of the forest-model is guaranteed by non-applicability of certain rules, which seems hard to enforce syntactically in
general.

3.3. Complexity

Let P be a FoLP. We verify the complexity of checking whether there exists an answer set M of ψh(P) for some
0 � h � k where k and ψh(P) are as in Theorem 19. We distinguish between two cases:

• If FoLP rules have a degree bounded by m, independent of a particular FoLP, then the size of ground(ψh(P))

is polynomial in the size of ψh(P), since every rule in ψh(P) introduces at most O(|Hψh(P)|m+1) rules in
ground(ψh(P)). Indeed, each FoLP rule then contains at most m + 1 variables, each of which can be instan-
tiated with a constant from ψh(P). Since checking whether there exists an answer set M of ψh(P) is in NP in the
size of ground(ψh(P)) [7,14], we have that checking whether there exists an answer set M of ψh(P) is in NP in
the size of ψh(P) as well.

S. Heymans et al. / Journal of Applied Logic 5 (2007) 144–169 157
Fig. 4. Forest-model.

• If the degree is not bounded, we use a result from [16] to state that checking whether M is an answer of ψh(P)

is in ΣP
2 w.r.t. the size of ψh(P).2 Indeed, the arities of predicates in ψh(P) are bounded by 2 since FoLPs allow

only for unary and binary predicates.

Thus, for a fixed h, checking whether ψh(P) has an answer set is in NP for a FoLP with bounded degree and in ΣP
2

in general.
Satisfiability checking of a predicate w.r.t. P can then be done by starting with h = 0 and checking whether ψh(P)

has an answer set containing a p-atom. If this is the case, we are done (by Theorem 19), otherwise, we repeat the
check for h = 1, and so on. If finally h = k has been checked, i.e., ψh(P) had no answer sets containing a p-atom,
one can conclude, by Theorem 19, that the predicate is not satisfiable. This procedure thus involves at most k + 1 calls
to an NP oracle for FoLPs with bounded degree or to an ΣP

2 oracle in general.
We have that

k = (c + 1)

2u+1∑

i=0

ni = (c + 1)
(1 − n2u+2)

(1 − n)
,

with u = |upreds(P)|, c = |cts(P)|, and n the rank of P such that k is double exponential in the size of P and the
above procedure to check satisfiability runs in 2-EXPTIMENP for FoLPs with bounded degree and the local model
property or in 2-EXPTIMEΣP

2 for arbitrary FoLPs with the local model property.

Theorem 24. Let P be a FoLP with the local model property. Satisfiability checking w.r.t. P is in 2-EXPTIMEΣP
2 for a

non-bounded degree of FoLP rules or in 2-EXPTIMENP otherwise.

3.4. Extended forest logic programs

Consider a FoLP defining when one cheats one’s spouse, i.e., if one is married to someone that is different than the
person one is dating. We have a specialized rule saying when one is cheating one’s spouse with the spouse’s friend
Jane. Furthermore, some justice is introduced by a constraint ensuring that cheaters date cheaters.

cheats(X) ← marr(X,Y1),dates(X,Y2), Y1 �= Y2

cheats_ j (X) ← marr(X,Y), friend(Y, jane),dates(X, jane), Y �= jane

← cheats(X),dates(X,Y),not marr(X,Y),not cheats(Y)

with marr, friend and dates free predicates. An (infinite) answer set of this program that satisfies cheats_ j is depicted
in Fig. 4. One sees that x cheats his spouse with Jane since x dates Jane but is married to x1. Furthermore, by the
constraint, we must have that Jane is also a cheater, and thus, by minimality of answer sets, we must have that Jane
is married to some jane1 and dates jane2, who in turn must be cheating, resulting in an infinite answer set. In many

2 Recall that ΣP = NPNP.
2

158 S. Heymans et al. / Journal of Applied Logic 5 (2007) 144–169
cases, there is interesting knowledge that cannot be captured within the rather strict tree format of FoLP rules. For
example, in addition, we may have a rule representing that if Leo is married to Jane, Jane dates Felix, and Leo himself
is not cheating, then Leo dislikes Felix: dislikes(leo, felix) ← marr(leo, jane),dates(jane, felix),not cheats(leo).
This ground rule does not have a tree structure, but relates the three constants in an arbitrary graph-like manner. We
extend FoLPs by allowing for a component with arbitrary DLP rules that may only be grounded with the combined
program’s constants.

Definition 25. An extended forest logic program (EFoLP) P is a pair (Q,R) where Q is a FoLP and R is a finite DLP.
We denote Q with clp(P) and R with e(P). An EFoLP answer set of (Q,R) is an open answer set of Q ∪ RH(Q∪R)

.
Satisfiability checking and query answering w.r.t. (Q,R) are modified accordingly.

To avoid confusion with EFoLP answer sets and open answer sets, we assume an EFoLP P is a FoLP Q extended
with a ground DLP R, i.e., P = Q ∪ R, under an open answer set semantics. It is easy to see that the EFoLP answer
set semantics of an EFoLP can be reduced to the open answer set semantics of a FoLP with an arbitrary ground part.

Note that e(P) can be full-fledged DLP, i.e., with negation as failure. Moreover, predicates in e(P) may be defined
in the FoLP clp(P), as is the case for marr, dates and cheats. Vice versa, we may have predicates appearing in the
FoLP part that are defined in the ground rule part, e.g., dislikes could appear in the FoLP part as a dislikes(X,Y) literal.

EFoLPs still have the forest-model property, since, intuitively, graph-like connections between constants are al-
lowed in a forest, which is all the ground part e(P) of an EFoLP P can ever introduce. Proofs in this subsection are
adaptations from their FoLP counterparts and have been omitted.

Theorem 26. Extended forest logic programs have the forest-model property.

The forest-model of the cheats example is depicted in Fig. 5. The cutting of infinite answer sets to finite ones, as
defined in Section 3.2, cannot be applied to arbitrary EFoLPs. As in the FoLP case, we need a local model property.
Unfortunately, the local model property as defined for FoLPs will not do. Take, for example, a rule

doesnt_care(felix) ← marr(leo, jane),dates(jane, felix), cheats(leo)

where Felix does not care about dating the married Jane if her husband Leo is cheating as well. Together with
the cheats rule from the cheating example, one has that doesnt_care(felix) is in an answer set if marr(leo, jane),
dates(jane, felix), cheats(leo), marr(leo, leo1), and dates(leo, leo2) for successors leo1 and leo2 of leo are in the an-
swer set. Thus, although the cheats rule in itself does not violate the local model property, adding a ground rule does
so, since supports may also involve successors of constants whereas the local model property definition for FoLPs
allows only the constants themselves in the support.

Although the local model property for FoLPs is not suitable, it can be safely relaxed by allowing also successors of
constants in the support. Indeed, cutting of forest-models never removes any successors of constants and, moreover, a

Fig. 5. Forest-model of the EFoLP.

S. Heymans et al. / Journal of Applied Logic 5 (2007) 144–169 159
successor of a constant is never considered as a candidate for the second node in a duplicate pair since, by definition,
the root in a constant tree is not taken into account as a candidate for the first node in a duplicate pair. Thus the
successors of constants remain unmodified in the cut forest.

Definition 27. A forest-model (H,M) of an EFoLP P is locally supported if ∀l = q(x) ∈ M ∨ l = f (x, y) ∈ M ·
(HS(l) ⊆ {x, xi} ∪ {a, ai | a ∈ HP })∧ (∀f (z, a) ∈ S(l), a ∈ HP · z �= xi), p ∈ upreds(P) is locally satisfiable w.r.t. P

if there is a locally supported forest-model, a local model for short, (H,M) such that p(ε) ∈ M for a root ε in H. An
EFoLP P has the local model property if the following holds: if p ∈ upreds(P) is satisfiable w.r.t. P then it is locally
satisfiable.

EFoLPs with the local model property then have the desired bounded finite model property.

Theorem 28. Let P be an EFoLP with the local model property. Then, P has the bounded finite model property.

Thanks to this property we can reduce reasoning with EFoLPs to normal answer set programming by introducing
a sufficiently large bound.

Theorem 29. Let P be an EFoLP with the local model property. p ∈ upreds(P) is satisfiable w.r.t. P iff there is a
0 � h � k and an answer set M of ψh(P) containing a p-atom, where k and ψh(P) are as in Theorem 19.

The other direction is trivial: there is a normal answer set M of a program P containing a p(a) ∈ HP iff p is
satisfiable w.r.t. to the EFoLP (∅,P). Indeed, by definition of EFoLPs, the second component in the pair has a normal
answer set semantics. By [7,14], the normal answer set semantics for DLPs is NEXPTIME-complete. Furthermore,
(∅,P) has the local model property such that we have the following lower complexity bound.

Theorem 30. Let P be an EFoLP with the local model property. Satisfiability checking w.r.t. P is NEXPTIME-hard.

A lower EXPTIME bound for reasoning with FoLPs will be established in Section 4. Similar to the complexity
upper bound for FoLPs with the local model property, one can deduce the following upper bounds for EFoLPs with
the local model property (where extra complexity is due to the unbounded grounding of the arbitrary rule part).

Theorem 31. Let P be an EFoLP with the local model property. Satisfiability checking w.r.t. P is in 2-EXPTIMENEXPTIME.

As was the case for FoLPs, the local model property for EFoLPs is a semantical characterization, which makes
it non-trivial to recognize EFoLPs satisfying this property. We identify a class of EFoLPs, based on their syntactic
structure, that have the local model property.

Definition 32. A local EFoLP P is an EFoLP where clp(P) is a local FoLP.

Local EFoLPs have the local model property, i.e., the arbitrary rules have no influence on the locality.

Theorem 33. Local EFoLPs have the local model property.

4. Nonmonotonic ontological and rule-based reasoning with extended forest logic programs

In Section 4.1, we simulate reasoning in an expressive DL with FoLP; Section 4.2 shows that the extension of this
DL with DL-safe rules can be simulated by EFoLP, and discusses some of the advantages of EFoLPs for representing
and reasoning with conceptual and rule-based knowledge.

160 S. Heymans et al. / Journal of Applied Logic 5 (2007) 144–169
Table 1
Syntax and semantics ALCHOQ(,
)

Concept names AI ⊆ ΔI

Role names PI ⊆ ΔI × ΔI

Individuals {o}I = {oI } ⊆ ΔI

Conjunction of concepts (D
 E)I = DI ∩ EI

Disjunction of concepts (D 	 E)I = DI ∪ EI

Conjunction of roles (R
 S)I = RI ∩ SI

Disjunction of roles (R 	 S)I = RI ∪ SI

Existential restriction (∃R.D)I = {x|∃y : (x, y) ∈ RI ∧ y ∈ DI }
Universal restriction (∀R.D)I = {x|∀y : (x, y) ∈ RI ⇒ y ∈ DI }
Qualified number restriction (� n R.D)I = {x|#{y|(x, y) ∈ RI ∧ y ∈ DI } � n}

(� n R.D)I = {x|#{y|(x, y) ∈ RI ∧ y ∈ DI } � n}

4.1. Ontological reasoning with FoLPs

Description logics (DLs) [5] play an important role in the deployment of the Semantic Web, as they provide the
formal semantics of (part of) ontology languages such as OWL [9]. Using concept and role names as basic building
blocks, terminological and role axioms in such DLs define subset relations between complex concept and role expres-
sions respectively. The semantics of DLs is given by interpretations I = (ΔI , ·I) where ΔI is a non-empty domain
and ·I is an interpretation function.

ALCHOQ(,
) is a particular DL with syntax and semantics as in Table 1; concept names A are the base concept
expressions, P is a role name, establishing the base role expression, and o is an individual. D and E are arbitrary
concept expressions, and R and S are arbitrary role expressions. Individuals are interpreted as elements in ΔI , concept
expressions as subsets of ΔI and role expressions as binary relations on ΔI . DLs are named according to their
constructs: AL is the basic DL [49], and ALCHOQ(,
) adds negation of concept expressions (C), role hierarchies
(H), individuals (or nominals) (O), qualified number restrictions (Q), and conjunction (
) and disjunction () of
roles.

The unique name assumption—if o1 �= o2 then oI1 �= oI2 —ensures that different individuals are interpreted as dif-
ferent domain elements. Note that OWL does not have the unique name assumption [51], and thus different individuals
can point to the same resource. However, the open answer set semantics gives an Herbrand interpretation to constants,
i.e., constants are interpreted as themselves, and for consistency we assume that also DL nominals are interpreted this
way. Thus, from a Semantic Web point of view, we assume all individuals are URI’s that point to a unique resource.

For concept expressions D and E, terminological axioms D � E are satisfied by an interpretation I if DI ⊆ EI .
Role axioms R � S are interpreted similarly. An axiom X ≡ Y stands for X � Y and Y � X. A knowledge base Σ is
a set of terminological and role axioms; I is a model of Σ if I satisfies every axiom in Σ . A concept expression C is
satisfiable w.r.t. Σ if there exists a model I of Σ such that CI �= ∅.

As an example, the human resources department has an ontology specifying the company’s structure: (a) Personnel
consists of Management, Workers and john, (b) john is the boss of some manager, and (c) managers only take
orders from other managers and they are the boss of at least three Workers. This corresponds to the following
ALCHOQ(,
) knowledge base Σ :

Personnel ≡ Manag 	 Workers 	 {john}
{john} � ∃boss.Manag

Manag � (∀t_orders.Manag)
 (� 3 boss.Workers)

A model of this Σ is I = ({j,w1,w2,w3,m}, ·I), with ·I defined by WorkersI = {w1,w2,w3}, ManagI = {m},
{john}I = {j}, PersonnelI = {j,w1,w2,w3,m}, bossI = {(j,m), (m,w1), (m,w2), (m,w3)}, t_ordersI = ∅.

We can rewrite Σ as an equivalent FoLP P . The axioms in Σ correspond to the constraints

← Personnel(X),not (Manag 	 Workers 	 {john})(X)

S. Heymans et al. / Journal of Applied Logic 5 (2007) 144–169 161
← (Manag 	 Workers 	 {john})(X),not Personnel(X)

← {john}(X),not (∃boss.Manag)(X)

← Manag(X),not ((∀t_orders.Manag)
 (� 3 boss.Workers))(X)

in P , where the concept expressions are used as predicates, and indicating, in case of the first constraint, that if the
answer set contains some Personnel(x) then it must also contain (Manag 	 Workers 	 {john})(x). Those constraints
are the kernel of the translation; we still need, however, to simulate the DL semantics by rules that define the different
DL constructs.

The predicate (Manag 	 Workers 	 {john}) is defined by rules

(Manag 	 Workers 	 {john})(X) ← Manag(X)

(Manag 	 Workers 	 {john})(X) ← Workers(X)

(Manag 	 Workers 	 {john})(X) ← {john}(X)

and thus, by minimality of answer sets, if (Manag 	 Workers 	 {john})(x), there must either be a Manag(x), a
Workers(x), or a {john}(x). The other way around, if one has a Manag(x), a Workers(x), or a {john}(x), one must
have (Manag 	 Workers 	 {john})(x). This behavior is exactly what is required by the 	-construct.

The predicate (∃boss.Manag) is defined by

(∃boss.Manag)(X)) ← boss(X,Y),Manag(Y)

such that, if the literal (∃boss.Manag)(x) is in the answer set, there is a y such that boss(x, y) and Manag(y) are in
the answer set and vice versa.

The predicate ((∀t_orders.Manag)
 (� 3 boss.Workers)) is defined by
(
(∀t_orders.Manag)
 (� 3 boss.Workers)

)
(X) ← (∀t_orders.Manag)(X), (� 3 boss.Workers)(X)

and the body predicates by the rules

(∀t_orders.Manag)(X) ← not (∃t_orders.(¬Manag))(X)

(� 3 boss.Workers)(X) ← boss(X,Y1),boss(X,Y2),boss(X,Y3),

Workers(Y1),Workers(Y2),Workers(Y3),

Y1 �= Y2, Y2 �= Y3, Y1 �= Y3

and

(∃t_orders.(¬Manag))(X) ← t_orders(X,Y), (¬Manag)(Y)

(¬Manag)(X) ← not Manag(X)

Finally, we need to introduce free rules for all concept and role names. Intuitively, concept names and roles names are
types and thus contain some instances or not.

Workers(X) ∨ not Workers(X) ←
Personnel(X) ∨ not Personnel(X) ←

Manag(X) ∨ not Manag(X) ←
boss(X,Y) ∨ not boss(X,Y) ←

t_orders(X,Y) ∨ not t_orders(X,Y) ←
The individual {john} is taken care of by introducing a constant john in the program with the rule {john}(john) ← .
The only possible value of X in a {john}(X) is then john.

The DL model I corresponds to the open answer set (H,M) with H = (ΔI \ {j}) ∪ {john} and M = {C(x) |
C ∈ upreds(P), x ∈ CI} ∪ {R(x, y) | R ∈ bpreds(P), (x, y) ∈ RI}, with a slight abuse of notation, i.e., using C and
R as predicates and DL expressions. Formally, we define the closure clos(C,Σ) of a concept expression C and a
knowledge base Σ as the smallest set satisfying the following conditions:

162 S. Heymans et al. / Journal of Applied Logic 5 (2007) 144–169
Table 2
FoLP translation Φ(C,Σ)

(¬D)(X) ← not D(X) (D
 E)(X) ← D(X),E(X)

(D 	 E)(X) ← D(X) (D 	 E)(X) ← E(X)

(∃R.D)(X) ← R(X,Y),D(Y) (∀R.D)(X) ← not ∃R.¬D(X)

(R 	 S)(X,Y) ← R(X,Y) (R
 S)(X,Y) ← R(X,Y), S(X,Y)

(R 	 S)(X,Y) ← S(X,Y) (� n R.D)(X) ← not (� n + 1 R.D)(X)

(� n R.D)(X) ← R(X,Y1), . . . ,R(X,Yn),D(Y1), . . . ,D(Yn),Y1 �= Y2, . . .

• for every concept (role) expression D (R) in {C} ∪ Σ , we have that D(R) ∈ clos(C,Σ),
• for every D in clos(C,Σ), we distinguish the following cases:

D = ¬D1 ⇒ D1 ∈ clos(C,Σ)

D = D1 	 D2 ⇒ {D1,D2} ⊆ clos(C,Σ)

D = D1
 D2 ⇒ {D1,D2} ⊆ clos(C,Σ)

D = ∃R.D1 ⇒ {R,D1} ⊆ clos(C,Σ)

D = ∀R.D1 ⇒ {D1,∃R.¬D1} ⊆ clos(C,Σ)

D = (� n Q.D1) ⇒ {(� n + 1 Q.D1)} ⊆ clos(C,Σ)

D = (� n Q.D1) ⇒ {Q,D1} ⊆ clos(C,Σ)

• for R 	 S ∈ clos(C,Σ), {R,S} ⊆ clos(C,Σ),
• for R
 S ∈ clos(C,Σ), {R,S} ⊆ clos(C,Σ).

The FoLP Φ(C,Σ) that simulates satisfiability checking of C w.r.t. Σ is then constructed by introducing for concept
names A, role names P , and individuals o in clos(C,Σ), rules A(X) ∨ not A(X) ←, P(X,Y) ∨ not P(X,Y) ←, and
facts {o}(o) ←. For every other construct B ∈ clos(C,Σ), we introduce, depending on the particular construct, a rule
with B in the head as in Table 2.

This completes the simulation of ALCHOQ(,
) using FoLP.

Theorem 34. An ALCHOQ(,
) concept expression C is satisfiable w.r.t. a knowledge base Σ iff C is satisfiable
w.r.t. Φ(C,Σ).

Proof sketch. For the “only if” direction, take C satisfiable w.r.t. Σ , i.e., there exists a model I = (ΔI , ·I) with
CI �= ∅. We rename the element oI from ΔI by o, which is possible by the unique name assumption. We then con-
struct the answer set (H,M) with H = ΔI and M = {C(x) | x ∈ CI ,C ∈ clos(C,Σ)} ∪ {R(x, y) | (x, y) ∈ RI ,R ∈
clos(C,Σ)}. One can show that (H,M) is an answer set of Φ(C,Σ).

For the “if” direction, we have an open answer set (H,M) that satisfies C, i.e., C(x) ∈ M for some x ∈ H. Define an
interpretation (ΔI , ·I), with ΔI = H, and AI = {y | A(y) ∈ M}, for concept names A, P I = {(y, z) | P(y, z) ∈ M},
for role names P , and oI = o, for o ∈ HΦ(C,Σ). I is defined on concept expressions and role expressions as in Table 1,
and we can show that I is a model of Σ such that CI �= ∅. �

Note that, in general, the resulting FoLP Φ(C,Σ) is not local: (∃R.(A
 B)) is translated as rules (∃R.(A

B))(X) ← R(X,Y), (A
 B)(Y) and (A
 B)(X) ← A(X),B(X), such that there is a positive (A
 B)-atom that
is not free in a body and there is a rule with (A
 B) in the head and a body that has a non-empty positive part.
Φ(C,Σ) has, however, the convenient property that it is acyclic. It is sufficient to note that the body of a rule in
Φ(C,Σ) is structurally “smaller” than the head, e.g., (A
 B) is smaller than (∃R.(A
 B)). This permits us to
replace the rule with (∃R.(A
 B)) in the head by the two rules (∃R.(A
 B))(X) ← R(X,Y),not (A
 B)′(Y);
(A
 B)′(X) ← not (A
 B)(X): we negate (A
 B)(Y) twice. The resulting FoLP is now local and satisfiability
checking w.r.t. Φ(C,Σ) can be reduced to this replacement, as a consequence of Theorem 6.

S. Heymans et al. / Journal of Applied Logic 5 (2007) 144–169 163
From the reduction of reasoning with ALCHOQ(,
) to reasoning with local FoLPs, we can deduce a lower
complexity bound for reasoning with the latter. Indeed, since satisfiability checking of the sublanguage AL w.r.t. a set
of axioms is EXPTIME-complete [5], we have the following theorem.

Theorem 35. Let P be a FoLP with the local model property. Satisfiability checking w.r.t. P is EXPTIME-hard.

The ALCHOQ(,
) simulation shows the feasibility of Semantic Web reasoning with FoLPs, as ALCHOQ(,
)

is an expressive DL related to the OWL DL ontology language. Formally, OWL DL corresponds to the DL
SHOIN (D) [37], which differs from ALCHOQ(,
) in that SHOIN (D) additionally allows for inverted roles
(I), data types (D) and transitivity of roles (which distinguishes S from ALC). However, SHOIN (D), and thus
OWL DL, does not support qualified number restrictions, i.e., it only allows for unqualified number restrictions such
as (� n R) instead of qualified ones (� n R.D)(X). Furthermore, ALCHOQ(,
) adds the role constructs 	 and
.

Putting this in perspective, the loss of transitivity in ALCHOQ(,
) weighs heavier than having qualified num-
ber restrictions and role constructors. Indeed, there is actually no reason why OWL DL should not include qualified
number restrictions (corresponding to the DL SHOIQ(D)). We needed to omit transitivity in order to be able to
translate to EFoLPs with the bounded finite model property. OWL DL does not have this limitation, i.e., there are
concept expressions that have only infinite models. Note that adding transitivity to ALCHOQ(,
) without restrict-
ing the allowed roles in qualified number restrictions (they cannot be transitive nor can they have transitive subroles),
one immediately has undecidability of reasoning [35]. Further note that OWL DL does not make the unique name
assumption, while EFoLPs do. Since the unique name assumption can be asserted in OWL DL, EFoLPs are strictly
weaker in this respect.

4.2. Combined ontological and rule-based reasoning with EFoLPs

The ontology layer for the Semantic Web is becoming a reality with languages such as OWL DL, and the rule layer,
which provides additional inferencing capabilities on top of DL reasoning, is gaining interest in the Semantic Web
community. For example, in [45], integrated reasoning of DLs with DL-safe rules was introduced. DL-safe rules are
unrestricted Horn clauses where only the communication between the DL knowledge base and the rules is restricted;
they enable one to express knowledge inexpressible with DLs alone, e.g., triangular knowledge such as [45]

BadChild(X) ← GrChild(X),parent(X,Y),parent(Z,Y),hates(X,Z)

saying that a grandchild that hates its sibling is a bad child.
We introduce DL-safe rules as in [45]. For a DL knowledge base Σ let NC and NR be the concept and role names

in Σ and NP is a set of predicate symbols such that NC ∪ NR ⊆ NP . A DL-atom is an atom of the form A(s) or
R(s, t) for A ∈ NC and R ∈ NR . A DL-safe rule is a rule of the form a ← b1, . . . , bn where a, bi are atoms and every
variable in the rule appears in a non-DL-atom in the rule body. A DL-safe program is a finite set of DL-safe rules. Let
cts(Σ,P) be the set of nominals in Σ and constants in P .

The semantics of the combined (Σ,P) for a knowledge base Σ and a DL-safe program P is given by interpreting
Σ as a first-order theory π(Σ), see, e.g., [12], every DL-safe rule a ← b1, . . . , bn as the clause a∨¬b1 ∨· · ·∨¬bn, and
then considering the first-order interpretation of π(Σ)∪P . The main reasoning procedure in [45] is query answering,
i.e., checking whether a ground atom α is true in every first-order model of π(Σ) ∪ P , denoted as (Σ,P) |= α.

We provide an alternative semantics based on DL interpretations as in [33] rather than on first-order interpretations.
However, both semantics are compatible as indicated in [45]. For (Σ,P) and an interpretation I = (ΔI , ·I) of Σ

we extend ·I for NP and HP such that for unary predicates p ∈ NP , pI ⊆ ΔI , for binary predicates f ∈ NP ,
f I ⊆ ΔI × ΔI , and oI ∈ ΔI for o ∈ HP ; such an extended interpretation is, by definition, an interpretation of
(Σ,P). Furthermore, we impose the unique name assumption such that if o1 �= o2, then oI1 �= oI2 , for elements o ∈
cts(Σ,P). A binding for an interpretation I of (Σ,P) is a function σ : vars(P) ∪ cts(Σ,P) → ΔI with σ(o) = oI

for o ∈ cts(Σ,P); it maps constants/nominals and variables to domain elements. A unary atom a(s) is then true w.r.t.
σ and I if σ(s) ∈ aI , and a binary atom f (s, t) is true w.r.t. σ and I if (σ (s), σ (t)) ∈ f I . A rule r is satisfied by I iff
for every binding σ w.r.t. I that makes the atoms in the body true, the head is also true. An interpretation of (Σ,P) is
a model if it is a model of Σ and it satisfies every rule in P . Query answering (Σ,P) |= α amounts then to checking
whether for every model I of (Σ,P), the ground atom α is true in I .

164 S. Heymans et al. / Journal of Applied Logic 5 (2007) 144–169
In Section 4.1, we reduced ALCHOQ(,
) satisfiability checking to FoLP satisfiability checking. We can reduce
query answering w.r.t. ALCHOQ(,
) knowledge bases extended with DL-safe rules to query answering w.r.t.
EFoLPs. We first provide some intuition with an example. Take a knowledge base Σ

∃manuf _in.Co
 ∃has_ price � Product,

expressing that if something is manufactured in some country and it has a price then it is a product (∃has_ price is
shorthand for ∃has_ price.�, where �I ≡ ΔI for every interpretation I). We have some facts in a DL-safe program
P about the world we are considering:

is_ product_of (p, c1) ← manuf _in(p, japan) ←
is_ product_of (p, c2) ← Co(japan) ←

saying that p is a product of company c1 and company c2, that p is manufactured in Japan and that Japan is a country.
Those facts are trivially DL-safe since they do not contain variables. Additionally, we have a DL-safe rule in P

saying that if a product is a product of 2 companies, those companies are competitors,3 r1 : competitors(C1,C2) ←
Product(P), is_ product_of (P,C1), is_ product_of (P,C2). Note that this is indeed a DL-safe rule since every variable
occurs in a is_ product_of atom, which is a non-DL-atom in the body of the rule. The only DL-atom in the rule
is Product(P). A model I of (Σ,P) is I = ({japan, c1, c2,p, x}, ·I)4 with ·I : CoI = {japan}, ProductI = {p},
manuf _inI = {(p, japan)}, has_ priceI = {(p, x)}, is_ product_of I = {(p, c1), (p, c2)}, competitorsI = {(c1, c2)}.

We translate (Σ,P) now to an EFoLP: the DL axiom is translated to the constraint
← (∃manuf _in.Co
 ∃has_ price)(X),not Product(X), where we introduce predicates corresponding to the concept
expressions. Furthermore, we define these predicates by the rules

(∃manuf _in.Co
 ∃has_ price)(X) ← (∃manuf _in.Co)(X), (∃has_ price)(X)

(∃manuf _in.Co)(X) ← manuf _in(X,Y),Co(Y)

(∃has_ price)(X) ← has_ price(X,Y)

Furthermore, we introduce the concept and role names by means of free rules, indicating that a domain element (or a
pair of domain elements) is of a certain type or not.

Product(X) ∨ not Product(X) ←
Co(X) ∨ not Co(X) ←

manuf _in(X,Y) ∨ not manuf _in(X,Y) ←
has_ price(X,Y) ∨ not has_ price(X,Y) ←

This concludes the FoLP part of the translation of (Σ,P). Formally, we define Φ(Σ) as the Φ(C,Σ) from Section 4.1
where C is some arbitrary concept from Σ . The arbitrary DLP part of the EFoLP includes the DL-safe rules.

Since DL-safe rules have a first-order interpretation it may be that

(c1, c2) ∈ competitorsI

for a model I of (Σ,P) without any justification in I: the body of r1 in P does not need to be satisfied in order to
have (c1, c2) ∈ competitorsI . The answer set semantics, however, only deduces competitors(c1, c2) in an answer set
if the body of r1 is satisfied in that answer set, since otherwise the answer set would not be minimal (one could omit
competitors(c1, c2) and still have an answer set).

To solve this, we introduce for each head a of a DL-safe rule, a rule a ∨ not a ←, competitor(C1,C2) ∨
not competitor(C1,C2) ←, such that one has always a motivation for competitor(C1,C2), mimicking the first-order
semantics.

3 Actually, to correspond entirely with the desired semantics, we would need to indicate that C1 and C2 are different companies. This seems to
be not possible with the DL-safe rules in [45], however, it is with EFoLPs using �=.

4 We take oI = o, o ∈ cts(Σ,P), for ease of notation.

S. Heymans et al. / Journal of Applied Logic 5 (2007) 144–169 165
Formally, we define χ(P) for a DL-safe program P as the DLP P with free rules

head(r) ∨ not head(r) ←,

for each r ∈ P .

Theorem 36. For an ALCHOQ(,
) knowledge base Σ and a DL-safe program P , we have (Σ,P) |= α iff
(Φ(Σ),χ(P)) |= α.

In [45] the DL SHOIN (D) is considered in the definition of DL-safe rules instead of ALCHOQ(,
). Decid-
ability of query answering is shown for the DL SHOIN (i.e., without data types).5 Using EFoLPs instead of a DL
knowledge base with DL-safe rules on top has the further advantage of nonmonotonicity by means of negation as
failure in both the FoLP part and the DLP part, whereas both DLs and DL-safe rules are monotonic (DL-safe rules are
Horn clauses and thus do not allow for negation as failure).

Example 37. Add a rule to the company example ontology, expressing that if John is not married, he works late at the
office:

works_late(john) ← not married(john)

Adding such a rule to our knowledge will have the effect that every open answer set includes the literal
works_late(john), i.e., John always works late. However, consecutively adding the newly acquired knowledge that
John is actually married with a rule

married(john) ←
will make sure that John never works late in answers to our current knowledge. This type of nonmonotonicity is one
of the main strengths of logic programming paradigms for knowledge representation and is thus useful in Semantic
Web reasoning as well; it was, e.g., identified in [13] as one of the requirements on a logic for reasoning on the Web.
DLs lack this feature and are monotonic, e.g., one could try to translate the above rule as the following DL axiom.

¬Married
 {john} � Works_late
 {john}
However, it is clear that interpretations satisfying this axiom have a choice in making John work later or not, such that
adding that John is married would not invalidate any previously concluded facts.

Besides the previously illustrated nonmonotonicity, FoLPs are more articulate than DLs in other aspects.

Example 38. E.g., representing the knowledge that a team must at least6 consist of a technical expert, a secretary, and
a team leader, where the leader and the technical expert are not the same, can be done by

team(X) ← member(X,Y1), tech(Y1),member(X,Y2), secret(Y2), leader(X,Y3), Y1 �= Y3

Note that in order for the rule to correspond to our informal definition of a team we assume no other rules with a head
predicate team exist, i.e., we implicitly use the minimality of open answer sets. This is clearly not ideal. However, using
only satisfaction of rules to conclude that, if x is team, then it should satisfy the listed properties, seems impossible to
express with (open) answer set programming. Compare the rule with, e.g., the rule for number restrictions in Table 2.
In number restrictions (� n R.C) one indicates that there are more than n R-successors that are of type C, while
FoLPs can constrain different successor relationships (member and leader) instead of just one (R). Moreover, FoLPs
can be very specific about which successors should be different and which ones may be equal (Y1 may be equal to Y2,
but should be different from Y3), or to which different types the successors belong (tech and secret) instead of one
type (C).

5 Note that the proof of this decidability does not use a reduction to disjunctive Datalog; in order to use such a reduction [45] restricts itself to
SHIQ(D).

6 Note that other entities than team could have these properties, e.g., a club—in the example clubs and teams would then be the same.

166 S. Heymans et al. / Journal of Applied Logic 5 (2007) 144–169
Representing such generalized number restrictions using DLs would be significantly harder while arguably less
succinct.

Finally, consider some EFoLP (Q,R) where R is the ground rule

f (a, c) ← f (a,b), f (b, c)

Although this rule does not have a tree structure, its groundness suggests that one can replace it by a DL axiom using
nominals:

{a}
 ∃f.
({b}
 ∃h.{c}) � {a}
 ∃f.{c}

If (a, b) ∈ f I and (b, c) ∈ f I for a model I (and assuming a, b, and c are the elements of {a}I , {b}I , and {c}I
respectively), the DL axiom enforces (a, c) ∈ f I . The DL axiom does not capture the rule’s semantics exactly: open
answer sets have to be minimal such that an open answer set cannot contain f (a, c) without applying the body of
the rule from R. It seems that the satisfaction of ground rules can indeed be simulated by DL axioms, however, the
minimality of open answer sets cannot be captured as such. Note that DL-safe rules are not interpreted by such a
minimal model semantics such that it is more likely that they actually could be captured as DL axioms (provided the
particular DL allows for nominals). This is subject for further research. Writing non-ground DL-safe rules directly as
DL axioms seems to be more intricate, if possible at all.

It is still up to a knowledge engineer to decide whether the minimality property is required to represent the domain
under consideration.

5. Related work

In [22], the language L0 of a program P is expanded with an infinite sequence of new constants c1, . . . , ck, . . . such
that Lk is the expansion of L0 with c1, . . . , ck . A pair 〈k,B〉 for a nonnegative integer k and a set of ground literals B

in Lk is then a k-belief set of P iff B is an answer set of Pk , where Pk is the grounding of P in the language Lk . Our
definition of open answer sets is more general in the sense that also infinite universes are allowed, while a k-belief set
is always finite. Nonetheless, the other direction is valid: every k-belief set can be written as an open answer set.

Defining k-belief sets, or open answer sets for that matter, easily leads to undecidability as was argued for k-belief
sets in [48]. Interestingly, [48] shows that reasoning becomes decidable again under the well-founded semantics. Since
for stratified programs this semantics coincides with the answer set semantics, one has decidability of reasoning for
k-belief sets of stratified programs. However, trying to extend the language of stratified programs with an extra stratum
below all others, containing disjunctions of positive literals, leads to undecidability again [48]. Considering, in this
light, Φ(C,Σ), which basically consists of a stratified part, defining the DLs constructors, and a disjunctive part, the
free rules, we have, however, still decidability, emphasizing the importance of the forest-model property.

Another approach to infinite reasoning, besides infinite open domains, is presented in [11], where function symbols
are included in the language. Finitary programs are identified as a class for which ground query answering is decidable,
and lead to elegant formulations of, e.g., plans with unbounded planning length. Formally, they are defined as programs
that are finitely recursive, i.e., every ground atom may only depend on a finite number of other ground atoms, and
such that only a finite number of odd-cycles may occur in the grounded program. Neither conditions are necessary for
FoLPs: the local FoLP containing rules a(X) ← f (X,Y),not b(Y) and b(X) ← a(X), when grounded with an infinite
universe, is not finitely recursive and contains infinitely many odd-cycles. Since not all finitary programs are FoLPs,
both classes of programs are not directly related, and the forest-model property appears to be an alternative indication
of “finitary” reasoning with possibly infinite knowledge. While ground query answering with finitary programs is
decidable, unground query answering is only semi-decidable [11]. Since both are decidable for FoLPs, FoLPs are
arguably more suited for checking consistency of, e.g., ontologies. Moreover, checking whether a program is finitary
is itself undecidable, in contrast with FoLPs, which are a syntactic restriction of DLPs.

There are basically two lines of research that try to reconcile description logics with logic programming. The
approaches in [2,10,24,38,44,52] simulate DLs with LP, possibly with a detour to FOL, while [15,17,47] attempt to
unite the strengths of DLs and LP by letting them coexist and interact.

In [10], the simulation of a DL with acyclic axioms in open logic programming is shown. An open logic program
is a program with possibly undefined predicates and a FOL-theory; the semantics is the completion semantics, which

S. Heymans et al. / Journal of Applied Logic 5 (2007) 144–169 167
is only complete for a restrictive set of programs. The openness lies in the use of undefined predicates, which are
comparable to free predicates with the difference that free predicates can be expressed within the FoLP framework.
More specifically, open logic programming simulates reasoning in the DL ALCN , N indicating the use of unqualified
number restrictions, where terminological axioms consist of non-recursive concept definitions; ALCN is a subclass
of ALCHOQ(,
).

[24] imposes restrictions on the occurrence of DL constructs in terminological axioms to enable a simulation using
Horn clauses. E.g., axioms containing disjunction on the right hand side, as in D � C 	D, universal restriction on the
left hand side, or existential restriction on the right hand side are prohibited since Horn clauses cannot represent them.
Moreover, neither negation of concept expressions nor number restrictions can be represented. So-called Description
Logic Programs are thus incapable of handling expressive DLs; however, [24]’s forte lies in the identification of a
subclass of DLs that make efficient reasoning through LPs possible. [44] extends the work in [24], for it simulates non-
recursive ALC ontologies with disjunctive deductive databases. Compared with, possibly recursive, ALCHOQ(,
),
those are still rather inexpressive.

In [2], the DL ALCQI is successfully translated into a DLP. However, to take into account infinite interpretations
[2] presumes, for technical reasons, the existence of function symbols, which leads, in general, to undecidability of
reasoning.

[38] and [52] simulate reasoning in DLs with a LP formalism by using an intermediate translation to first-order
clauses. In [38], SHIQ− knowledge bases, i.e., SHIQ knowledge bases with the requirement that roles S in
(� nS.C) have no subroles, are reduced to first-order formulas, on which basic superposition calculus is then ap-
plied. The result is transformed into a function-free version which is translated to a disjunctive Datalog program. Note
that [38] can deal with transitive roles which is a clear advantage over our approach in the context of DL simulation.

[52] translates ALCQI concepts to first-order formulas, grounds them with a finite number of constants, and
transforms the result to a logic program. One can use a finite number of constants by the finite-model property for
ALCQI-concept expressions; in the presence of terminological axioms this is no longer possible. The resulting pro-
gram is, however, not declarative anymore such that its main contribution is that it provides an alternative reasoner for
DLs, whereas FoLPs can be used both for reasoning with DLs and for a direct and elegant expression of knowledge.
Furthermore, FoLPs are also interesting from a pure LP viewpoint since they constitute a decidable class of DLPs
under the open answer set semantics.

Along the second line of research, an AL-log [15] system consists of two subsystems: a DL knowledge base
and a Datalog program, where in the latter variables may range over DL concept instances, thus obtaining a flow
of information from the structural DL part to the relational Datalog part. This is extended in [47] for disjunctive
Datalog and the ALC DL. A further generalization is attained in [17] where the particular DL can be the expressive
SHOIN (D). The DL knowledge base is considered as a black box that can be queried from the rules. Moreover,
inferences made by rules can serve as input to the DL knowledge base as well, leading to a bidirectional flow of
information. A disadvantage of this approach, as was remarked in [45], is that, since one considers only consequences
of the DL knowledge base, i.e., atoms that are true in all models, some more fine-grained inferences will not be made
by the rules. Since reasoning with FoLPs can be reduced to finite ASP, it can be trivially reduced to the approach in
[17] with an empty DL knowledge base. In [18] the approach of [17] was adapted for the well-founded semantics
instead of the answer set semantics.

In [4], one builds a nonmonotonic rule system on top of the ontology language DAML + OIL [8], a predecessor
of OWL. More specifically, they use defeasible logic [46] to express rule-based knowledge and argue its use for
E-commerce applications on the Semantic Web. Another approach that combines DAML + OIL with rules can be
found in [25], where situated courteous logic programs in the rule markup language RuleML [1] provide for the
nonmonotonic rule system.

A notable approach, which cannot be categorized in one of the two lines of research described above, although
it tends towards the coexisting approach, is the SWRL [36] initiative. SWRL is a Semantic Web Rule Language
and extends the syntax and semantics of OWL DL with unary/binary Datalog RuleML [1], i.e., Horn-like rules.
This extension is undecidable [33] but lacks, nevertheless, interesting knowledge representation mechanisms such as
negation as failure.

[23] explains how reasoning with SWRL [36], can be done by iteratively calling the DL reasoner RACER [26] and
the rule-based reasoner Jess [20], each feeding the other with the inferences it made. Since SWRL is undecidable, and
such an iterative procedure is thus incomplete, it shows that intractable worst-case complexity (or even undecidability)

168 S. Heymans et al. / Journal of Applied Logic 5 (2007) 144–169
should not hold one back to device practical and useful combined reasoners. On the other hand, the approach in [23] is
quite ad hoc and not formally proved to be correct. A similar iterative angle is taken in [43] where SWRL is extended
with negation as failure and equipped with an answer set semantics, resulting in a nonmonotonic but undecidable
system.

6. Conclusions and directions for further research

We extended the semantics of answer set programming with support for open domains. This extension led to an
increase in expressiveness, but also to undecidability of reasoning. This was remedied by syntactically restricting the
types of allowed rules in logic programs, resulting in extended forest logic programs. We further restricted EFoLPs to
local EFoLPs that have the bounded finite model property. Lower and upper bounds for the complexity of reasoning
were established.

Furthermore, we showed how EFoLPs can simulate reasoning in a DL that is related to the OWL DL ontology
language together with DL-safe rules. A disadvantage of the EFoLP approach, however, compared to state-of-the-art
DLs, is the inability to express transitive roles as in, e.g., the DL SHIQ: we restrict ourselves to EFoLPs with the local
model property in order to ensure a bounded finite model property, a restricting property that SHIQ does not have.

Since EFoLP is a logic programming paradigm, with, e.g., negation as failure and the consequential nonmonotonic
reasoning, we believe that EFoLPs may be useful for reasoning with both rules and ontologies on the Semantic Web,
and this in such a way that both types of knowledge are fully integrated. We concluded with a description of related
work.

It would be interesting to look for further extensions of the forest-model property of EFoLPs. Other syntactical
classes of open answer set programming, e.g., guarded programs [30], can be identified, based on other decidability
vehicles like, e.g., fixed point logic.

Acknowledgements

Davy Van Nieuwenborgh is supported by the Flemish Fund for Scientific Research (FWO-Vlaanderen).

References

[1] The rule markup initiative, http://www.ruleml.org.
[2] G. Alsaç, C. Baral, Reasoning in description logics using declarative logic programming, http://www.public.asu.edu/guray/dlreasoning.pdf,

2002.
[3] H. Andréka, I. Németi, J. Van Benthem, Modal languages and bounded fragments of predicate logic, J. Philos. Logic 27 (3) (1998) 217–274.
[4] G. Antoniou, A nonmonotonic rule system using ontologies, in: CEUR Proceedings, 2002.
[5] F. Baader, D. Calvanese, D. McGuinness, D. Nardi, P. Patel-Schneider, The Description Logic Handbook, Cambridge University Press, 2003.
[6] F. Baader, U. Sattler, Number restrictions on complex roles in description logics, in: Proc. of KR-96, 1996, pp. 328–339.
[7] C. Baral, Knowledge Representation, Reasoning and Declarative Problem Solving, Cambridge Press, 2003.
[8] S. Bechhofer, C. Goble, I. Horrocks, DAML + OIL is not enough, in: Proc. of the First Semantic Web Working Symposium (SWWS’01),

CEUR, 2001, pp. 151–159.
[9] S. Bechhofer, F. van Harmelen, J. Hendler, I. Horrocks, D.L. McGuinness, P.F. Patel-Schneider, L.A. Stein, OWL web ontology language

reference, W3C recommendation, http://www.w3.org/TR/owl-ref/, February 2004.
[10] K. Van Belleghem, M. Denecker, D. De Schreye, A strong correspondence between description logics and open logic programming, in: Proc.

of ICLP’97, 1997, pp. 346–360.
[11] P.A. Bonatti, Reasoning with infinite stable models, Artificial Intelligence 156 (2004) 75–111.
[12] A. Borgida, On the relative expressiveness of description logics, Artificial Intelligence 82 (1–2) (1996) 353–367.
[13] F. Bry, S. Schaffert, An entailment relation for reasoning on the web, in: Proc. of Rules and Rule Markup Languages for the Semantic Web,

in: Lecture Notes in Computer Science, Springer, 2003, pp. 17–34.
[14] E. Dantsin, T. Eiter, G. Gottlob, A. Voronkov, Complexity and expressive power of logic programming, ACM Comput. Surv. 33 (3) (2001)

374–425.
[15] F.M. Donini, M. Lenzerini, D. Nardi, A. Schaerf, AL-log: integrating datalog and description logics, J. Intelligent Cooperative Inf. Syst. 10

(1998) 227–252.
[16] T. Eiter, W. Faber, M. Fink, G. Pfeifer, S. Woltran, Complexity of model checking and bounded predicate arities for non-ground answer set

programming, in: Proceedings Ninth International Conference on Principles of Knowledge Representation and Reasoning (KR 2004), June
2–5, Whistler, British Columbia, Canada, Morgan Kaufmann, 2004, pp. 377–387.

[17] T. Eiter, T. Lukasiewicz, R. Schindlauer, H. Tompits, Combining answer set programming with description logics for the semantic web, in:
Proc. of KR 2004.

http://www.ruleml.org
http://www.public.asu.edu/guray/dlreasoning.pdf
http://www.w3.org/TR/owl-ref/

S. Heymans et al. / Journal of Applied Logic 5 (2007) 144–169 169
[18] T. Eiter, T. Lukasiewicz, R. Schindlauer, H. Tompits, Well-founded semantics for description logic programs in the semantic web, in: Proc. of
RuleML 2004, in: Lecture Notes in Computer Science, vol. 3323, Springer, 2004, pp. 81–97.

[19] E.A. Emerson, Temporal and modal logic, in: Handbook of Theoretical Computer Science, Elsevier Science Publishers B.V., 1990, pp. 995–
1072.

[20] E.J. Friendman-Hill, Jess homepage, http://herzberg.ca.sandia.gov/jess/.
[21] M. Gelfond, V. Lifschitz, The stable model semantics for logic programming, in: Proc. of ICLP’88, MIT Press, Cambridge, MA, 1988,

pp. 1070–1080.
[22] M. Gelfond, H. Przymusinska, Reasoning in open domains, in: Logic Programming and Non-Monotonic Reasoning, MIT Press, 1993, pp. 397–

413.
[23] C. Golbreich, Combining rule and ontology reasoners for the semantic web, in: Proc. of RuleML 2004, in: Lecture Notes in Computer Science,

vol. 3323, Springer, 2004, pp. 6–22.
[24] B.N. Grosof, I. Horrocks, R. Volz, S. Decker, Description logic programs: combining logic programs with description logic, in: Proc. of

Twelfth International World Wide Web Conference (WWW 2003), 2003, pp. 48–57.
[25] B.N. Grosof, T.C. Poon, SweetDeal: representing agent contracts with exceptions using XML rules, in: Proc. of WWW 2003, ACM Press,

2003, pp. 340–349.
[26] V. Haarslev, R. Moller, Description of the RACER system and its applications, in: Proc. of Description Logics 2001, 2001.
[27] J.Y. Halpern, Y. Moses, A guide to completeness and complexity for modal logics of knowledge and belief, Artificial Intelligence 54 (3)

(1992) 319–379.
[28] S. Heymans, D. Van Nieuwenborgh, D. Vermeir, Semantic web reasoning with conceptual logic programs, in: Proc. of RuleML 2004, in:

Lecture Notes in Computer Science, vol. 3323, Springer, 2004, pp. 113–127.
[29] S. Heymans, D. Van Nieuwenborgh, D. Vermeir, Nonmonotonic ontological and rule-based reasoning with extended conceptual logic pro-

grams, in: Proc. of ESWC 2005, in: Lecture Notes in Computer Science, Springer, 2005, in press.
[30] S. Heymans, D. Van Nieuwenborgh, D. Vermeir, Guarded open answer set programming, in: C. Baral, G. Greco, N. Leone, G. Terracina

(Eds.), 8th International Conference on Logic Programming and Non Monotonic Reasoning (LPNMR 2005), Diamante, Italy, in: Lecture
Notes in Artificial Intelligence, vol. 3662, Springer, 2005, pp. 92–104.

[31] S. Heymans, D. Vermeir, Integrating description logics and answer set programming, in: Proc. of PPSWR 2003, in: Lecture Notes Computer
Science, vol. 2901, Springer, 2003, pp. 146–159.

[32] J. Hladik, U. Sattler, A translation of looping alternating automata to description logics, in: Proc. of CADE-19, in: Lecture Notes in Artificial
Intelligence, vol. 2741, Springer, 2003.

[33] I. Horrocks, P.F. Patel-Schneider, A proposal for an OWL rules language, in: Proc. of the Thirteenth International World Wide Web Conference
(WWW 2004), ACM, 2004.

[34] I. Horrocks, U. Sattler, Ontology reasoning in the SHOQ(D) description logic, in: Proc. of IJCAI’01, Morgan Kaufmann, 2001, pp. 199–204.
[35] I. Horrocks, U. Sattler, S. Tobies, Practical reasoning for expressive description logics, in: H. Ganzinger, D. McAllester, A. Voronkov (Eds.),

Proc. of the 6th International Conference on Logic for Programming and Automated Reasoning (LPAR’99), vol. 1705, Springer, 1999,
pp. 161–180.

[36] I. Horrocks, P.F. Schneider, H. Boley, S. Tabet, B. Grosof, M. Dean, SWRL: a semantic web rule language combining OWL and RuleML,
May 2004.

[37] I. Horrocks, P. Patel-Schneider, Reducing OWL entailment to description logic satisfiability, J. Web Semantics, 2004, in press.
[38] U. Hustadt, B. Motik, U. Sattler, Reducing SHIQ− description logic to disjunctive datalog programs, FZI-Report 1-8-11/03, Forschungszen-

trum Informatik (FZI), 2003.
[39] K. Inoue, C. Sakama, Negation as failure in the head, J. Logic Programming 35 (1) (1998) 39–78.
[40] R.E. Ladner, The computational complexity of provability in systems of modal propositional logic, SIAM J. Comput. 6 (3) (1977) 467–480.
[41] N. Leone, G. Pfeifer, W. Faber, DLV homepage, http://www.dbai.tuwien.ac.at/proj/dlv/.
[42] V. Lifschitz, Answer set programming and plan generation, Artificial Intelligence 138 (1–2) (2002) 39–54.
[43] J. Mei, S. Liu, A. Yue, Z. Lin, An extension to OWL with general rules, in: Proc. of RuleML 2004, in: Lecture Notes in Computer Science,

vol. 3323, Springer, 2004, pp. 6–22.
[44] B. Motik, R. Volz, A. Maedche, Optimizing query answering in description logics using disjunctive deductive databases, in: Proc. of KRDB’03,

2003, 39–50.
[45] B. Motik, U. Sattler, R. Studer, Query answering for OWL-DL with rules, in: Proc. of ISWC 2004, in: Lecture Notes in Computer Science,

vol. 3298, Springer, 2004, pp. 549–563.
[46] D. Nute, Defeasible logic, in: D.M. Gabbay, C.J. Hogger, J.A. Robinson (Eds.), Handbook of Logic in Artificial Intelligence and Logic

Programming, vol. 3, Clarendon Press, 1994, pp. 353–395.
[47] R. Rosati, Towards expressive KR systems integrating datalog and description logics: preliminary report, in: Proc. of DL’99, 1999, pp. 160–

164.
[48] J. Schlipf, Some remarks on computability and open domain semantics, in: Proc. of the Workshop on Structural Complexity and Recursion-

Theoretic Methods in Logic Programming of the International Logic Programming Symposium, 1993.
[49] M. Schmidt-Schaub, Attributive concept descriptions with complements, G. Smolka, Artificial Intelligence 48 (1) (1991) 1–26.
[50] P. Simons, SMODELS homepage, http://www.tcs.hut.fi/Software/smodels/.
[51] M. Smith, C. Welty, D. McGuinness, OWL web ontology language guide, http://www.w3.org/TR/owl-guide/, 2004.
[52] T. Swift, Deduction in ontologies via answer set programming, in: V. Lifschitz, I. Niemelä (Eds.), Proc. of LPNMR 2004, in: Lecture Notes

in Computer Science, vol. 2923, Springer, 2004, pp. 275–288.
[53] M.Y. Vardi, Why is modal logic so robustly decidable? Technical Report TR97-274, Rice University, April 12, 1997.
[54] M.Y. Vardi, Reasoning about the past with two-way automata, in: Proc. of ICALP ’98, Springer, 1998, pp. 628–641.

http://herzberg.ca.sandia.gov/jess/
http://www.dbai.tuwien.ac.at/proj/dlv/
http://www.tcs.hut.fi/Software/smodels/
http://www.w3.org/TR/owl-guide/

	Open answer set programming for the semantic web
	Introduction
	Open answer set programming
	Basic definitions and results
	Undecidability
	Acyclic programs

	Extended forest logic programs
	Forest-model property
	Bounded finite model property
	Complexity
	Extended forest logic programs

	Nonmonotonic ontological and rule-based reasoning with extended forest logic programs
	Ontological reasoning with FoLPs
	Combined ontological and rule-based reasoning with EFoLPs

	Related work
	Conclusions and directions for further research
	Acknowledgements
	References

