LINEAR ALGEBRA AND ITS APPLICATIONS

The spectra of the adjacency matrix and Laplacian matrix for some balanced trees ${ }^{\text {*/ }}$

Oscar Rojo *, Ricardo Soto ${ }^{1}$
Departamento de Matemáticas, Universidad Católica del Norte, Casilla 1280, Antofagasta, Chile
Received 19 May 2004; accepted 20 January 2005
Available online 2 March 2005
Submitted by R.A. Brualdi

Abstract

Let \mathscr{T} be an unweighted rooted tree of k levels such that in each level the vertices have equal degree. Let d_{k-j+1} denotes the degree of the vertices in the level j. We find the eigenvalues of the adjacency matrix and of the Laplacian matrix of \mathscr{T}. They are the eigenvalues of principal submatrices of two nonnegative symmetric tridiagonal matrices of order $k \times k$. The codiagonal entries for both matrices are $\sqrt{d_{j}-1}, 2 \leqslant j \leqslant k-1$, and $\sqrt{d_{k}}$, while the diagonal entries are zeros, in the case of the adjacency matrix, and $d_{j}, 1 \leqslant j \leqslant k$, in the case of the Laplacian matrix. Moreover, we give some results concerning to the multiplicity of the above mentioned eigenvalues. © 2005 Elsevier Inc. All rights reserved.

AMS classification: 5C50; 15A48
Keywords: Tree; Balanced tree; Binary tree; m-Ary tree; Laplacian matrix; Adjacency matrix

[^0]
1. Notations and preliminaries

Let \mathscr{G} be a simple graph. Let $A(\mathscr{G})$ be the adjacency matrix of \mathscr{G} and let $D(\mathscr{G})$ be the diagonal matrix of vertex degrees. The Laplacian matrix of \mathscr{G} is $L(\mathscr{G})=D(\mathscr{G})-$ $A(\mathscr{G})$. Clearly, $L(\mathscr{G})$ is a real symmetric matrix. From this fact and Geršgorin's theorem, it follows that its eigenvalues are nonnegative real numbers. Moreover, since its rows sum to 0,0 is the smallest eigenvalue of $L(\mathscr{G})$. In [4], some of the many results known for Laplacian matrices are given. Fiedler [2] proved that \mathscr{G} is a connected graph if and only if the second smallest eigenvalue of $L(\mathscr{G})$ is positive. This eigenvalue is called the algebraic connectivity of \mathscr{G}.

We recall that a tree is a connected acyclic graph. Here we consider an unweighted rooted tree \mathscr{T} such that in each level the vertices have equal degree. We agree that the root vertex is at level 1 and that \mathscr{T} has k levels. Thus the vertices in the level k have degree 1 .

For $j=1,2,3, \ldots, k$, the numbers d_{k-j+1} and n_{k-j+1} denote the degree of the vertices and the number of vertices in the level j, respectively. Then, for $j=$ $2,3, \ldots k-1$,

$$
\begin{equation*}
n_{k-j}=\left(d_{k-j+1}-1\right) n_{k-j+1} \tag{1}
\end{equation*}
$$

Observe that d_{k} is the degree of the root vertex, $d_{1}=1$ is the degree of the vertices in the level $k, n_{k}=1, n_{k-1}=d_{k}, n_{j+1}$ divides n_{j} for all $j=1, \ldots, k-1$ and that the total number of vertices in the tree is

$$
n=\sum_{j=1}^{k-1} n_{j}+1
$$

We introduce the following notations:
If all the eigenvalues of an $n \times n$ matrix A are real numbers, we write

$$
\lambda_{n}(A) \leqslant \lambda_{n-1}(A) \leqslant \cdots \leqslant \lambda_{2}(A) \leqslant \lambda_{1}(A)
$$

0 is the all zeros matrix.
The order of 0 will be clear from the context in which it is used.
I_{m} is the identity matrix of order $m \times m$.
\mathbf{e}_{m} is the all ones column vector of dimension m.
For $j=1,2, \ldots, k-1, C_{j}$ is the block diagonal matrix defined by

$$
C_{j}=\left[\begin{array}{cccc}
\mathbf{e}_{\frac{n_{j}}{}}^{n_{j+1}} & 0 & \cdots & 0 \tag{2}\\
0 & \mathbf{e}_{n_{j}} & & \vdots \\
\vdots & & \ddots & 0 \\
0 & \cdots & 0 & \mathbf{e}_{\frac{n_{j}}{n_{j+1}}}^{n_{j+1}}
\end{array}\right]
$$

with n_{j+1} diagonal blocks. Thus, the order of C_{j} is $n_{j} \times n_{j+1}$. Observe that $C_{k-1}=$ $\mathbf{e}_{n_{k-1}}$.

Let us illustrate the notations above introduced and our labeling for \mathscr{T} with the following example.

Example 1. Let \mathscr{T} be the tree

We see that this tree has 4 levels, $n_{1}=12, n_{2}=6, n_{3}=3, n_{4}=1$ and the vertex degrees are $d_{1}=1, d_{2}=3, d_{3}=3, d_{4}=3$. Then, $\frac{n_{1}}{n_{2}}=2, \frac{n_{2}}{n_{3}}=2$ and $\frac{n_{3}}{n_{4}}=3$. The matrices defined in (2) are

$$
\begin{aligned}
& C_{1}=\left[\begin{array}{llllll}
1 & & & & & \\
1 & & & & & \\
& 1 & & & & \\
& 1 & & & & \\
& & 1 & & & \\
& & 1 & & & \\
& & & 1 & & \\
& & & 1 & & \\
& & & & 1 & \\
& & & & 1 & \\
& & & & & 1 \\
& & & & & 1
\end{array}\right]=\operatorname{diag}\left\{\mathbf{e}_{2}, \mathbf{e}_{2}, \mathbf{e}_{2}, \mathbf{e}_{2}, \mathbf{e}_{2}, \mathbf{e}_{2}\right\}, \\
& C_{2}=\left[\begin{array}{llll}
1 & & \\
1 & & \\
& 1 & \\
& 1 & \\
& & 1 \\
& & 1
\end{array}\right]=\operatorname{diag}\left\{\mathbf{e}_{2}, \mathbf{e}_{2}, \mathbf{e}_{2}\right\}, C_{3}=\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]=\mathbf{e}_{3} .
\end{aligned}
$$

In general, using the labels $1,2,3, \ldots, n$, in this order, our labeling for the vertices of \mathscr{T} is: Label the vertices from the bottom to the root vertex and, in each level, from the left to the right.

For this labeling the adjacency matrix $A(\mathscr{T})$ and Laplacian matrix $L(\mathscr{T})$ of the tree in Example 1 become

$$
A(\mathscr{T})=\left[\begin{array}{cccc}
0 & C_{1} & 0 & 0 \\
C_{1}^{\mathrm{T}} & 0 & C_{2} & 0 \\
0 & C_{2}^{\mathrm{T}} & 0 & C_{3} \\
0 & 0 & C_{3}^{\mathrm{T}} & 0
\end{array}\right]
$$

and

$$
L(\mathscr{T})=\left[\begin{array}{cccc}
I_{12} & -C_{1} & 0 & 0 \\
-C_{1}^{\mathrm{T}} & 3 I_{6} & -C_{2} & 0 \\
0 & -C_{2}^{\mathrm{T}} & 3 I_{2} & -C_{3} \\
0 & 0 & -C_{3}^{\mathrm{T}} & 3
\end{array}\right]
$$

with C_{1}, C_{2} and C_{3} as in Example 1.
In general, our labeling yields to

$$
A(\mathscr{T})=\left[\begin{array}{cccccc}
0 & C_{1} & 0 & \cdots & \cdots & 0 \tag{3}\\
C_{1}^{\mathrm{T}} & 0 & C_{2} & \ddots & & \vdots \\
0 & C_{2}^{\mathrm{T}} & \ddots & \ddots & \ddots & \vdots \\
\vdots & \ddots & \ddots & \ddots & C_{k-2} & 0 \\
\vdots & & \ddots & C_{k-2}^{\mathrm{T}} & 0 & C_{k-1} \\
0 & \cdots & \cdots & 0 & C_{k-1}^{\mathrm{T}} & 0
\end{array}\right]
$$

and

$$
L(\mathscr{T})=\left[\begin{array}{cccccc}
I_{n_{1}} & -C_{1} & 0 & \cdots & \cdots & 0 \tag{4}\\
-C_{1}^{\mathrm{T}} & d_{2} I_{n_{2}} & C_{2} & \ddots & & \vdots \\
0 & -C_{2}^{\mathrm{T}} & \ddots & \ddots & \ddots & \vdots \\
\vdots & \ddots & \ddots & d_{k-2} I_{n_{k-2}} & -C_{k-2} & 0 \\
\vdots & & \ddots & -C_{k-2}^{\mathrm{T}} & d_{k-1} I_{n_{k-1}} & -C_{k-1} \\
0 & \cdots & \cdots & 0 & -C_{k-1}^{\mathrm{T}} & d_{k}
\end{array}\right]
$$

The following lemma plays a fundamental role in this paper.
Lemma 1. Let

$$
M=\left[\begin{array}{ccccccc}
\alpha_{1} I_{n_{1}} & C_{1} & 0 & \cdots & \cdots & \cdots & 0 \\
C_{1}^{\mathrm{T}} & \alpha_{2} I_{n_{2}} & C_{2} & \ddots & & & \\
0 & C_{2}^{\mathrm{T}} & & & \ddots & & \\
\vdots & \ddots & & & & \ddots & \\
\vdots & & \ddots & & \alpha_{k-2} I_{n_{k-2}} & C_{k-2} & 0 \\
\vdots & & & \ddots & C_{k-2}^{\mathrm{T}} & \alpha_{k-1} I_{n_{k-1}} & C_{k-1} \\
0 & \cdots & \cdots & \cdots & 0 & C_{k-1}^{\mathrm{T}} & \alpha_{k}
\end{array}\right]
$$

Let

$$
\beta_{1}=\alpha_{1}
$$

and

$$
\beta_{j}=\alpha_{j}-\frac{n_{j-1}}{n_{j}} \frac{1}{\beta_{j-1}}, \quad j=2,3, \ldots, k, \beta_{j-1} \neq 0
$$

If $\beta_{j} \neq 0$ for all $j=1,2, \ldots, k-1$,

$$
\begin{equation*}
\operatorname{det} M=\beta_{1}^{n_{1}} \beta_{2}^{n_{2}} \ldots \beta_{k-2}^{n_{k-2}} \beta_{k-1}^{n_{k-1}} \beta_{k} \tag{5}
\end{equation*}
$$

Proof. Suppose $\beta_{j} \neq 0$ for all $j=1,2, \ldots, k-1$. We apply the Gaussian elimination procedure, without row interchanges, to reduce the matrix M to an upper triangular matrix. Just before the last step, we have the matrix

$$
\left[\begin{array}{ccccccc}
\beta_{1} I_{n_{1}} & C_{1} & 0 & \cdots & \cdots & \cdots & 0 \\
0 & \beta_{2} I_{n_{2}} & C_{2} & & & & \vdots \\
0 & 0 & \beta_{3} I_{n_{3}} & C_{3} & & & \vdots \\
\vdots & & 0 & \ddots & \ddots & & \vdots \\
\vdots & & & \ddots & \ddots & C_{k-2} & 0 \\
\vdots & & & & 0 & \beta_{k-1} I_{n_{k-1}} & C_{k-1} \\
0 & \cdots & \cdots & \cdots & 0 & C_{k-1}^{\mathrm{T}} & \alpha_{k}
\end{array}\right]
$$

Finally, the Gaussian elimination gives

$$
\left[\begin{array}{ccccccc}
\beta_{1} I_{n_{1}} & C_{1} & 0 & \cdots & \cdots & \cdots & 0 \tag{6}\\
0 & \beta_{2} I_{n_{2}} & C_{2} & & & & \vdots \\
0 & 0 & \beta_{3} I_{n_{3}} & C_{3} & & & \vdots \\
\vdots & & 0 & \ddots & \ddots & & \vdots \\
\vdots & & & \ddots & \ddots & C_{k-2} & 0 \\
\vdots & & & & 0 & \beta_{k-1} I_{n_{k-1}} & C_{k-1} \\
0 & \cdots & \cdots & \cdots & 0 & 0 & \alpha_{k}-n_{k-1} \frac{1}{\beta_{k-1}}
\end{array}\right] .
$$

Thus, (5) is proved.

2. The spectrum of the Laplacian matrix of \mathscr{T}

Let

$$
\Phi=\{1,2,3, \ldots, k-1\} .
$$

We consider the following subset of Φ,

$$
\Omega=\left\{j \in \Phi: n_{j}>n_{j+1}\right\}
$$

Since $n_{k-1}>n_{k}=1$, the index $k-1 \in \Omega$. Observe that if $i \in \Phi-\Omega$ then $n_{i}=$ n_{i+1} and thus, from (2), $C_{i}=I_{n_{i}}$.

Theorem 2. Let

$$
P_{0}(\lambda)=1, \quad P_{1}(\lambda)=\lambda-1
$$

and

$$
\begin{equation*}
P_{j}(\lambda)=\left(\lambda-d_{j}\right) P_{j-1}(\lambda)-\frac{n_{j-1}}{n_{j}} P_{j-2}(\lambda) \quad \text { for } j=2,3, \ldots, k \tag{7}
\end{equation*}
$$

Hence
(a) If $P_{j}(\lambda) \neq 0$, for all $j=1,2, \ldots, k-1$, then

$$
\begin{equation*}
\operatorname{det}(\lambda I-L(\mathscr{T}))=P_{k}(\lambda) \prod_{j \in \Omega} P_{j}^{n_{j}-n_{j+1}}(\lambda) . \tag{8}
\end{equation*}
$$

(b)

$$
\begin{equation*}
\sigma(L(\mathscr{T}))=\left(\cup_{j \in \Omega}\left\{\lambda \in \mathbb{R}: P_{j}(\lambda)=0\right\}\right) \cup\left\{\lambda \in \mathbb{R}: P_{k}(\lambda)=0\right\} . \tag{9}
\end{equation*}
$$

Proof. (a) We apply Lemma 1 to the matrix $M=\lambda I-L(\mathscr{T})$. For this matrix $\alpha_{1}=$ $\lambda-1$ and $\alpha_{j}=\lambda-d_{j}$ for $j=2,3, \ldots, k$. Let $\beta_{1}, \beta_{2}, \ldots, \beta_{k}$ be as in Lemma 1. Suppose that $\lambda \in \mathbb{R}$ is such that $P_{j}(\lambda) \neq 0$ for all $j=1,2, \ldots, k-1$. We have

$$
\begin{aligned}
\beta_{1} & =\lambda-1=\frac{P_{1}(\lambda)}{P_{0}(\lambda)} \neq 0, \\
\beta_{2} & =\left(\lambda-d_{2}\right)-\frac{n_{1}}{n_{2}} \frac{1}{\beta_{1}}=\left(\lambda-d_{2}\right)-\frac{n_{1}}{n_{2}} \frac{P_{0}(\lambda)}{P_{1}(\lambda)} \\
& =\frac{\left(\lambda-d_{2}\right) P_{1}(\lambda)-\frac{n_{1}}{n_{2}} P_{0}(\lambda)}{P_{1}(\lambda)}=\frac{P_{2}(\lambda)}{P_{1}(\lambda)} \neq 0, \\
\beta_{3} & =\left(\lambda-d_{3}\right)-\frac{n_{2}}{n_{3}} \frac{1}{\beta_{2}}=\left(\lambda-d_{3}\right)-\frac{n_{2}}{n_{3}} \frac{P_{1}(\lambda)}{P_{2}(\lambda)} \\
& =\frac{\left(\lambda-d_{3}\right) P_{2}(\lambda)-\frac{n_{2}}{n_{3}} P_{1}(\lambda)}{P_{2}(\lambda)}=\frac{P_{3}(\lambda)}{P_{2}(\lambda)} \neq 0, \\
& \vdots \\
\beta_{k-1} & =\left(\lambda-d_{k-1}\right)-\frac{n_{k-2}}{n_{k-1}} \frac{1}{\beta_{k-2}}=\left(\lambda-d_{k-1}\right)-\frac{n_{k-2}}{n_{k-1}} \frac{P_{k-3}(\lambda)}{P_{k-2}(\lambda)} \\
& =\frac{\left(\lambda-d_{k-1}\right) P_{k-2}(\lambda)-\frac{n_{k-2}}{n_{k-1}} P_{k-3}(\lambda)}{P_{k-2}(\lambda)}=\frac{P_{k-1}(\lambda)}{P_{k-2}(\lambda)} \neq 0, \\
\beta_{k} & =\left(\lambda-d_{k}\right)-\frac{n_{k-1}}{n_{k}} \frac{1}{\beta_{k-1}}=\left(\lambda-d_{k}\right)-\frac{n_{k-1}}{n_{k}} \frac{P_{k-2}(\lambda)}{P_{k-1}(\lambda)} \\
& =\frac{\left(\lambda-d_{k}\right) P_{k-1}(\lambda)-\frac{n_{k-1}}{n_{k}} P_{k-2}(\lambda)}{P_{k-1}(\lambda)}=\frac{P_{k}(\lambda)}{P_{k-1}(\lambda)} .
\end{aligned}
$$

From (5)

$$
\begin{aligned}
\operatorname{det}(\lambda I-L(\mathscr{T})) & =\frac{P_{1}^{n_{1}}(\lambda)}{P_{0}^{n_{1}}(\lambda)} \frac{P_{2}^{n_{2}}(\lambda)}{P_{1}^{n_{2}}(\lambda)} \frac{P_{3}^{n_{3}}(\lambda)}{P_{2}^{n_{3}}(\lambda)} \cdots \frac{P_{k-2}^{n_{k-2}}(\lambda)}{P_{k-3}^{n_{k-2}}(\lambda)} \frac{P_{k-1}^{n_{k-1}}(\lambda)}{P_{k-2}^{n_{k-1}}(\lambda)} \frac{P_{k}(\lambda)}{P_{k-1}(\lambda)} \\
& =P_{1}^{n_{1}-n_{2}}(\lambda) P_{2}^{n_{2}-n_{3}}(\lambda) P_{3}^{n_{3}-n_{4}}(\lambda) \ldots P_{k-1}^{n_{k-1}-1}(\lambda) P_{k}(\lambda) \\
& =P_{k}(\lambda) \prod_{j \in \Omega} P_{j}^{n_{j}-n_{j+1}}(\lambda) .
\end{aligned}
$$

Thus, (8) is proved.
(b) From (8), if $\lambda \in \mathbb{R}$ is such that $P_{j}(\lambda) \neq 0$, for all $j=1,2, \ldots, k-1, k$, then $\operatorname{det}(\lambda I-L(\mathscr{T})) \neq 0$. That is

$$
\cap_{j=1}^{k}\left\{\lambda \in \mathbb{R}: P_{j}(\lambda) \neq 0\right\} \subseteq(\sigma(L(\mathscr{T})))^{c} .
$$

That is

$$
\begin{equation*}
\sigma(L(\mathscr{T})) \subseteq\left(\cup_{j=1}^{k-1}\left\{\lambda \in \mathbb{R}: P_{j}(\lambda)=0\right\}\right) \cup\left\{\lambda \in \mathbb{R}: P_{k}(\lambda)=0\right\} . \tag{10}
\end{equation*}
$$

We claim that

$$
\begin{equation*}
\sigma(L(\mathscr{T})) \subseteq\left(\cup_{j \in \Omega}\left\{\lambda \in \mathbb{R}: P_{j}(\lambda)=0\right\}\right) \cup\left\{\lambda \in \mathbb{R}: P_{k}(\lambda)=0\right\} \tag{11}
\end{equation*}
$$

If $\Omega=\Phi=\{1,2, \ldots, k-1\}$ then (11) is (10) and there is nothing to prove. Suppose that Ω is a proper subset of Φ. Clearly, (11) is equivalent to

$$
\cap_{j \in \Omega}\left\{\lambda \in \mathbb{R}: P_{j}(\lambda) \neq 0\right\} \cap\left\{\lambda \in \mathbb{R}: P_{k}(\lambda) \neq 0\right\} \subseteq(\sigma(L(\mathscr{T})))^{c} .
$$

Suppose that $\lambda \in \mathbb{R}$ is such that $P_{j}(\lambda) \neq 0$ for all $j \in \Omega$ and $P_{k}(\lambda) \neq 0$. Since $k-1 \in \Omega, P_{k-1}(\lambda) \neq 0$. If in addition $P_{j}(\lambda) \neq 0$ for all $j \in \Phi-\Omega$ then (8) holds and consequently $\operatorname{det}(\lambda I-L(\mathscr{T})) \neq 0$. That is, $\lambda \in(\sigma(L(\mathscr{T})))^{c}$. If $P_{i}(\lambda)=0$ for some $i \in \Phi-\Omega$, let l be the first index in $\Phi-\Omega$ such that $P_{l}(\lambda)=0$. Then, $\beta_{j} \neq 0$ for all $j=1,2, \ldots, l-1, \beta_{l}=0$ and

$$
P_{l+2}(\lambda)=\left(\lambda-d_{l+2}\right) P_{l+1}(\lambda) .
$$

We observe that $P_{l+1}(\lambda) \neq 0$. Otherwise, a back sustitution in (7) gives $P_{0}(\lambda)=0$. Therefore, $\beta_{l+2}=\frac{P_{l+2}(\lambda)}{P_{l+1}(\lambda)}=\lambda-d_{l+2}$. Since $l \in \Phi-\Omega$, then $n_{l}=n_{l+1}, C_{l}=I_{n_{l}}$ and the Gaussian elimination procedure applied to $M=\lambda I-L(\mathscr{T})$ yields to the intermediate matrix

$$
\begin{aligned}
& {\left[\begin{array}{ccccccc}
\beta_{1} I_{n_{1}} & C_{1} & 0 & \cdots & \cdots & \cdots & 0 \\
0 & \ddots & \ddots & \ddots & & & \vdots \\
\vdots & 0 & 0 & I_{n_{l}} & 0 & & \vdots \\
\vdots & \ddots & I_{n_{l}} & \left(\lambda-d_{l+1}\right) I_{n_{l+1}} & C_{l+1} & \ddots & \vdots \\
\vdots & & \ddots & C_{l+1}^{\mathrm{T}} & \left(\lambda-d_{l+2}\right) I_{n_{l+2}} & \ddots & 0 \\
\vdots & & & \ddots & \ddots & \ddots & C_{k-1} \\
0 & \cdots & \cdots & \cdots & 0 & C_{k-1} & \lambda-d_{k}
\end{array}\right]} \\
& =\left[\begin{array}{ccccccc}
\beta_{1} I_{n_{1}} & C_{1} & 0 & \cdots & \cdots & \cdots & 0 \\
0 & \ddots & \ddots & \ddots & & & \vdots \\
\vdots & 0 & 0 & I_{n_{l}} & 0 & & \vdots \\
\vdots & \ddots & I_{n_{l}} & \left(\lambda-d_{l+1)}\right) I_{n_{l+1}} & C_{l+1} & \ddots & \vdots \\
\vdots & & \ddots & C_{l+1}^{\mathrm{T}} & \beta_{l+2} I_{n_{l+2}} & \ddots & 0 \\
\vdots & & & \ddots & \ddots & \ddots & C_{k-1} \\
0 & \cdots & \cdots & \cdots & 0 & C_{k-1} & \lambda-d_{k}
\end{array}\right] .
\end{aligned}
$$

Next, a number of n_{l} row interchanges gives the matrix

$$
\left[\begin{array}{ccccccc}
\beta_{1} I_{n_{1}} & C_{1} & 0 & \cdots & \cdots & \cdots & 0 \\
0 & \ddots & \ddots & \ddots & & & \vdots \\
\vdots & 0 & I_{n_{l}} & \left(\lambda-d_{l+1)}\right) I_{n_{l+1}} & C_{l+1} & & \vdots \\
\vdots & \ddots & 0 & I_{n_{l}} & 0 & \ddots & \vdots \\
\vdots & & \ddots & C_{l+1}^{\mathrm{T}} & \beta_{l+2} I_{n_{l+2}} & \ddots & 0 \\
\vdots & & & \ddots & \ddots & \ddots & C_{k-1} \\
0 & \cdots & \cdots & \cdots & 0 & C_{k-1}^{\mathrm{T}} & \lambda-d_{k}
\end{array}\right] .
$$

Therefore

$$
\operatorname{det}(\lambda I-L(\mathscr{T}))=(-1)^{n_{l}} \beta_{1}^{n_{1}} \beta_{2}^{n_{2}} \ldots \beta_{l-1}^{n_{l-1}} \operatorname{det}\left[\begin{array}{ccc}
\beta_{l+2} I_{n_{l+2}} & \ddots & 0 \\
\ddots & \ddots & C_{k-1} \\
0 & C_{k-1}^{\mathrm{T}} & \lambda-d_{k}
\end{array}\right]
$$

Now, if there exists $j \in \Phi-\Omega, l+2 \leqslant j \leqslant k-2$, such that $P_{j}(\lambda)=0$, we apply the above procedure to the matrix

$$
\left[\begin{array}{ccc}
\beta_{l+2} I_{\frac{n_{l+2}}{2}} & \ddots & 0 \\
\ddots & \ddots & C_{k-1} \\
0 & C_{k-1}^{\mathrm{T}} & \lambda-d_{k}
\end{array}\right]
$$

Finally, we obtain

$$
\begin{equation*}
\operatorname{det}(\lambda I-L(\mathscr{T}))=\gamma \beta_{k}=\gamma \frac{P_{k}(\lambda)}{P_{k-1}(\lambda)}, \tag{12}
\end{equation*}
$$

where γ is a factor different from 0 . By hypothesis, $P_{k-1}(\lambda) \neq 0$ and $P_{k}(\lambda) \neq$ 0 . Therefore, $\operatorname{det}(\lambda I-L(\mathscr{T})) \neq 0$ and thus $\lambda \notin \sigma(L(\mathscr{T}))$. Hence, (11) is proved. Now, we claim that

$$
\left(\cup_{j \in \Omega}\left\{\lambda \in \mathbb{R}: P_{j}(\lambda)=0\right\}\right) \cup\left\{\lambda \in \mathbb{R}: P_{k}(\lambda)=0\right\} \subseteq \sigma(L(\mathscr{T})) .
$$

Let $\lambda \in \cup_{j \in \Omega}\left\{\lambda \in \mathbb{R}: P_{j}(\lambda)=0\right\}$. Let l be the first index in Ω such that $P_{l}(\lambda)=$ 0 . Then, $\beta_{l}=\frac{P_{l}(\lambda)}{P_{l-1}(\lambda)}=0$. The corresponding intermediate matrix in the Gaussian elimination procedure applied to the matrix $M=\lambda I-L(\mathscr{T})$ is

$$
\left[\begin{array}{cccccc}
\beta_{1} I_{n_{1}} & C_{1} & 0 & \cdots & \cdots & 0 \tag{13}\\
0 & \ddots & \ddots & & & \vdots \\
0 & \ddots & 0 & C_{l} & & \vdots \\
\vdots & \ddots & C_{l}^{\mathrm{T}} & \left(\lambda-d_{l+1}\right) I_{n_{l+1}} & & \vdots \\
\vdots & & \ddots & \ddots & \ddots & C_{k-1} \\
0 & \cdots & \cdots & 0 & C_{k-1}^{\mathrm{T}} & \lambda-d_{k}
\end{array}\right] .
$$

Since $l \in \Omega, n_{l}>n_{l+1}$ and C_{l} is a matrix with more rows than columns. Therefore, the matrix in (13) has at least two equal rows. Thus, $\operatorname{det}(\lambda I-L(\mathscr{T}))=0$. That is, $\lambda \in(L(\mathscr{T}))$. Hence

$$
\begin{equation*}
\cup_{j \in \Omega}\left\{\lambda \in \mathbb{R}: P_{j}(\lambda)=0\right\} \subseteq \sigma(L(\mathscr{T})) . \tag{14}
\end{equation*}
$$

Now let $\lambda \in\left\{\lambda \in \mathbb{R}: P_{k}(\lambda)=0\right\}$. Observe that $P_{k-1}(\lambda) \neq 0$. Otherwise, a back substitution in (7) yields to $P_{0}(\lambda)=0$. If $P_{j}(\lambda)=0$ for some $j \in \Omega$ then the use of (14) gives $\lambda \in \sigma(L(\mathscr{T}))$. Hence, we may suppose that $P_{j}(\lambda) \neq 0$ for all $j \in \Omega$. If in addition $P_{j}(\lambda) \neq 0$ for all $j \in \Phi-\Omega$ then (8) holds and thus $\operatorname{det}(\lambda I-L(\mathscr{T}))=0$ because $P_{k}(\lambda)=0$. If $P_{i}(\lambda)=0$ for some $i \in \Phi-\Omega$ then we have the assumptions under which (12) was obtained. Therefore

$$
\operatorname{det}(\lambda I-L(\mathscr{T}))=\gamma \beta_{k}=\gamma \frac{P_{k}(\lambda)}{P_{k-1}(\lambda)}=0 .
$$

Thus, we have proved that

$$
\begin{equation*}
\left\{\lambda \in \mathbb{R}: P_{k}(\lambda)=0\right\} \subseteq \sigma(L(\mathscr{T})) . \tag{15}
\end{equation*}
$$

From (14) and (15),

$$
\begin{equation*}
\left(\cup_{j \in \Omega}\left\{\lambda \in \mathbb{R}: P_{j}(\lambda)=0\right\}\right) \cup\left\{\lambda \in \mathbb{R}: P_{k}(\lambda)=0\right\} \subseteq \sigma(L(\mathscr{T})) . \tag{16}
\end{equation*}
$$

Finally, (11) and (16) imply (9).
Lemma 3. For $j=1,2,3, \ldots, k-1$, let T_{j} be the $j \times j$ principal submatrix of the $k \times k$ symmetric tridiagonal matrix

$$
T_{k}=\left[\begin{array}{cccccc}
1 & \sqrt{d_{2}-1} & 0 & \cdots & \cdots & 0 \\
\sqrt{d_{2}-1} & d_{2} & \sqrt{d_{3}-1} & \ddots & & \vdots \\
0 & \sqrt{d_{3}-1} & d_{3} & \ddots & \ddots & \vdots \\
\vdots & \ddots & \ddots & \ddots & \sqrt{d_{k-1}-1} & 0 \\
\vdots & & \ddots & \sqrt{d_{k-1}-1} & d_{k-1} & \sqrt{d_{k}} \\
0 & \cdots & \cdots & 0 & \sqrt{d_{k}} & d_{k}
\end{array}\right] .
$$

Then

$$
\operatorname{det}\left(\lambda I-T_{j}\right)=P_{j}(\lambda), \quad j=1,2, \ldots, k
$$

Proof. It is well known (see for instance [1, p.229]) that the characteristic polynomials, Q_{j}, of the $j \times j$ principal submatrix of the $k \times k$ symmetric tridiagonal matrix

$$
\left[\begin{array}{cccccc}
a_{1} & b_{1} & 0 & \cdots & \cdots & 0 \\
b_{1} & a_{2} & b_{2} & \ddots & & \vdots \\
0 & b_{2} & \ddots & \ddots & \ddots & \vdots \\
\vdots & \ddots & \ddots & \ddots & \ddots & 0 \\
\vdots & & \ddots & \ddots & a_{k-1} & b_{k-1} \\
0 & \cdots & \cdots & 0 & b_{k-1} & a_{k}
\end{array}\right]
$$

satisfy the three-term recursion formula

$$
Q_{j}(\lambda)=\left(\lambda-a_{j}\right) Q_{j-1}(\lambda)-b_{j-1}^{2} Q_{j-2}(\lambda)
$$

with

$$
Q_{0}(\lambda)=1 \quad \text { and } \quad Q_{1}(\lambda)=\lambda-a_{1} .
$$

In our case, $a_{1}=1, a_{j}=d_{j}$ for $j=2,3, \ldots, k$ and $b_{j}=\sqrt{\frac{n_{j}}{n_{j+1}}}$ for $j=1,2, \ldots$, $k-1$. For these values, the above recursion formula gives the polynomials $P_{j}, j=$ $0,1,2, \ldots, k$. Now, we use (1), to see that $\sqrt{\frac{n_{j}}{n_{j+1}}}=\sqrt{d_{j}-1}$ for $j=1,2, \ldots, k-$ 2 and $\sqrt{\frac{n_{k-1}}{n_{k}}}=\sqrt{n_{k-1}}=\sqrt{d_{k}}$.

Theorem 4. $\operatorname{Let} T_{j}, j=1,2, \ldots, k-1$ and T_{k} be the symmetric tridiagonal matrices defined in Lemma 3. Then
(a)

$$
\sigma(L(\mathscr{T}))=\left(\cup_{j \in \Omega} \sigma\left(T_{j}\right)\right) \cup \sigma\left(T_{k}\right)
$$

(b) The multiplicity of each eigenvalue of the matrix T_{j}, as an eigenvalue of $L(\mathscr{T})$, is at least $\left(n_{j}-n_{j+1}\right)$ for $j \in \Omega$ and 1 for $j=k$.

Proof. We recall that the eigenvalues of any symmetric tridiagonal matrix with nonzero codiagonal entries are simple. Then, (a) and (b) are immediate consecuences of this fact, Theorem 2 and Lemma 3.

Example 2. Let \mathscr{T} be the tree in Example 1. For this tree, $k=4, d_{1}=1, d_{2}=3$, $d_{3}=3, d_{4}=3, n_{1}=12, n_{2}=6$ and $n_{3}=3$. Hence

$$
T_{4}=\left[\begin{array}{cccc}
1 & \sqrt{2} & 0 & 0 \\
\sqrt{2} & 3 & \sqrt{2} & 0 \\
0 & \sqrt{2} & 3 & \sqrt{3} \\
0 & 0 & \sqrt{3} & 3
\end{array}\right]
$$

and $\Omega=\{1,2,3\}$. The eigenvalues of $L(\mathscr{T})$ are the eigenvalues of T_{1}, T_{2}, T_{3} and T_{4}. To four decimal places these eigenvalues are:

```
T1: 
T2: 0.2679 3.7321
T3: 0.0968 2.1939 4.709
T4: 0
```

Example 3. Let \mathscr{T} be the tree

For this tree, $k=5, n_{1}=8, n_{2}=n_{3}=4, n_{4}=2, n_{5}=1, d_{1}=1, d_{2}=3, d_{3}=2$, $d_{4}=3$ and $d_{5}=2$. Hence the matrix T_{5} is

$$
T_{5}=\left[\begin{array}{ccccc}
1 & \sqrt{2} & 0 & 0 & 0 \\
\sqrt{2} & 3 & 1 & 0 & 0 \\
0 & 1 & 2 & \sqrt{2} & 0 \\
0 & 0 & \sqrt{2} & 3 & \sqrt{2} \\
0 & 0 & 0 & \sqrt{2} & 2
\end{array}\right]
$$

and $\Omega=\{1,3,4\}$. Thus the spectrum of $L(\mathscr{T})$ is the union of the spectra of T_{1}, T_{3}, T_{4} and T_{5} :

```
T1: 1
T3: 0.1392 1.7459 4.1149
T4: 0.0646 1 
T5: 0}0000.5617 1.8614 3.8202 4.7566 
```

We recall the following interlacing property [3]:
Let T be a symmetric tridiagonal matrix with nonzero codiagonal entries and $\lambda_{i}^{(j)}$ be the i th smallest eigenvalue of its $j \times j$ principal submatrix. Then,

$$
\begin{aligned}
\lambda_{j+1}^{(j+1)} & <\lambda_{j}^{(j)}<\lambda_{j}^{(j+1)}<\cdots<\lambda_{i+1}^{(j+1)}<\lambda_{i}^{(j)}<\lambda_{i}^{(j+1)}<\cdots<\lambda_{2}^{(j+1)} \\
& <\lambda_{1}^{(j)}<\lambda_{1}^{(j+1)} .
\end{aligned}
$$

Theorem 5. Let $L(\mathscr{T})$ be the Laplacian matrix of \mathscr{T}. Then
(a) $\sigma\left(T_{j-1}\right) \cap \sigma\left(T_{j}\right)=\phi$ for $j=2,3, \ldots, k$.
(b) The largest eigenvalue of T_{k} is the largest eigenvalue of $L(\mathscr{T})$.
(c) The smallest eigenvalue of T_{k-1} is the algebraic connectivity of \mathscr{T}.
(d) The largest eigenvalue of T_{k-1} is the second largest eigenvalue of $L(\mathscr{T})$.
(e) $\operatorname{det} T_{j}=1$ for $j=1,2, \ldots, k-1$.
(f) If λ is an integer eigenvalue of $L(\mathscr{T})$ and $\lambda>1$ then $\lambda \in \sigma\left(T_{k}\right)$.

Proof. First we observe that $k-1 \in \Omega$. Thus the eigenvalues of T_{k-1} are always eigenvalues of $L(\mathscr{T})$. Now (a), (b), (c) and (d) follow from the interlacing property and Theorem 4 . Clearly, det $T_{1}=1$. Let $2 \leqslant j \leqslant k-1$. We apply the Gaussian elimination procedure, without row interchanges, to reduce the matrix T_{j} to the upper triangular matrix

$$
\left[\begin{array}{cccccc}
1 & \sqrt{d_{2}-1} & 0 & \cdots & \cdots & 0 \\
0 & 1 & \sqrt{d_{3}-1} & & & \vdots \\
0 & 0 & 1 & \sqrt{d_{4}-1} & & \vdots \\
\vdots & \ddots & & \ddots & \ddots & 0 \\
\vdots & & \ddots & 0 & 1 & \sqrt{d_{j}-1} \\
0 & \cdots & \cdots & 0 & 0 & 1
\end{array}\right] .
$$

Thus, (e) is proved. Since $P_{0}(\lambda)=1$ and $P_{1}(\lambda)=\lambda-1$, it follows from the recursion formula $P_{j}(\lambda)=\left(\lambda-d_{j}\right) P_{j-1}-\frac{n_{j-1}}{n_{j}} P_{j-2}(\lambda)$ that $P_{j}(\lambda)$ is a polynomial with integer coefficients. Therefore, if λ is an eigenvalue of T_{j} then λ exactly divides $P_{j}(0)$. Moreover, $P_{j}(0)=(-1)^{j} \operatorname{det} T_{j}=(-1)^{j}$. Consequently, no integer greater than 1 is an eigenvalue of T_{j}.

3. The spectrum of the adjacency matrix of \mathscr{T}

Let

$$
D=\left[\begin{array}{cccccc}
-I_{n_{1}} & 0 & 0 & \cdots & \cdots & 0 \\
0 & I_{n_{2}} & 0 & \ddots & & \vdots \\
0 & 0 & -I_{n_{3}} & \ddots & \ddots & \vdots \\
\vdots & \ddots & \ddots & \ddots & \ddots & 0 \\
\vdots & & \ddots & \ddots & (-1)^{k-1} I_{n_{k-1}} & 0 \\
0 & \cdots & \cdots & 0 & 0 & (-1)^{k}
\end{array}\right]
$$

From (3),

$$
A(\mathscr{T})=\left[\begin{array}{cccccc}
0 & C_{1} & 0 & \cdots & \cdots & 0 \\
C_{1}^{\mathrm{T}} & 0 & C_{2} & \ddots & & \vdots \\
0 & C_{2}^{\mathrm{T}} & \ddots & \ddots & \ddots & \vdots \\
\vdots & \ddots & \ddots & \ddots & C_{k-2} & 0 \\
\vdots & & \ddots & C_{k-2}^{\mathrm{T}} & 0 & C_{k-1} \\
0 & \cdots & \cdots & 0 & C_{k-1}^{\mathrm{T}} & 0
\end{array}\right]
$$

It is easily see that

$$
D(\lambda I+A(\mathscr{T})) D^{-1}=\lambda I-A(\mathscr{T}) .
$$

This fact will be used in the proof of the following theorem.
Theorem 6. Let

$$
S_{0}(\lambda)=1, \quad S_{1}(\lambda)=\lambda
$$

and

$$
S_{j}(\lambda)=\lambda S_{j-1}(\lambda)-\frac{n_{j-1}}{n_{j}} S_{j-2}(\lambda) \quad \text { for } j=2,3, \ldots, k
$$

Then
(a) If $S_{j}(\lambda) \neq 0$, for all $j=1,2, \ldots, k-1$, then

$$
\operatorname{det}(\lambda I-A(\mathscr{T}))=S_{k}(\lambda) \prod_{j \in \Omega} S_{j}^{n_{j}-n_{j+1}}(\lambda) .
$$

(b)

$$
\sigma(A(\mathscr{T}))=\left(\cup_{j \in \Omega}\left\{\lambda \in \mathbb{R}: S_{j}(\lambda)=0\right\}\right) \cup\left\{\lambda \in \mathbb{R}: S_{k}(\lambda)=0\right\} .
$$

Proof. Similar to the proof of Theorem 2. Apply Lemma 1 to the matrix $M=$ $\lambda I+A(\mathscr{T})$. For this matrix $\alpha_{j}=\lambda$ for $j=1,2, \ldots, k$. Finally, use the fact that $\operatorname{det}(\lambda I-A(\mathscr{T}))=\operatorname{det}(\lambda I+A(\mathscr{T}))$.

Lemma 7. For $j=1,2,3, \ldots, k-1$, let R_{j} be the $j \times j$ principal submatrix of the $k \times k$ tridiagonal matrix

$$
R_{k}=\left[\begin{array}{cccccc}
0 & \sqrt{d_{2}-1} & 0 & \cdots & \cdots & 0 \\
\sqrt{d_{2}-1} & 0 & \sqrt{d_{3}-1} & \ddots & & \vdots \\
0 & \sqrt{d_{3}-1} & \ddots & \ddots & \ddots & \vdots \\
\vdots & \ddots & \ddots & \ddots & \sqrt{d_{k-2}-1} & 0 \\
\vdots & & \ddots & \sqrt{d_{k-2}-1} & 0 & \sqrt{d_{k}} \\
0 & \cdots & \cdots & 0 & \sqrt{d_{k}} & 0
\end{array}\right] .
$$

Then

$$
\operatorname{det}\left(\lambda I-R_{j}\right)=S_{j}(\lambda), \quad j=1,2, \ldots, k
$$

Proof. Similar to the proof of Lemma 3.
Theorem 8. Let $R_{j}, j=1,2, \ldots, k-1$ and R_{k} be the symmetric tridiagonal matrices defined in Lemma 7.
(a)

$$
\sigma(A(\mathscr{T}))=\left(\cup_{j \in \Omega} \sigma\left(R_{j}\right)\right) \cup \sigma\left(R_{k}\right)
$$

(b) The multiplicity of each eigenvalue of the matrix R_{j}, as an eigenvalue of $A(\mathscr{T})$, is at least $\left(n_{j}-n_{j+1}\right)$ for $j \in \Omega$ and 1 for $j=k$.

Proof. (a) and (b) are immediate consequences of Theorem 6, Lemma 7 and the fact that the eigenvalues of any symmetric tridiagonal matrix with nonzero codiagonal entries are simple.

Example 4. Let \mathscr{T} be the tree in Example 1. Then, $k=4, d_{1}=1, d_{2}=3, d_{3}=3$ and $d_{4}=3$. Hence

$$
R_{4}=\left[\begin{array}{cccc}
0 & \sqrt{2} & 0 & 0 \\
\sqrt{2} & 0 & \sqrt{2} & 0 \\
0 & \sqrt{2} & 0 & \sqrt{3} \\
0 & 0 & \sqrt{3} & 0
\end{array}\right]
$$

and $\Omega=\{1,2,3\}$. To four decimal places these eigenvalues are

$R_{1}:$	0			
$R_{2}:$	-1.4142	1.4142		
$R_{3}:$	-2	0	2	
$R_{4}:$	-2.4495	-1	1	2.4495

4. Applications to some trees

In this section, we apply the results of the previous sections to some specific trees.

4.1. Balanced binary tree

In a balanced binary tree \mathscr{B}_{k} of k levels, we have $d_{k}=2$ for the root vertex degree and $d_{k-j+1}=3$ for $j=2,3, \ldots, k-1$. Clearly, $\Omega=\{1,2, \ldots, k-1\}$. Then

$$
\sigma\left(L\left(\mathscr{B}_{k}\right)\right)=\cup_{j=1}^{k} \sigma\left(T_{j}\right)
$$

where for $j=1, \ldots, k-1, T_{j}$ is the $j \times j$ principal submatrix of the $k \times k$ symmetric tridiagonal matrix

$$
T_{k}=\left[\begin{array}{cccccc}
1 & \sqrt{2} & 0 & \cdots & \cdots & 0 \\
\sqrt{2} & 3 & \ddots & & & \vdots \\
0 & \ddots & & \ddots & & \vdots \\
\vdots & & \ddots & & \ddots & 0 \\
\vdots & & & \ddots & 3 & \sqrt{2} \\
0 & \cdots & \cdots & 0 & \sqrt{2} & 2
\end{array}\right]
$$

This is the main result in [6]. In [5] quite tight lower and upper bounds for the algebraic connectivity of \mathscr{B}_{k} are given and in [7] the integer eigenvalues of $L\left(\mathscr{B}_{k}\right)$ are found.

For the adjacency matrix of \mathscr{B}_{k} we have

$$
\sigma\left(A\left(\mathscr{B}_{k}\right)\right)=\cup_{j=1}^{k} \sigma\left(R_{j}\right),
$$

where, for $j=1, \ldots, k-1, R_{j}$ is the $j \times j$ principal submatrix of

$$
R_{k}=\left[\begin{array}{cccccc}
0 & \sqrt{2} & 0 & \cdots & \cdots & 0 \\
\sqrt{2} & 0 & \ddots & & & \vdots \\
0 & \ddots & & \ddots & & \vdots \\
\vdots & & \ddots & & \ddots & 0 \\
\vdots & & & \ddots & 0 & \sqrt{2} \\
0 & \cdots & \cdots & 0 & \sqrt{2} & 0
\end{array}\right]
$$

of order $k \times k$.

4.2. Balanced 2^{p}-ary tree

In the tree \mathscr{B}_{k}, from the root vertex until the vertices in the level $(k-1)$, each vertex originates two more new vertices. Let us consider a tree of k levels in which from the root vertex until the vertices in the level $(k-1)$, each vertex originates 2^{p} more new vertices. We call this tree a balanced 2^{p}-ary tree and we denote it by \mathscr{B}_{k}^{p}.

Example 5. The tree \mathscr{B}_{3}^{2} is

The total number of vertices in \mathscr{B}_{k}^{p} is

$$
n=1+2^{p}+\cdots+2^{(k-1) p}=\frac{2^{k p}-1}{2^{p}-1} .
$$

Now $d_{k}=2^{p}$ for the root vertex degree, $d_{k-j+1}=2^{p}+1$ and $\frac{n_{k-j}}{n_{k-j+1}}=2^{p}$ for $j=2,3, \ldots, k-1$, and $n_{k-1}=2^{p}$. Then

$$
\sigma\left(L\left(\mathscr{B}_{k}^{p}\right)\right)=\cup_{j=1}^{k} \sigma\left(T_{j}\right),
$$

where $T_{j}, j=1, \ldots, k-1$, is the $j \times j$ principal submatrix of $k \times k$ symmetric tridiagonal matrix

$$
T_{k}=\left[\begin{array}{cccccc}
1 & \sqrt{2^{p}} & 0 & \cdots & \cdots & 0 \\
\sqrt{2^{p}} & 2^{p}+1 & \ddots & & & \vdots \\
0 & \ddots & \ddots & \ddots & & \vdots \\
\vdots & & \ddots & & \ddots & 0 \\
\vdots & & & \ddots & 2^{p}+1 & \sqrt{2^{p}} \\
0 & \cdots & \cdots & 0 & \sqrt{2^{p}} & 2^{p}
\end{array}\right] .
$$

For the adjacency matrix of \mathscr{B}_{k}^{p} we have

$$
\sigma\left(A\left(\mathscr{B}_{k}^{p}\right)\right)=\cup_{j=1}^{k} \sigma\left(R_{j}\right),
$$

where, for $j=1, \ldots, k-1$, the matrix R_{j} is the $j \times j$ principal submatrix of the $k \times k$ symmetric tridiagonal matrix

$$
R_{k}=\left[\begin{array}{cccccc}
0 & \sqrt{2^{p}} & 0 & \cdots & \cdots & 0 \\
\sqrt{2^{p}} & 0 & \ddots & & & \vdots \\
0 & \ddots & \ddots & \ddots & & \vdots \\
\vdots & & \ddots & & \ddots & 0 \\
\vdots & & & \ddots & 0 & \sqrt{2^{p}} \\
0 & \cdots & \cdots & 0 & \sqrt{2^{p}} & 0
\end{array}\right]
$$

Example 6. The eigenvalues of the Laplacian matrix and adjacency matrix of \mathscr{B}_{3}^{2} are the eigenvalues of the principal submatrices of the matrices

$$
T_{3}=\left[\begin{array}{lll}
1 & 2 & 0 \\
2 & 5 & 2 \\
0 & 2 & 4
\end{array}\right]
$$

and

$$
R_{3}=\left[\begin{array}{lll}
0 & 2 & 0 \\
2 & 0 & 2 \\
0 & 2 & 0
\end{array}\right],
$$

respectively. These eigenvalues are

$$
\begin{array}{ccc}
T_{1}: & 1 & \\
T_{2}: & 0.1716 & 5.8284 \\
T_{3}: & 0 & 3
\end{array}
$$

for the Laplacian matrix and

$$
\begin{array}{lcll}
R_{1}: & 0 & & \\
R_{2}: & -2 & 2 & \\
R_{3}: & -2.8284 & 0 & 2.8284
\end{array}
$$

for the adjacency matrix.

4.3. Balanced factorial tree

We introduce a balanced tree of k levels in which, from the root vertex until the vertices in the level $(k-1)$, each vertex in the level j originates $(j+1)$ new vertices. Let us denote this tree by \mathscr{F}_{k}. For example, the tree \mathscr{F}_{4} is

The degree of the vertices in each level of \mathscr{F}_{k} is as follows:

$$
\begin{array}{cc}
j-\text { level } & \\
j=1 & d_{k}=2 \\
j=2 & d_{k-1}=4 \\
j=3 & d_{k-2}=5 \\
j=4 & d_{k-3}=6 \\
\vdots & \\
j=k-1 & d_{2}=k+1 \\
j=k & d_{1}=1 .
\end{array}
$$

Then

$$
\sigma\left(L\left(\mathscr{F}_{k}\right)\right)=\cup_{j=1}^{k} \sigma\left(T_{j}\right),
$$

where, for $j=1, \ldots, k-1, T_{j}$ is the $j \times j$ principal submatrix of the $k \times k$ tridiagonal matrix

$$
T_{k}=\left[\begin{array}{cccccc}
1 & \sqrt{k} & 0 & \cdots & \cdots & 0 \\
\sqrt{k} & k+1 & \sqrt{k-1} & & & \vdots \\
0 & \sqrt{k-1} & k & \ddots & & \vdots \\
\vdots & & \ddots & & \ddots & 0 \\
\vdots & & & \ddots & 4 & \sqrt{2} \\
0 & \cdots & \cdots & 0 & \sqrt{2} & 2
\end{array}\right]
$$

and

$$
\sigma\left(A\left(\mathscr{F}_{k}\right)\right)=\cup_{j=1}^{k} \sigma\left(R_{j}\right),
$$

where, for $j=1, \ldots, k-1, R_{j}$ is the $j \times j$ principal submatrix of the $k \times k$ tridiagonal matrix

$$
R_{k}=\left[\begin{array}{cccccc}
0 & \sqrt{k} & 0 & \cdots & \cdots & 0 \\
\sqrt{k} & 0 & \sqrt{k-1} & & & \vdots \\
0 & \sqrt{k-1} & \ddots & \ddots & & \vdots \\
\vdots & & \ddots & \ddots & \ddots & 0 \\
\vdots & & & \ddots & 0 & \sqrt{2} \\
0 & \cdots & \cdots & 0 & \sqrt{2} & 0
\end{array}\right] .
$$

Example 7. For the tree \mathscr{F}_{4} we have

$$
T_{4}=\left[\begin{array}{cccc}
1 & 2 & 0 & 0 \\
2 & 5 & \sqrt{3} & 0 \\
0 & \sqrt{3} & 4 & \sqrt{2} \\
0 & 0 & \sqrt{2} & 2
\end{array}\right]
$$

and the eigenvalues of $L\left(\mathscr{F}_{4}\right)$ to four decimal places are

$$
\begin{array}{ccccc}
T_{1}: & 1 & & & \\
T_{2}: & 0.1716 & 5.8284 & & \\
T_{3}: & 0.0464 & 3.1794 & 6.7742 & \\
T_{4}: & 0 & 1.2363 & 3.8748 & 6.8890
\end{array}
$$

The eigenvalues of the adjacency matrix $A\left(\mathscr{F}_{4}\right)$ are the eigenvalues of the principal submatrices of

$$
R_{4}=\left[\begin{array}{cccc}
0 & 2 & 0 & 0 \\
2 & 0 & \sqrt{3} & 0 \\
0 & \sqrt{3} & 0 & \sqrt{2} \\
0 & 0 & \sqrt{2} & 0
\end{array}\right]
$$

and they are

$R_{1}:$	0			
$R_{2}:$	-2	2		
$R_{3}:$	-2.6458	0	2.6458	
$R_{4}:$	-2.8284	-1	1	2.8284

Acknowledgment

The authors are grateful to the referee for valuable comments, which led to an improved version of the paper.

References

1] L.N. Trefethen, D. Bau III, Numerical Linear Algebra, Society for Industrial and Applied Mathematics, 1997.
2] M. Fiedler, Algebraic connectivity of graphs, Czechoslovak Math. J. 23 (1973) 298-305.
[3] G.H. Golub, C.F. Van Loan, Matrix Computations, second ed., Johns Hopkins University Press, Baltimore, 1989.
[4] R. Merris, Laplacian matrices of graphs: a survey, Linear Algebra Appl. 197-198 (1994) 143-176.
[5] J.J. Molitierno, M. Neumann, B.L. Shader, Tight bounds on the algebraic connectivity of a balanced binary tree, Electron. J. Linear Algebra 6 (2000) 62-71.
[6] O. Rojo, The spectrum of the Laplacian matrix of a balanced binary tree, Linear Algebra Appl. 349 (2002) 203-219.
[7] O. Rojo, M. Peña, A note on the integer eigenvalues of the Laplacian matrix of a balanced binary tree, Linear Algebra Appl. 362 (2003) 293-300.

[^0]: ${ }^{4}$ Work supported by Fondecyt 1040218, Chile.

 * Corresponding author. Tel.: +56 55 355593; fax: +56 55355599.

 E-mail addresses: orojo@socompa.ucn.cl, orojo@ucn.cl (O. Rojo), rsoto@ucn.cl (R. Soto).
 ${ }^{1}$ Part of this research was conducted while the authors were visitors at the Instituto Nacional de Matemática Pura e Aplicada, Rio de Janeiro, Brasil.

 0024-3795/\$ - see front matter © 2005 Elsevier Inc. All rights reserved. doi:10.1016/j.1aa.2005.01.011

