

Available online at www.sciencedirect.com

SCIENCE DIRECT®

LINEAR ALGEBRA AND ITS APPLICATIONS

Linear Algebra and its Applications 403 (2005) 97-117

www.elsevier.com/locate/laa

The spectra of the adjacency matrix and Laplacian matrix for some balanced trees $\stackrel{\text{\tiny{$\pm$}}}{\to}$

Oscar Rojo *, Ricardo Soto¹

Departamento de Matemáticas, Universidad Católica del Norte, Casilla 1280, Antofagasta, Chile Received 19 May 2004; accepted 20 January 2005 Available online 2 March 2005 Submitted by R.A. Brualdi

Abstract

Let \mathscr{T} be an unweighted rooted tree of k levels such that in each level the vertices have equal degree. Let d_{k-j+1} denotes the degree of the vertices in the level j. We find the eigenvalues of the adjacency matrix and of the Laplacian matrix of \mathscr{T} . They are the eigenvalues of principal submatrices of two nonnegative symmetric tridiagonal matrices of order $k \times k$. The codiagonal entries for both matrices are $\sqrt{d_j - 1}$, $2 \le j \le k - 1$, and $\sqrt{d_k}$, while the diagonal entries are zeros, in the case of the adjacency matrix, and d_j , $1 \le j \le k$, in the case of the Laplacian matrix. Moreover, we give some results concerning to the multiplicity of the above mentioned eigenvalues.

© 2005 Elsevier Inc. All rights reserved.

AMS classification: 5C50; 15A48

Keywords: Tree; Balanced tree; Binary tree; m-Ary tree; Laplacian matrix; Adjacency matrix

^{*} Work supported by Fondecyt 1040218, Chile.

^{*} Corresponding author. Tel.: +56 55 355593; fax: +56 55 355599.

E-mail addresses: orojo@socompa.ucn.cl, orojo@ucn.cl (O. Rojo), rsoto@ucn.cl (R. Soto).

¹ Part of this research was conducted while the authors were visitors at the Instituto Nacional de Matemática Pura e Aplicada, Rio de Janeiro, Brasil.

1. Notations and preliminaries

98

Let \mathscr{G} be a simple graph. Let $A(\mathscr{G})$ be the adjacency matrix of \mathscr{G} and let $D(\mathscr{G})$ be the diagonal matrix of vertex degrees. The Laplacian matrix of \mathscr{G} is $L(\mathscr{G}) = D(\mathscr{G}) - A(\mathscr{G})$. Clearly, $L(\mathscr{G})$ is a real symmetric matrix. From this fact and Geršgorin's theorem, it follows that its eigenvalues are nonnegative real numbers. Moreover, since its rows sum to 0, 0 is the smallest eigenvalue of $L(\mathscr{G})$. In [4], some of the many results known for Laplacian matrices are given. Fiedler [2] proved that \mathscr{G} is a connected graph if and only if the second smallest eigenvalue of $L(\mathscr{G})$ is positive. This eigenvalue is called the algebraic connectivity of \mathscr{G} .

We recall that a tree is a connected acyclic graph. Here we consider an unweighted rooted tree \mathcal{T} such that in each level the vertices have equal degree. We agree that the root vertex is at level 1 and that \mathcal{T} has k levels. Thus the vertices in the level k have degree 1.

For j = 1, 2, 3, ..., k, the numbers d_{k-j+1} and n_{k-j+1} denote the degree of the vertices and the number of vertices in the level j, respectively. Then, for j = 2, 3, ..., k - 1,

$$n_{k-j} = (d_{k-j+1} - 1)n_{k-j+1}.$$
(1)

Observe that d_k is the degree of the root vertex, $d_1 = 1$ is the degree of the vertices in the level k, $n_k = 1$, $n_{k-1} = d_k$, n_{j+1} divides n_j for all j = 1, ..., k - 1 and that the total number of vertices in the tree is

$$n = \sum_{j=1}^{k-1} n_j + 1.$$

We introduce the following notations:

If all the eigenvalues of an $n \times n$ matrix A are real numbers, we write

$$\lambda_n(A) \leq \lambda_{n-1}(A) \leq \cdots \leq \lambda_2(A) \leq \lambda_1(A).$$

0 is the all zeros matrix.

The order of 0 will be clear from the context in which it is used.

 I_m is the identity matrix of order $m \times m$.

 \mathbf{e}_m is the all ones column vector of dimension m.

For $j = 1, 2, ..., k - 1, C_j$ is the block diagonal matrix defined by

$$C_{j} = \begin{bmatrix} \mathbf{e}_{\frac{n_{j}}{n_{j+1}}} & 0 & \cdots & 0 \\ 0 & \mathbf{e}_{\frac{n_{j}}{n_{j+1}}} & \vdots \\ \vdots & \ddots & 0 \\ 0 & \cdots & 0 & \mathbf{e}_{\frac{n_{j}}{n_{j+1}}} \end{bmatrix},$$
(2)

with n_{j+1} diagonal blocks. Thus, the order of C_j is $n_j \times n_{j+1}$. Observe that $C_{k-1} = \mathbf{e}_{n_{k-1}}$.

 $\mathbf{e}_{n_{k-1}}$. Let us illustrate the notations above introduced and our labeling for \mathscr{T} with the following example.

Example 1. Let \mathcal{T} be the tree

We see that this tree has 4 levels, $n_1 = 12$, $n_2 = 6$, $n_3 = 3$, $n_4 = 1$ and the vertex degrees are $d_1 = 1$, $d_2 = 3$, $d_3 = 3$, $d_4 = 3$. Then, $\frac{n_1}{n_2} = 2$, $\frac{n_2}{n_3} = 2$ and $\frac{n_3}{n_4} = 3$. The matrices defined in (2) are

In general, using the labels 1, 2, 3, ..., n, in this order, our labeling for the vertices of \mathcal{T} is: Label the vertices from the bottom to the root vertex and, in each level, from the left to the right.

For this labeling the adjacency matrix $A(\mathcal{T})$ and Laplacian matrix $L(\mathcal{T})$ of the tree in Example 1 become

$$A(\mathscr{F}) = \begin{bmatrix} 0 & C_1 & 0 & 0\\ C_1^{\mathrm{T}} & 0 & C_2 & 0\\ 0 & C_2^{\mathrm{T}} & 0 & C_3\\ 0 & 0 & C_3^{\mathrm{T}} & 0 \end{bmatrix}$$

and

100

$$L(\mathcal{F}) = \begin{bmatrix} I_{12} & -C_1 & 0 & 0\\ -C_1^{\mathrm{T}} & 3I_6 & -C_2 & 0\\ 0 & -C_2^{\mathrm{T}} & 3I_2 & -C_3\\ 0 & 0 & -C_3^{\mathrm{T}} & 3 \end{bmatrix}.$$

with C_1 , C_2 and C_3 as in Example 1.

In general, our labeling yields to

$$A(\mathscr{F}) = \begin{bmatrix} 0 & C_1 & 0 & \cdots & \cdots & 0 \\ C_1^{\mathrm{T}} & 0 & C_2 & \ddots & & \vdots \\ 0 & C_2^{\mathrm{T}} & \ddots & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & C_{k-2} & 0 \\ \vdots & & \ddots & C_{k-2}^{\mathrm{T}} & 0 & C_{k-1} \\ 0 & \cdots & \cdots & 0 & C_{k-1}^{\mathrm{T}} & 0 \end{bmatrix}$$
(3)

and

$$L(\mathscr{T}) = \begin{bmatrix} I_{n_1} & -C_1 & 0 & \cdots & \cdots & 0 \\ -C_1^{\mathrm{T}} & d_2 I_{n_2} & C_2 & \ddots & & \vdots \\ 0 & -C_2^{\mathrm{T}} & \ddots & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & d_{k-2} I_{n_{k-2}} & -C_{k-2} & 0 \\ \vdots & & \ddots & -C_{k-2}^{\mathrm{T}} & d_{k-1} I_{n_{k-1}} & -C_{k-1} \\ 0 & \cdots & 0 & -C_{k-1}^{\mathrm{T}} & d_k \end{bmatrix}.$$
(4)

The following lemma plays a fundamental role in this paper.

Lemma 1. Let

$$M = \begin{bmatrix} \alpha_1 I_{n_1} & C_1 & 0 & \cdots & \cdots & 0 \\ C_1^{\mathrm{T}} & \alpha_2 I_{n_2} & C_2 & \ddots & & & \\ 0 & C_2^{\mathrm{T}} & & \ddots & & \\ \vdots & \ddots & & \ddots & & \\ \vdots & & \ddots & & & \ddots & \\ \vdots & & \ddots & & & & \ddots & \\ 0 & \cdots & \cdots & 0 & C_{k-2}^{\mathrm{T}} & \alpha_k \end{bmatrix}.$$

Let

$$\beta_1 = \alpha_1$$

and

$$\beta_{j} = \alpha_{j} - \frac{n_{j-1}}{n_{j}} \frac{1}{\beta_{j-1}}, \quad j = 2, 3, \dots, k, \ \beta_{j-1} \neq 0.$$

If $\beta_{j} \neq 0$ for all $j = 1, 2, \dots, k-1$,
$$\det M = \beta_{1}^{n_{1}} \beta_{2}^{n_{2}} \dots \beta_{k-2}^{n_{k-2}} \beta_{k-1}^{n_{k-1}} \beta_{k}.$$
 (5)

Proof. Suppose $\beta_j \neq 0$ for all j = 1, 2, ..., k - 1. We apply the Gaussian elimination procedure, without row interchanges, to reduce the matrix *M* to an upper triangular matrix. Just before the last step, we have the matrix

$\int \beta_1 I_n$	$_{1}$ C_{1}	0	•••			0]
0	$\beta_2 I_{n_2}$	C_2				÷	
0	0	$\beta_3 I_{n_3}$	C_3			:	
:		0	·.	·		÷	
:			·.	·	C_{k-2}	0	
:				0	$\beta_{k-1}I_{n_{k-1}}$	C_{k-1}	
0				0	C_{k-1}^{T}	α_k	

Finally, the Gaussian elimination gives

$$\begin{bmatrix} \beta_{1}I_{n_{1}} & C_{1} & 0 & \cdots & \cdots & 0 \\ 0 & \beta_{2}I_{n_{2}} & C_{2} & & & \vdots \\ 0 & 0 & \beta_{3}I_{n_{3}} & C_{3} & & & \vdots \\ \vdots & & 0 & \ddots & \ddots & & \vdots \\ \vdots & & & \ddots & \ddots & C_{k-2} & 0 \\ \vdots & & & & 0 & \beta_{k-1}I_{n_{k-1}} & C_{k-1} \\ 0 & \cdots & \cdots & 0 & 0 & \alpha_{k} - n_{k-1}\frac{1}{\beta_{k-1}} \end{bmatrix}.$$
 (6)

Thus, (5) is proved. \Box

2. The spectrum of the Laplacian matrix of ${\mathscr T}$

Let

 $\Phi = \{1, 2, 3, \dots, k-1\}.$

We consider the following subset of Φ ,

 $\Omega = \{j \in \Phi : n_j > n_{j+1}\}.$ Since $n_{k-1} > n_k = 1$, the index $k - 1 \in \Omega$. Observe that if $i \in \Phi - \Omega$ then $n_i = n_{i+1}$ and thus, from (2), $C_i = I_{n_i}$.

Theorem 2. Let

 $P_0(\lambda) = 1, \quad P_1(\lambda) = \lambda - 1$

and

$$P_{j}(\lambda) = (\lambda - d_{j})P_{j-1}(\lambda) - \frac{n_{j-1}}{n_{j}}P_{j-2}(\lambda) \quad for \ j = 2, 3, \dots, k.$$
(7)

Hence

(a) If $P_j(\lambda) \neq 0$, for all j = 1, 2, ..., k - 1, then

$$\det(\lambda I - L(\mathscr{F})) = P_k(\lambda) \prod_{j \in \Omega} P_j^{n_j - n_{j+1}}(\lambda).$$
(8)

(b)

$$\sigma(L(\mathscr{T})) = (\bigcup_{j \in \Omega} \{\lambda \in \mathbb{R} : P_j(\lambda) = 0\}) \cup \{\lambda \in \mathbb{R} : P_k(\lambda) = 0\}.$$
(9)

Proof. (a) We apply Lemma 1 to the matrix $M = \lambda I - L(\mathcal{T})$. For this matrix $\alpha_1 = \lambda - 1$ and $\alpha_j = \lambda - d_j$ for j = 2, 3, ..., k. Let $\beta_1, \beta_2, ..., \beta_k$ be as in Lemma 1. Suppose that $\lambda \in \mathbb{R}$ is such that $P_j(\lambda) \neq 0$ for all j = 1, 2, ..., k - 1. We have

$$\begin{split} \beta_1 &= \lambda - 1 = \frac{P_1(\lambda)}{P_0(\lambda)} \neq 0, \\ \beta_2 &= (\lambda - d_2) - \frac{n_1}{n_2} \frac{1}{\beta_1} = (\lambda - d_2) - \frac{n_1}{n_2} \frac{P_0(\lambda)}{P_1(\lambda)} \\ &= \frac{(\lambda - d_2) P_1(\lambda) - \frac{n_1}{n_2} P_0(\lambda)}{P_1(\lambda)} = \frac{P_2(\lambda)}{P_1(\lambda)} \neq 0, \\ \beta_3 &= (\lambda - d_3) - \frac{n_2}{n_3} \frac{1}{\beta_2} = (\lambda - d_3) - \frac{n_2}{n_3} \frac{P_1(\lambda)}{P_2(\lambda)} \\ &= \frac{(\lambda - d_3) P_2(\lambda) - \frac{n_2}{n_3} P_1(\lambda)}{P_2(\lambda)} = \frac{P_3(\lambda)}{P_2(\lambda)} \neq 0, \\ \vdots \end{split}$$

$$\begin{split} \beta_{k-1} &= (\lambda - d_{k-1}) - \frac{n_{k-2}}{n_{k-1}} \frac{1}{\beta_{k-2}} = (\lambda - d_{k-1}) - \frac{n_{k-2}}{n_{k-1}} \frac{P_{k-3}(\lambda)}{P_{k-2}(\lambda)} \\ &= \frac{(\lambda - d_{k-1})P_{k-2}(\lambda) - \frac{n_{k-2}}{n_{k-1}}P_{k-3}(\lambda)}{P_{k-2}(\lambda)} = \frac{P_{k-1}(\lambda)}{P_{k-2}(\lambda)} \neq 0, \\ \beta_k &= (\lambda - d_k) - \frac{n_{k-1}}{n_k} \frac{1}{\beta_{k-1}} = (\lambda - d_k) - \frac{n_{k-1}}{n_k} \frac{P_{k-2}(\lambda)}{P_{k-1}(\lambda)} \\ &= \frac{(\lambda - d_k)P_{k-1}(\lambda) - \frac{n_{k-1}}{n_k}P_{k-2}(\lambda)}{P_{k-1}(\lambda)} = \frac{P_k(\lambda)}{P_{k-1}(\lambda)}. \end{split}$$

From (5)

$$\det(\lambda I - L(\mathscr{T})) = \frac{P_1^{n_1}(\lambda)}{P_0^{n_1}(\lambda)} \frac{P_2^{n_2}(\lambda)}{P_1^{n_2}(\lambda)} \frac{P_3^{n_3}(\lambda)}{P_2^{n_3}(\lambda)} \dots \frac{P_{k-2}^{n_{k-2}}(\lambda)}{P_{k-3}^{n_{k-1}}(\lambda)} \frac{P_{k-1}^{n_{k-1}}(\lambda)}{P_{k-1}^{n_{k-1}}(\lambda)} \frac{P_k(\lambda)}{P_{k-1}(\lambda)}$$
$$= P_1^{n_1 - n_2}(\lambda) P_2^{n_2 - n_3}(\lambda) P_3^{n_3 - n_4}(\lambda) \dots P_{k-1}^{n_{k-1} - 1}(\lambda) P_k(\lambda)$$
$$= P_k(\lambda) \prod_{j \in \Omega} P_j^{n_j - n_{j+1}}(\lambda).$$

Thus, (8) is proved.

(b) From (8), if $\lambda \in \mathbb{R}$ is such that $P_j(\lambda) \neq 0$, for all j = 1, 2, ..., k - 1, k, then $\det(\lambda I - L(\mathcal{T})) \neq 0$. That is

$$\bigcap_{i=1}^{k} \{\lambda \in \mathbb{R} : P_j(\lambda) \neq 0\} \subseteq (\sigma(L(\mathscr{T})))^c.$$

That is

$$\sigma(L(\mathscr{T})) \subseteq \left(\cup_{j=1}^{k-1} \{ \lambda \in \mathbb{R} : P_j(\lambda) = 0 \} \right) \cup \{ \lambda \in \mathbb{R} : P_k(\lambda) = 0 \}.$$
(10)

We claim that

$$\sigma(L(\mathscr{T})) \subseteq (\bigcup_{j \in \Omega} \{\lambda \in \mathbb{R} : P_j(\lambda) = 0\}) \cup \{\lambda \in \mathbb{R} : P_k(\lambda) = 0\}.$$
(11)

If $\Omega = \Phi = \{1, 2, ..., k - 1\}$ then (11) is (10) and there is nothing to prove. Suppose that Ω is a proper subset of Φ . Clearly, (11) is equivalent to

$$\cap_{j\in\Omega}\{\lambda\in\mathbb{R}:P_j(\lambda)\neq 0\}\cap\{\lambda\in\mathbb{R}:P_k(\lambda)\neq 0\}\subseteq (\sigma(L(\mathscr{T})))^c.$$

Suppose that $\lambda \in \mathbb{R}$ is such that $P_j(\lambda) \neq 0$ for all $j \in \Omega$ and $P_k(\lambda) \neq 0$. Since $k - 1 \in \Omega$, $P_{k-1}(\lambda) \neq 0$. If in addition $P_j(\lambda) \neq 0$ for all $j \in \Phi - \Omega$ then (8) holds and consequently det $(\lambda I - L(\mathscr{T})) \neq 0$. That is, $\lambda \in (\sigma(L(\mathscr{T})))^c$. If $P_i(\lambda) = 0$ for some $i \in \Phi - \Omega$, let l be the first index in $\Phi - \Omega$ such that $P_l(\lambda) = 0$. Then, $\beta_j \neq 0$ for all $j = 1, 2, ..., l - 1, \beta_l = 0$ and

$$P_{l+2}(\lambda) = (\lambda - d_{l+2})P_{l+1}(\lambda)$$

We observe that $P_{l+1}(\lambda) \neq 0$. Otherwise, a back sustitution in (7) gives $P_0(\lambda) = 0$. Therefore, $\beta_{l+2} = \frac{P_{l+2}(\lambda)}{P_{l+1}(\lambda)} = \lambda - d_{l+2}$. Since $l \in \Phi - \Omega$, then $n_l = n_{l+1}$, $C_l = I_{n_l}$ and the Gaussian elimination procedure applied to $M = \lambda I - L(\mathcal{F})$ yields to the intermediate matrix

$$\begin{bmatrix} \beta_{1}I_{n_{1}} & C_{1} & 0 & \cdots & \cdots & \cdots & 0 \\ 0 & \ddots & \ddots & \ddots & & \vdots \\ \vdots & 0 & 0 & I_{n_{l}} & 0 & \vdots \\ \vdots & \ddots & I_{n_{l}} & (\lambda - d_{l+1})I_{n_{l+1}} & C_{l+1} & \ddots & \vdots \\ \vdots & \ddots & C_{l+1}^{T} & (\lambda - d_{l+2})I_{n_{l+2}} & \ddots & 0 \\ \vdots & & \ddots & \ddots & \ddots & C_{k-1} \\ 0 & \cdots & \cdots & 0 & C_{k-1} & \lambda - d_{k} \end{bmatrix}$$
$$= \begin{bmatrix} \beta_{1}I_{n_{1}} & C_{1} & 0 & \cdots & \cdots & 0 \\ 0 & \ddots & \ddots & \ddots & \ddots & \ddots & \vdots \\ \vdots & 0 & 0 & I_{n_{l}} & 0 & \vdots \\ \vdots & \ddots & I_{n_{l}} & (\lambda - d_{l+1})I_{n_{l+1}} & C_{l+1} & \ddots & \vdots \\ \vdots & \ddots & C_{l+1}^{T} & \beta_{l+2}I_{n_{l+2}} & \ddots & 0 \\ \vdots & & \ddots & \ddots & \ddots & C_{k-1} \\ 0 & \cdots & \cdots & 0 & C_{k-1} & \lambda - d_{k} \end{bmatrix}$$

Next, a number of n_l row interchanges gives the matrix

$$\begin{bmatrix} \beta_{1}I_{n_{1}} & C_{1} & 0 & \cdots & \cdots & \cdots & 0 \\ 0 & \ddots & \ddots & \ddots & & & \vdots \\ \vdots & 0 & I_{n_{l}} & (\lambda - d_{l+1})I_{n_{l+1}} & C_{l+1} & & \vdots \\ \vdots & \ddots & 0 & I_{n_{l}} & 0 & \ddots & \vdots \\ \vdots & & \ddots & C_{l+1}^{\mathrm{T}} & \beta_{l+2}I_{n_{l+2}} & \ddots & 0 \\ \vdots & & \ddots & \ddots & \ddots & C_{k-1} \\ 0 & \cdots & \cdots & 0 & C_{k-1}^{\mathrm{T}} & \lambda - d_{k} \end{bmatrix}.$$

Therefore

$$\det(\lambda I - L(\mathscr{T})) = (-1)^{n_l} \beta_1^{n_1} \beta_2^{n_2} \dots \beta_{l-1}^{n_{l-1}} \det \begin{bmatrix} \beta_{l+2} I_{n_{l+2}} & \ddots & 0\\ \ddots & \ddots & C_{k-1}\\ 0 & C_{k-1}^{\mathrm{T}} & \lambda - d_k \end{bmatrix}.$$

Now, if there exists $j \in \Phi - \Omega$, $l + 2 \leq j \leq k - 2$, such that $P_j(\lambda) = 0$, we apply the above procedure to the matrix

$$\begin{bmatrix} \beta_{l+2}I_{\frac{n_{l+2}}{2}} & \ddots & 0\\ \ddots & \ddots & C_{k-1}\\ 0 & C_{k-1}^{\mathrm{T}} & \lambda - d_k \end{bmatrix}.$$

Finally, we obtain

$$\det(\lambda I - L(\mathcal{F})) = \gamma \beta_k = \gamma \frac{P_k(\lambda)}{P_{k-1}(\lambda)},$$
(12)

where γ is a factor different from 0. By hypothesis, $P_{k-1}(\lambda) \neq 0$ and $P_k(\lambda) \neq 0$. Therefore, $\det(\lambda I - L(\mathcal{F})) \neq 0$ and thus $\lambda \notin \sigma(L(\mathcal{F}))$. Hence, (11) is proved. Now, we claim that

$$(\cup_{j\in\Omega}\{\lambda\in\mathbb{R}:P_j(\lambda)=0\})\cup\{\lambda\in\mathbb{R}:P_k(\lambda)=0\}\subseteq\sigma(L(\mathcal{T})).$$

Let $\lambda \in \bigcup_{j \in \Omega} \{\lambda \in \mathbb{R} : P_j(\lambda) = 0\}$. Let *l* be the first index in Ω such that $P_l(\lambda) = 0$. Then, $\beta_l = \frac{P_l(\lambda)}{P_{l-1}(\lambda)} = 0$. The corresponding intermediate matrix in the Gaussian elimination procedure applied to the matrix $M = \lambda I - L(\mathcal{T})$ is

$$\begin{bmatrix} \beta_{1}I_{n_{1}} & C_{1} & 0 & \cdots & \cdots & 0 \\ 0 & \ddots & \ddots & & & \vdots \\ 0 & \ddots & 0 & C_{l} & & \vdots \\ \vdots & \ddots & C_{l}^{\mathrm{T}} & (\lambda - d_{l+1})I_{n_{l+1}} & & \vdots \\ \vdots & & \ddots & \ddots & \ddots & C_{k-1} \\ 0 & \cdots & \cdots & 0 & C_{k-1}^{\mathrm{T}} & \lambda - d_{k} \end{bmatrix}.$$
(13)

Since $l \in \Omega$, $n_l > n_{l+1}$ and C_l is a matrix with more rows than columns. Therefore, the matrix in (13) has at least two equal rows. Thus, $det(\lambda I - L(\mathcal{T})) = 0$. That is, $\lambda \in (L(\mathcal{T}))$. Hence

$$\cup_{i\in\Omega} \{\lambda \in \mathbb{R} : P_i(\lambda) = 0\} \subseteq \sigma(L(\mathscr{F})).$$
(14)

Now let $\lambda \in \{\lambda \in \mathbb{R} : P_k(\lambda) = 0\}$. Observe that $P_{k-1}(\lambda) \neq 0$. Otherwise, a back substitution in (7) yields to $P_0(\lambda) = 0$. If $P_j(\lambda) = 0$ for some $j \in \Omega$ then the use of (14) gives $\lambda \in \sigma(L(\mathcal{F}))$. Hence, we may suppose that $P_j(\lambda) \neq 0$ for all $j \in \Omega$. If in addition $P_j(\lambda) \neq 0$ for all $j \in \Phi - \Omega$ then (8) holds and thus det $(\lambda I - L(\mathcal{F})) = 0$ because $P_k(\lambda) = 0$. If $P_i(\lambda) = 0$ for some $i \in \Phi - \Omega$ then we have the assumptions under which (12) was obtained. Therefore

$$\det(\lambda I - L(\mathscr{T})) = \gamma \beta_k = \gamma \frac{P_k(\lambda)}{P_{k-1}(\lambda)} = 0$$

Thus, we have proved that

$$\{\lambda \in \mathbb{R} : P_k(\lambda) = 0\} \subseteq \sigma(L(\mathscr{F})).$$
(15)

From (14) and (15),

$$(\cup_{j\in\Omega}\{\lambda\in\mathbb{R}:P_j(\lambda)=0\})\cup\{\lambda\in\mathbb{R}:P_k(\lambda)=0\}\subseteq\sigma(L(\mathscr{T})).$$
(16)

Finally, (11) and (16) imply (9). \Box

Lemma 3. For j = 1, 2, 3, ..., k - 1, let T_j be the $j \times j$ principal submatrix of the $k \times k$ symmetric tridiagonal matrix

$$T_{k} = \begin{bmatrix} 1 & \sqrt{d_{2} - 1} & 0 & \cdots & \cdots & 0 \\ \sqrt{d_{2} - 1} & d_{2} & \sqrt{d_{3} - 1} & \ddots & & \vdots \\ 0 & \sqrt{d_{3} - 1} & d_{3} & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \sqrt{d_{k-1} - 1} & 0 \\ \vdots & & \ddots & \sqrt{d_{k-1} - 1} & d_{k-1} & \sqrt{d_{k}} \\ 0 & \cdots & \cdots & 0 & \sqrt{d_{k}} & d_{k} \end{bmatrix}$$

Then

$$\det(\lambda I - T_j) = P_j(\lambda), \quad j = 1, 2, \dots, k.$$

Proof. It is well known (see for instance [1, p.229]) that the characteristic polynomials, Q_j , of the $j \times j$ principal submatrix of the $k \times k$ symmetric tridiagonal matrix

a_1	b_1	0			0]	
b_1	a_2	b_2	·		:	
0	b_2	·	·	·	:	
:	۰.	۰.	۰.	·	0	;
:		۰.	۰.	a_{k-1}	b_{k-1}	
0			0	b_{k-1}	a_k	

satisfy the three-term recursion formula

$$Q_j(\lambda) = (\lambda - a_j)Q_{j-1}(\lambda) - b_{j-1}^2Q_{j-2}(\lambda),$$

with

$$Q_0(\lambda) = 1$$
 and $Q_1(\lambda) = \lambda - a_1$

In our case, $a_1 = 1, a_j = d_j$ for j = 2, 3, ..., k and $b_j = \sqrt{\frac{n_j}{n_{j+1}}}$ for j = 1, 2, ..., k - 1. For these values, the above recursion formula gives the polynomials $P_j, j = 0, 1, 2, ..., k$. Now, we use (1), to see that $\sqrt{\frac{n_j}{n_{j+1}}} = \sqrt{d_j - 1}$ for j = 1, 2, ..., k - 2 and $\sqrt{\frac{n_{k-1}}{n_k}} = \sqrt{n_{k-1}} = \sqrt{d_k}$. \Box

Theorem 4. Let T_j , j = 1, 2, ..., k - 1 and T_k be the symmetric tridiagonal matrices defined in Lemma 3. Then

(a)

$$\sigma(L(\mathscr{T})) = (\bigcup_{j \in \Omega} \sigma(T_j)) \cup \sigma(T_k).$$

(b) The multiplicity of each eigenvalue of the matrix T_j, as an eigenvalue of L(𝒯), is at least (n_j − n_{j+1}) for j ∈ Ω and 1 for j = k.

Proof. We recall that the eigenvalues of any symmetric tridiagonal matrix with nonzero codiagonal entries are simple. Then, (a) and (b) are immediate consecuences of this fact, Theorem 2 and Lemma 3. \Box

Example 2. Let \mathscr{T} be the tree in Example 1. For this tree, k = 4, $d_1 = 1$, $d_2 = 3$, $d_3 = 3$, $d_4 = 3$, $n_1 = 12$, $n_2 = 6$ and $n_3 = 3$. Hence

$$T_4 = \begin{bmatrix} 1 & \sqrt{2} & 0 & 0 \\ \sqrt{2} & 3 & \sqrt{2} & 0 \\ 0 & \sqrt{2} & 3 & \sqrt{3} \\ 0 & 0 & \sqrt{3} & 3 \end{bmatrix}$$

and $\Omega = \{1, 2, 3\}$. The eigenvalues of $L(\mathcal{T})$ are the eigenvalues of T_1, T_2, T_3 and T_4 . To four decimal places these eigenvalues are:

T_1 :	1			
T_2 :	0.2679	3.7321		
T_3 :	0.0968	2.1939	4.709	
T_4 :	0	1.1864	3.4707	5.3429

Example 3. Let \mathcal{T} be the tree

	Γ1	$\sqrt{2}$	0	0	0 -
	$\sqrt{2}$	3	1	0	0
$T_{5} =$	0	1	2	$\sqrt{2}$	0
	0	0	$\sqrt{2}$	3	$\sqrt{2}$
	0	0	0	$\sqrt{2}$	2 _

and $\Omega = \{1, 3, 4\}$. Thus the spectrum of $L(\mathcal{T})$ is the union of the spectra of T_1, T_3, T_4 and T_5 :

T_1 :	1				
T_3 :	0.1392	1.7459	4.1149		
T_4 :	0.0646	1	3.4626	4.4728	
$T_{5}:$	0	0.5617	1.8614	3.8202	4.7566

We recall the following interlacing property [3]:

Let T be a symmetric tridiagonal matrix with nonzero codiagonal entries and $\lambda_i^{(j)}$ be the ith smallest eigenvalue of its $j \times j$ principal submatrix. Then,

$$\begin{split} \lambda_{j+1}^{(j+1)} < \lambda_j^{(j)} < \lambda_j^{(j+1)} < \cdots < \lambda_{i+1}^{(j+1)} < \lambda_i^{(j)} < \lambda_i^{(j+1)} < \cdots < \lambda_2^{(j+1)} \\ < \lambda_1^{(j)} < \lambda_1^{(j+1)}. \end{split}$$

Theorem 5. Let $L(\mathcal{T})$ be the Laplacian matrix of \mathcal{T} . Then

(a) $\sigma(T_{j-1}) \cap \sigma(T_j) = \phi$ for j = 2, 3, ..., k.

- (b) The largest eigenvalue of T_k is the largest eigenvalue of $L(\mathcal{T})$.
- (c) The smallest eigenvalue of T_{k-1} is the algebraic connectivity of \mathcal{T} .
- (d) The largest eigenvalue of T_{k-1} is the second largest eigenvalue of $L(\mathcal{T})$.
- (e) det $T_j = 1$ for j = 1, 2, ..., k 1.

(f) If λ is an integer eigenvalue of $L(\mathcal{F})$ and $\lambda > 1$ then $\lambda \in \sigma(T_k)$.

Proof. First we observe that $k - 1 \in \Omega$. Thus the eigenvalues of T_{k-1} are always eigenvalues of $L(\mathscr{T})$. Now (a), (b), (c) and (d) follow from the interlacing property and Theorem 4. Clearly, det $T_1 = 1$. Let $2 \leq j \leq k - 1$. We apply the Gaussian elimination procedure, without row interchanges, to reduce the matrix T_j to the upper triangular matrix

[1	$\sqrt{d_2 - 1}$	0	•••		0]
0	1	$\sqrt{d_3 - 1}$:
0	0	1	$\sqrt{d_4 - 1}$:
:	·		·	·.	0
:		·	0	1	$\sqrt{d_j - 1}$
0			0	0	1

Thus, (e) is proved. Since $P_0(\lambda) = 1$ and $P_1(\lambda) = \lambda - 1$, it follows from the recursion formula $P_j(\lambda) = (\lambda - d_j)P_{j-1} - \frac{n_{j-1}}{n_j}P_{j-2}(\lambda)$ that $P_j(\lambda)$ is a polynomial with integer coefficients. Therefore, if λ is an eigenvalue of T_j then λ exactly divides $P_j(0)$. Moreover, $P_j(0) = (-1)^j$ det $T_j = (-1)^j$. Consequently, no integer greater than 1 is an eigenvalue of T_j . \Box

3. The spectrum of the adjacency matrix of ${\mathscr T}$

Let

$$D = \begin{bmatrix} -I_{n_1} & 0 & 0 & \cdots & \cdots & 0 \\ 0 & I_{n_2} & 0 & \ddots & & \vdots \\ 0 & 0 & -I_{n_3} & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \ddots & 0 \\ \vdots & & \ddots & \ddots & (-1)^{k-1} I_{n_{k-1}} & 0 \\ 0 & \cdots & \cdots & 0 & 0 & (-1)^k \end{bmatrix}.$$

From (3),

$$A(\mathscr{F}) = \begin{bmatrix} 0 & C_1 & 0 & \cdots & \cdots & 0 \\ C_1^{\mathrm{T}} & 0 & C_2 & \ddots & & \vdots \\ 0 & C_2^{\mathrm{T}} & \ddots & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & C_{k-2} & 0 \\ \vdots & & \ddots & C_{k-2}^{\mathrm{T}} & 0 & C_{k-1} \\ 0 & \cdots & \cdots & 0 & C_{k-1}^{\mathrm{T}} & 0 \end{bmatrix}$$

It is easily see that

$$D(\lambda I + A(\mathscr{T}))D^{-1} = \lambda I - A(\mathscr{T}).$$

This fact will be used in the proof of the following theorem.

Theorem 6. Let

 $S_0(\lambda) = 1, \quad S_1(\lambda) = \lambda$

and

$$S_j(\lambda) = \lambda S_{j-1}(\lambda) - \frac{n_{j-1}}{n_j} S_{j-2}(\lambda) \quad for \ j = 2, 3, \dots, k.$$

Then

(a) If
$$S_j(\lambda) \neq 0$$
, for all $j = 1, 2, ..., k - 1$, then

$$\det(\lambda I - A(\mathcal{F})) = S_k(\lambda) \prod_{j \in \Omega} S_j^{n_j - n_{j+1}}(\lambda).$$

(b)

$$\sigma(A(\mathscr{T})) = (\bigcup_{j \in \Omega} \{\lambda \in \mathbb{R} : S_j(\lambda) = 0\}) \cup \{\lambda \in \mathbb{R} : S_k(\lambda) = 0\}.$$

Proof. Similar to the proof of Theorem 2. Apply Lemma 1 to the matrix $M = \lambda I + A(\mathcal{F})$. For this matrix $\alpha_j = \lambda$ for j = 1, 2, ..., k. Finally, use the fact that $\det(\lambda I - A(\mathcal{F})) = \det(\lambda I + A(\mathcal{F}))$. \Box

Lemma 7. For j = 1, 2, 3, ..., k - 1, let R_j be the $j \times j$ principal submatrix of the $k \times k$ tridiagonal matrix

	0	$\sqrt{d_2 - 1}$	0	•••		0	
	$\sqrt{d_2 - 1}$	0	$\sqrt{d_3 - 1}$	·		÷	
R. —	0	$\sqrt{d_3 - 1}$	·	·	·	÷	
$n_k -$	÷	·	·	·	$\sqrt{d_{k-2}-1}$	0	
	÷		·	$\sqrt{d_{k-2} - 1}$	0	$\sqrt{d_k}$	
	0			0	$\sqrt{d_k}$	0	

Then

$$\det(\lambda I - R_j) = S_j(\lambda), \quad j = 1, 2, \dots, k.$$

Proof. Similar to the proof of Lemma 3. \Box

Theorem 8. Let R_j , j = 1, 2, ..., k - 1 and R_k be the symmetric tridiagonal matrices defined in Lemma 7.

(a)

$$\sigma(A(\mathscr{T})) = (\bigcup_{j \in \Omega} \sigma(R_j)) \cup \sigma(R_k).$$

(b) The multiplicity of each eigenvalue of the matrix R_j, as an eigenvalue of A(𝒯), is at least (n_j − n_{j+1}) for j ∈ Ω and 1 for j = k.

Proof. (a) and (b) are immediate consequences of Theorem 6, Lemma 7 and the fact that the eigenvalues of any symmetric tridiagonal matrix with nonzero codiagonal entries are simple. \Box

Example 4. Let \mathscr{T} be the tree in Example 1. Then, k = 4, $d_1 = 1$, $d_2 = 3$, $d_3 = 3$ and $d_4 = 3$. Hence

$$R_4 = \begin{bmatrix} 0 & \sqrt{2} & 0 & 0 \\ \sqrt{2} & 0 & \sqrt{2} & 0 \\ 0 & \sqrt{2} & 0 & \sqrt{3} \\ 0 & 0 & \sqrt{3} & 0 \end{bmatrix}.$$

and $\Omega = \{1, 2, 3\}$. To four decimal places these eigenvalues are

4. Applications to some trees

In this section, we apply the results of the previous sections to some specific trees.

4.1. Balanced binary tree

112

In a balanced binary tree \mathscr{B}_k of k levels, we have $d_k = 2$ for the root vertex degree and $d_{k-j+1} = 3$ for j = 2, 3, ..., k - 1. Clearly, $\Omega = \{1, 2, ..., k - 1\}$. Then

$$\sigma(L(\mathscr{B}_k)) = \bigcup_{i=1}^k \sigma(T_i)$$

where for j = 1, ..., k - 1, T_j is the $j \times j$ principal submatrix of the $k \times k$ symmetric tridiagonal matrix

$$T_{k} = \begin{bmatrix} 1 & \sqrt{2} & 0 & \cdots & \cdots & 0 \\ \sqrt{2} & 3 & \ddots & & \vdots \\ 0 & \ddots & & \ddots & & \vdots \\ \vdots & & \ddots & & \ddots & 0 \\ \vdots & & & \ddots & 3 & \sqrt{2} \\ 0 & \cdots & \cdots & 0 & \sqrt{2} & 2 \end{bmatrix}.$$

This is the main result in [6]. In [5] quite tight lower and upper bounds for the algebraic connectivity of \mathscr{B}_k are given and in [7] the integer eigenvalues of $L(\mathscr{B}_k)$ are found.

For the adjacency matrix of \mathscr{B}_k we have

 $\sigma(A(\mathscr{B}_k)) = \bigcup_{j=1}^k \sigma(R_j),$ where, for $j = 1, \dots, k-1, R_j$ is the $j \times j$ principal submatrix of $\begin{bmatrix} 0 & \sqrt{2} & 0 & \cdots & \cdots & 0 \end{bmatrix}$

$$R_{k} = \begin{bmatrix} 0 & \sqrt{2} & 0 & \cdots & \cdots & 0 \\ \sqrt{2} & 0 & \ddots & & \vdots \\ 0 & \ddots & & \ddots & & \vdots \\ \vdots & & \ddots & & \ddots & 0 \\ \vdots & & & \ddots & 0 & \sqrt{2} \\ 0 & \cdots & \cdots & 0 & \sqrt{2} & 0 \end{bmatrix}$$

of order $k \times k$.

113

4.2. Balanced 2^p -ary tree

In the tree \mathscr{B}_k , from the root vertex until the vertices in the level (k-1), each vertex originates two more new vertices. Let us consider a tree of k levels in which from the root vertex until the vertices in the level (k-1), each vertex originates 2^p more new vertices. We call this tree a balanced 2^p -ary tree and we denote it by \mathscr{B}_k^p .

Example 5. The tree \mathscr{B}_3^2 is

The total number of vertices in \mathscr{B}_k^p is

$$n = 1 + 2^{p} + \dots + 2^{(k-1)p} = \frac{2^{kp} - 1}{2^{p} - 1}$$

Now $d_k = 2^p$ for the root vertex degree, $d_{k-j+1} = 2^p + 1$ and $\frac{n_{k-j}}{n_{k-j+1}} = 2^p$ for j = 2, 3, ..., k - 1, and $n_{k-1} = 2^p$. Then

$$\sigma(L(\mathscr{B}_k^p)) = \bigcup_{j=1}^k \sigma(T_j),$$

where T_j , j = 1, ..., k - 1, is the $j \times j$ principal submatrix of $k \times k$ symmetric tridiagonal matrix

$$T_{k} = \begin{bmatrix} 1 & \sqrt{2^{p}} & 0 & \cdots & \cdots & 0 \\ \sqrt{2^{p}} & 2^{p} + 1 & \ddots & & \vdots \\ 0 & \ddots & \ddots & \ddots & & \vdots \\ \vdots & & \ddots & \ddots & 0 \\ \vdots & & & \ddots & 2^{p} + 1 & \sqrt{2^{p}} \\ 0 & \cdots & \cdots & 0 & \sqrt{2^{p}} & 2^{p} \end{bmatrix}$$

For the adjacency matrix of \mathscr{B}_k^p we have

$$\sigma(A(\mathscr{B}_k^p)) = \bigcup_{j=1}^k \sigma(R_j),$$

where, for j = 1, ..., k - 1, the matrix R_j is the $j \times j$ principal submatrix of the $k \times k$ symmetric tridiagonal matrix

$$R_{k} = \begin{bmatrix} 0 & \sqrt{2^{p}} & 0 & \cdots & \cdots & 0 \\ \sqrt{2^{p}} & 0 & \ddots & & \vdots \\ 0 & \ddots & \ddots & \ddots & & \vdots \\ \vdots & & \ddots & \ddots & 0 \\ \vdots & & & \ddots & 0 & \sqrt{2^{p}} \\ 0 & \cdots & \cdots & 0 & \sqrt{2^{p}} & 0 \end{bmatrix}.$$

Example 6. The eigenvalues of the Laplacian matrix and adjacency matrix of \mathscr{B}_3^2 are the eigenvalues of the principal submatrices of the matrices

$$T_3 = \begin{bmatrix} 1 & 2 & 0 \\ 2 & 5 & 2 \\ 0 & 2 & 4 \end{bmatrix}$$

and

$$R_3 = \begin{bmatrix} 0 & 2 & 0 \\ 2 & 0 & 2 \\ 0 & 2 & 0 \end{bmatrix},$$

respectively. These eigenvalues are

for the Laplacian matrix and

 $R_1: 0$ $R_2: -2 2$ $R_3: -2.8284 0 2.8284$

for the adjacency matrix.

4.3. Balanced factorial tree

We introduce a balanced tree of k levels in which, from the root vertex until the vertices in the level (k - 1), each vertex in the level j originates (j + 1) new vertices. Let us denote this tree by \mathscr{F}_k . For example, the tree \mathscr{F}_4 is

The degree of the vertices in each level of \mathcal{F}_k is as follows:

$$j - \text{level} j = 1 d_k = 2 j = 2 d_{k-1} = 4 j = 3 d_{k-2} = 5 j = 4 d_{k-3} = 6 \vdots j = k - 1 d_2 = k + 1 j = k d_1 = 1.$$

Then

$$\sigma(L(\mathscr{F}_k)) = \bigcup_{j=1}^k \sigma(T_j),$$

where, for j = 1, ..., k - 1, T_j is the $j \times j$ principal submatrix of the $k \times k$ tridiagonal matrix

$$T_{k} = \begin{bmatrix} 1 & \sqrt{k} & 0 & \cdots & \cdots & 0 \\ \sqrt{k} & k+1 & \sqrt{k-1} & & \vdots \\ 0 & \sqrt{k-1} & k & \ddots & & \vdots \\ \vdots & & \ddots & & \ddots & 0 \\ \vdots & & & \ddots & 4 & \sqrt{2} \\ 0 & \cdots & \cdots & 0 & \sqrt{2} & 2 \end{bmatrix}$$

and

$$\sigma(A(\mathscr{F}_k)) = \bigcup_{i=1}^k \sigma(R_i),$$

where, for j = 1, ..., k - 1, R_j is the $j \times j$ principal submatrix of the $k \times k$ tridiagonal matrix

	0	\sqrt{k}	0			0	
	\sqrt{k}	0	$\sqrt{k-1}$			÷	
n	0	$\sqrt{k-1}$	·	·.		÷	
$\kappa_k =$	÷		·	·.	·.	0	•
	÷			·	0	$\sqrt{2}$	
	0			0	$\sqrt{2}$	0	

Example 7. For the tree \mathscr{F}_4 we have

$$T_4 = \begin{bmatrix} 1 & 2 & 0 & 0 \\ 2 & 5 & \sqrt{3} & 0 \\ 0 & \sqrt{3} & 4 & \sqrt{2} \\ 0 & 0 & \sqrt{2} & 2 \end{bmatrix}$$

and the eigenvalues of $L(\mathcal{F}_4)$ to four decimal places are

The eigenvalues of the adjacency matrix $A(\mathcal{F}_4)$ are the eigenvalues of the principal submatrices of

$$R_4 = \begin{bmatrix} 0 & 2 & 0 & 0 \\ 2 & 0 & \sqrt{3} & 0 \\ 0 & \sqrt{3} & 0 & \sqrt{2} \\ 0 & 0 & \sqrt{2} & 0 \end{bmatrix}$$

and they are

R_1 :	0			
R_2 :	-2	2		
R_3 :	-2.6458	0	2.6458	
R_4 :	-2.8284	-1	1	2.8284

Acknowledgment

The authors are grateful to the referee for valuable comments, which led to an improved version of the paper.

References

- L.N. Trefethen, D. Bau III, Numerical Linear Algebra, Society for Industrial and Applied Mathematics, 1997.
- [2] M. Fiedler, Algebraic connectivity of graphs, Czechoslovak Math. J. 23 (1973) 298–305.
- [3] G.H. Golub, C.F. Van Loan, Matrix Computations, second ed., Johns Hopkins University Press, Baltimore, 1989.
- [4] R. Merris, Laplacian matrices of graphs: a survey, Linear Algebra Appl. 197–198 (1994) 143–176.
- [5] J.J. Molitierno, M. Neumann, B.L. Shader, Tight bounds on the algebraic connectivity of a balanced binary tree, Electron. J. Linear Algebra 6 (2000) 62–71.
- [6] O. Rojo, The spectrum of the Laplacian matrix of a balanced binary tree, Linear Algebra Appl. 349 (2002) 203–219.
- [7] O. Rojo, M. Peña, A note on the integer eigenvalues of the Laplacian matrix of a balanced binary tree, Linear Algebra Appl. 362 (2003) 293–300.