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Abstract

Let 7 be an unweighted rooted tree of k levels such that in each level the vertices have
equal degree. Let dg— ;11 denotes the degree of the vertices in the level j. We find the eigen-
values of the adjacency matrix and of the Laplacian matrix of .7 . They are the eigenvalues
of principal submatrices of two nonnegative symmetric tridiagonal matrices of order k X k.
The codiagonal entries for both matrices are \/d; —1, 2 < j <k —1, and /dy, while the
diagonal entries are zeros, in the case of the adjacency matrix, and d;, 1 < j < k, in the case
of the Laplacian matrix. Moreover, we give some results concerning to the multiplicity of the
above mentioned eigenvalues.
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1. Notations and preliminaries

Let ¢ be a simple graph. Let A(%) be the adjacency matrix of ¢ and let D(%) be
the diagonal matrix of vertex degrees. The Laplacian matrix of ¥ is L(9) = D(¥%) —
A(9). Clearly, L(%) is a real symmetric matrix. From this fact and GerSgorin’s the-
orem, it follows that its eigenvalues are nonnegative real numbers. Moreover, since
its rows sum to 0, 0 is the smallest eigenvalue of L(%). In [4], some of the many
results known for Laplacian matrices are given. Fiedler [2] proved that ¥ is a con-
nected graph if and only if the second smallest eigenvalue of L(¥) is positive. This
eigenvalue is called the algebraic connectivity of 4.

We recall that a tree is a connected acyclic graph. Here we consider an unweighted
rooted tree .7 such that in each level the vertices have equal degree. We agree that
the root vertex is at level 1 and that 7 has k levels. Thus the vertices in the level &
have degree 1.

For j =1,2,3,...,k, the numbers dy_;y1 and ni_;;1 denote the degree of
the vertices and the number of vertices in the level j, respectively. Then, for j =
2,3,...k—1,

Ng—j = (dg—jy1 — Dng—jt1. (H)

Observe that dy, is the degree of the root vertex, d; = 1 is the degree of the vertices
in the level k, ny =1, ng_1 =dy, nj41 divides nj forall j =1,...,k — 1 and that
the total number of vertices in the tree is

k—1
n= Zn.,' + 1.
j=1

We introduce the following notations:
If all the eigenvalues of an n x n matrix A are real numbers, we write

An(A) < An—1(A) < -+ < A2(A) < A(A).

0 is the all zeros matrix.

The order of 0 will be clear from the context in which it is used.

I, is the identity matrix of order m x m.

e,, is the all ones column vector of dimension m.

For j =1,2,...,k — 1, Cj is the block diagonal matrix defined by

fen; 0 oo 0 7]
it
0 € nj .
C/ = nj+1 s (2)
0 0 € n;
- nj1
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with 2,1 diagonal blocks. Thus, the order of C; isn; x nj. Observe that Cy_1 =

€n_-
Let us illustrate the notations above introduced and our labeling for 7 with the
following example.

Example 1. Let .7 be the tree

1 2 3 4 5 ' 7 8 93 10 11 12

We see that this tree has 4 levels, n; = 12, np = 6, n3 = 3, n4 = 1 and the vertex
degrees are d| = 1,dr = 3,ds = 3, dy = 3. Then, 'r’l—; =2, Z—§ =2 and :—Z = 3. The
matrices defined in (2) are

1
1
1
1
1 .
Ci= | = diag{ez, €2, €2, €2, €, €3},
1
1
1
1
— 1_
1
1 | 1
C)= ) = diag{ey, e, €2}, C3 = [ 1 | = e;3.
1
1
i 1
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In general, using the labels 1, 2, 3, ..., n, in this order, our labeling for the verti-
ces of J is: Label the vertices from the bottom to the root vertex and, in each level,
from the left to the right.

For this labeling the adjacency matrix A(Z ) and Laplacian matrix L(7) of the
tree in Example 1 become

0 ¢ 0 0
cl o & o

T\ —
AZI=10 I o0 o
0 0 Cj 0
and
VD) —Ci 0 0
-cl 3l -C» 0
T — 1
LI=1"0 ' 35 —c
0 0o -cI 3

with C, C; and C3 as in Example 1.
In general, our labeling yields to

0 Ci 0 0 7
cf o0 G
0 Cg :
AT)=| | 3
. ..' '.‘ ... Ck_2 O
: C,;F_z 0 Cr_1
Lo - 0 CkT_] 0 |
and
"L, —C 0 0 7
-cl &, C
0 —cI .o 3 ;
LT)=| . . @
: : di2ly,_, —Cr 0
—Cl,  dieil,, —Cio
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The following lemma plays a fundamental role in this paper.

Lemma 1. Let

_allnl Cl 0 0 ]
Crlr owrly, C
0 cy
M = :
—21n;_, Cr—2 0
C/<T—2 k-1 Cr—1
| 0 0 C/}Ll ar |
Let
B1=a
and
nj-1 1 .
Bi=aj— j=23,...,k Bj_1#0.

nj Bi-t’
IfBj #0forall j=1,2,...,k—1,

detM = By' By ... B 5 B Bre- )
Proof. Suppose f; # 0 forall j =1,2,...,k— 1. We apply the Gaussian elim-

ination procedure, without row interchanges, to reduce the matrix M to an upper
triangular matrix. Just before the last step, we have the matrix

[ B11n, Ci 0 0
0 B, G :
0 0 B3y, Cs
. 0 _
Cr—2 0
: 0  Br-1ly, Cra
| O o0 CkT,l a |
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Finally, the Gaussian elimination gives

B11n, Ci 0 0 _
0  Bl, C :
0 0 Bl Cs
' o : NG
Cr—2 0
0 Br—1ln_, Cr_1
0 o0 0 ak—nk—lw{l_

Thus, (5) is proved. [

2. The spectrum of the Laplacian matrix of .7

Let
& ={1,2,3,...,k—1}.
We consider the following subset of @,
Q={jed:n;>nj}.
Since ny_1 > ni = 1, the index k — 1 € Q. Observe that if i € @ — Q then n; =
n;+1 and thus, from (2), C; = I,,.

Theorem 2. Let

P =1, Pi(AM)=r-—-1
and '

Pi()) = —dj)Pj—1(A) — n:l—*l i 2(A)  forj=2,3,... k. @)
Hence !

@ If Pi(A) #0, forall j =1,2,...,k—1, then

det — L(7)) = W) [ | P;'j T, (8)
JjeQ
(b)
o (L(7)) = Ujealh € R: P;(1) =0 U {x € R: Pr(3) = 0}. )

Proof. (a) We apply Lemma 1 to the matrix M = Al — L(7"). For this matrix o] =
A—land a;j =1 —dj for j =2,3,..., k. Let B1, B2, ..., Br be as in Lemma 1.
Suppose that A € R is such that P;(A) # Oforall j =1,2,...,k — 1. We have
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. PO
e R

ny Po()

ny 1
Pro=0A—dr) — ———=A—d)) — —
ny B

ny Pr(X)

_ G=d)P() - s Po(M) P

= 0,
P(2) Pi() #
ny 1 ny Pi(Z)
=A—d)——=—=A—-d3) — =
B3 =( 3) s B ( 3) s Py

 G=dyP() - e IO
B Py(M) B

ng_o 1

4=W0N—=-di_q) —
Br—1 = ( k—1) et Fea

Nk—1

= de) P2 () - 22 P 3(h) P

—— =0* —dr-1) -

ng—s Pr_3(A)
ng—1 Pr_2(X)

= 0,
Pr_o(}) Pr_2(2) *
np—1 1 ng—1 Pr—2(X)
b= Oomd) = g = G e T

_ A —d)Pr1(X) — nfl;l Pr_2(A) . Pr(A)

Pr_1(2)
From (5)

nj ny nj3
det] — L7y = DLW P P ()

P

P00 P () P

Py (M) PPV PP T

P PO Peei (V)

= PP PTG P )

=P ]P0
JjeQ

Thus, (8) is proved.

(b) From (8), if A € R is such that P;(A) # 0, forall j =1,2,..., k — 1, k, then

det(Al — L(7)) # 0. That is
NS e R: Pj(0) # 0} € (0(L(2)))".
That is

oL € (U] e R: Pj3) =0)) U € R: Pu(k) =0).

(10)
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We claim that
o(L(7)) C (Ujeplr e R: P;(A) =0h U{A e R: P (1) =0}. (11)

Q=& ={1,2,...,k— 1} then (11)is (10) and there is nothing to prove. Suppose
that Q is a proper subset of @. Clearly, (11) is equivalent to

Njeeft € R: P;(0) #0}N{A € R: (M) # 0} € (0(L(7))".

Suppose that A € R is such that P;(1) # 0 for all j € Q and Px(X) # 0. Since
k—1¢€Q, P_1(d) # 0. If in addition P;(1) # 0 for all j € & — Q then (8) holds
and consequently det(A/ — L(7)) # 0. That is, > € (o (L(7)))¢. If P;(A) = 0 for
some i € ¢ — £, let/ be the first index in @ — € such that P;(A) = 0. Then, B; # 0
forall j =1,2,...,1— 1,8 =0and

Prio) = (A —di12) Pa(A).

We observe that P;11(A) # 0. Otherwise, a back sustitution in (7) gives Py(1) = 0.

Therefore, B2 = gﬁg; =L —dj42. Since [ € @ — Q, then n; = nyy1, C; = Iy,
and the Gaussian elimination procedure applied to M = Al — L(7") yields to the

intermediate matrix

_,311n1 C 0 0
0 . .
0 0 Iy, 0
Iy O —diy) Iy, Cri1
' C1T+1 A —dig)lny, - 0
: ' Cr_1
|0 0 Cio1 A —dy |
_ﬂllnl C 0 0 ]
0 .
0 0 I, 0
=| Ly G—daDby, Ci
' Cl Bivoln,, - 0
' Cr—1
|0 0 Cr1 A —dx |
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Next, a number of n; row interchanges gives the matrix

_ﬂllnl Ci 0 0
0 . .
0 Inl ()" - dl-‘rl)lnl_H Cl+1

0 Iy, 0
CEI—] ,31+21n1+2 0
Ci-1
T
i O 0 Ck—l )\, - dk
Therefore
ny on n ﬁl+21”1+2 0
detd — L(7)) = (=DM BI 5> ... g7 det , G
O C];f_l )- - dk

Now, if there exists j € ® — Q, 1 +2 < j < k — 2, such that P;(1) = 0, we apply
the above procedure to the matrix

Bralns B 0

. Crk—1
0 Cl, r—dx

Finally, we obtain

Pr(A)

det(x] — L(7)) =vBr =¥ Py’

12)

where y is a factor different from 0. By hypothesis, Py_1(X) # 0 and Pr()A) #
0. Therefore, det(Al — L(7)) # 0 and thus A ¢ o(L(7)). Hence, (11) is proved.
Now, we claim that

(Ujealrh € R: Pj(1) =0)) U {h € R: PL(A) = 0} € o (L(7)).

Let A € Ujeo{r € R: Pj(A) = 0}. Let [ be the first index in € such that P;(}) =

0. Then, B, = szf)&) = 0. The corresponding intermediate matrix in the Gaussian

elimination procedure applied to the matrix M = Al — L(J) is
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Bil,, Ci O 0
0
0 0 C
(13)
' —dip )y,
' . Cr—1
|0 0 Cl;r—l A —dy |

Since ! € Q, n; > nj4+1 and C; is a matrix with more rows than columns. Therefore,
the matrix in (13) has at least two equal rows. Thus, det(A/ — L(7")) = 0. That is,
A€ (L(7)). Hence

Ujea{r € R: P;(A) =0} Co(L(9)). (14)

Now let A € {A € R: Pr(%) = 0}. Observe that P,_1 (1) # 0. Otherwise, a back sub-
stitution in (7) yields to Po(1) = 0.If P;(A) = O for some j € £ then the use of (14)
gives A € 0(L(J)). Hence, we may suppose that P;(1) # 0 for all j € Q. If in
addition P;(A) # 0 for all j € @ — Q then (8) holds and thus det(A/ — L(7)) =0
because Py(A) = 0. If P;(X) = 0 for some i € @ — Q then we have the assumptions
under which (12) was obtained. Therefore

Pe(h)

det(Al — L(7)) = yPe =y P

Thus, we have proved that

AeR:P(XM) =0} Co(L(9)). (15)
From (14) and (15),
Ujeeit e R: P;(A) =0p UL e R: P(X) =0} Co(L(F)). (16)

Finally, (11) and (16) imply (9). O

Lemma3. For j=1,2,3,...,k—1, let T; be the j x j principal submatrix of
the k x k symmetric tridiagonal matrix

1 Jh =1 0 0
Vdy —1 d Vs =1
I— 0 Jd3 —1 d;
' V& =T1 0
: V-1 —1 dr—1 Vi
o 0 Vi di |
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Then
detA = Tj)) =P;(n), j=1,2,...,k

Proof. It is well known (see for instance [1, p.229]) that the characteristic poly-
nomials, Q;, of the j x j principal submatrix of the k x k symmetric tridiagonal
matrix

a; b 0o - ... 0 7
by a by :

0 b

. . 0 ’

: r ag—1  br—
L0 - o 0 by ar |

satisfy the three-term recursion formula

Qi) =Mh—a)Q;1(N) —b5_1Qj 20,
with

Qox) =1 and Q1(A) =i —ar.

Inourcase,a; =1,a; =d;jforj=2,3,,...,kand b; = n',’il forj=1,2,...,
J

k — 1. For these values, the above recursion formula gives the polynomials P;, j =

nj .
0,1,2,...,k.Now, we use (1), to see that /njfrl = d;j—1forj=12,... k-
2 and /nfl—;l=./nk_1=\/d_k. O

Theorem 4. LetT;, j =1,2,..., k — 1and Ty be the symmetric tridiagonal matri-
ces defined in Lemma 3. Then

(a)
0 (L(7)) = Ujeeo (T))) Uo (Ti).

(b) The multiplicity of each eigenvalue of the matrix T;, as an eigenvalue of L(7"),
is at least (nj —njyy) for j € Qand 1 for j = k.

Proof. We recall that the eigenvalues of any symmetric tridiagonal matrix with
nonzero codiagonal entries are simple. Then, (a) and (b) are immediate consecuences
of this fact, Theorem 2 and Lemma 3. [

Example 2. Let .7 be the tree in Example 1. For this tree, k = 4,d| = 1, d» = 3,
dy =3,dy =3,n; =12, ny = 6 and n3 = 3. Hence
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1 V2 0 o0
o |v2 3 V2 0
T V2 3 V3

0
0 0 V3 3

and Q = {1, 2, 3}. The eigenvalues of L(J) are the eigenvalues of T, 7>, T3 and
Ty. To four decimal places these eigenvalues are:

T1 . 1

T,: 0.2679 3.7321

T3 : 0.0968 2.1939 4.709

Ty : 0 1.1864 3.4707 5.3429

Example 3. Let 7 be the tree

11
13
15
L]
1 2 3 4 16 17 18 19

Forthistree, k =5, n1 =8, no=n3y=4,n4,=2,ns=1,dy=1,dr =3,d3; =2,
d4 = 3 and ds = 2. Hence the matrix T5 is

1 V2 0 0 0
V2 3 1 0 o0
Ts = 1 2 V2

0 0
0 0 V2 3 V2
0 0 0 V2 2

and Q = {1, 3, 4}. Thus the spectrum of L(.7") is the union of the spectra of 71, T3, T4
and T5:
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T - 1

T5: 0.1392 1.7459 4.1149

Ty :  0.0646 1 3.4626 4.4728

Ts : 0 0.5617 1.8614 3.8202 4.7566

We recall the following interlacing property [3]:

Let T be a symmetric tridiagonal matrix with nonzero codiagonal entries and AEI )
be the ith smallest eigenvalue of its j X j principal submatrix. Then,

(+D () G+D (+D ) G+D (+1)
Aj+1 <Aj <kj <"'<)‘i+1 < A7 <A <o <Ay

<A <At
Theorem 5. Let L(7) be the Laplacian matrix of 7 . Then

@ o(Tji—)No(T))=¢forj=23,..., k.

(b) The largest eigenvalue of Ty is the largest eigenvalue of L(7").

(c) The smallest eigenvalue of Ty is the algebraic connectivity of 7 .

(d) The largest eigenvalue of Ty—1 is the second largest eigenvalue of L(7").
(e)detT;=1forj=1,2,...,k—1.

(f) If ) is an integer eigenvalue of L(7) and ) > 1 then ) € o (T}).

Proof. First we observe that k — 1 € Q. Thus the eigenvalues of T;_; are always
eigenvalues of L(7). Now (a), (b), (c) and (d) follow from the interlacing prop-
erty and Theorem 4. Clearly, det 77 = 1. Let 2 < j < k — 1. We apply the Gaussian
elimination procedure, without row interchanges, to reduce the matrix 7’; to the upper
triangular matrix

1 Vb —1 0 0 ]
0 1 Vi —1 :

0 0 1 Jdi—1

. . . 0

: 0 1 Jd =1
0 0 0 I

Thus, (e) is proved. Since Py(A) =1 and P;(A) = A — 1, it follows from the
recursion formula P;(A) = (A —d;)Pj—1 — nr’: Pj_»(A) that P;(A) is a polynomial
with integer coefficients. Therefore, if A is an eigenvalue of 7; then A exactly divides
P;(0). Moreover, P;(0) = (—1)7 det T; = (—1)/. Consequently, no integer greater
than 1 is an eigenvalue of ;. [J
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3. The spectrum of the adjacency matrix of .7

Let
[—1,, 0 0 0 ]
0 I, O
D 0 0 -1,
’ 0
: (=D, 0
L0 0 0 (_1)k_
From (3),
T0 C; 0 0 7
ct o0 G :
A(T) = 0 G
' Cr—2 0
; cl, 0 G
[0 0 Ckal 0 |

It is easily see that
DO+ A()D ™' = Al — A(T).

This fact will be used in the proof of the following theorem.

Theorem 6. Let
SoM) =1, S1(0) =2
and

nj—1 .
S;(W) =AS;_1(h) — }{l— ok forj=2,3,... k.
J

Then

(@) If Sj(1) # 0, forall j =1,2,....k — 1, then

det(A] — A7) = S0 [ 77 (.
jeQ

(b)

o (A(T)) = (Ujealh € R: S;(0) =0 U fr € R: Sp(2) = 0}.
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Proof. Similar to the proof of Theorem 2. Apply Lemma 1 to the matrix M =
Al + A(Z). For this matrix a; = A for j =1,2,..., k. Finally, use the fact that
det(Al — A(T)) =det(M] + A(Z)). O

Lemma?7. For j=1,2,3,...,k—1, let Rj be the j x j principal submatrix of
the k x k tridiagonal matrix

0 Jdr —1 0 0
Vdy —1 0 Jdz —1
Ry = 0 Va3 —1
JEis=T 0
Vi — 1 0 Vi
| 0 0 Jdy, 0 |
Then
det(Al —Rj) =S;(X), j=12,... k.
Proof. Similar to the proof of Lemma 3. [J
Theorem 8. LetR;, j =1,2,...,k — 1and Ry be the symmetric tridiagonal matri-

ces defined in Lemma 7.
(a)

0(A(7)) = (Ujeao (R))) U o (Rp).

(b) The multiplicity of each eigenvalue of the matrix Rj, as an eigenvalue of
A(T), isatleast (nj —njy1) for j € Qand 1 for j = k.

Proof. (a)and (b) are immediate consequences of Theorem 6, Lemma 7 and the fact
that the eigenvalues of any symmetric tridiagonal matrix with nonzero codiagonal
entries are simple. [

Example 4. Let 7 be the tree in Example 1. Then, k =4,d| =1,d» =3,d3 =3
and d4 = 3. Hence

0 v2 0 0
R4:«/§ 0 V2 0

0 V2 0 V3|

0 0 V3 o0
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and 2 = {1, 2, 3}. To four decimal places these eigenvalues are

Ry : 0

Ry: —1.4142 1.4142

R3 : -2 0 2

Ry : —2.4495 -1 1 2.4495

4. Applications to some trees
In this section, we apply the results of the previous sections to some specific trees.
4.1. Balanced binary tree

In a balanced binary tree %y, of k levels, we have dj. = 2 for the root vertex degree
anddy_jyy =3for j =2,3,...,k—1.Clearly, @ ={1,2, ...,k — 1}. Then

o (L(%) = Us_ o (T))

where for j =1,....,k —1, T; is the j x j principal submatrix of the k x k sym-
metric tridiagonal matrix
1 20 . . 0]
V23
Ty = 0
0
; .3 V2
L 0 e e 0 V20 2]

This is the main result in [6]. In [5] quite tight lower and upper bounds for the alge-
braic connectivity of % are given and in [7] the integer eigenvalues of L(%y) are
found.

For the adjacency matrix of %, we have

o (A#) =Us_ 0 (R)),

where, for j =1,...,k — 1, R; is the j x j principal submatrix of
r0o 2 0 o . 07
V2 0
Ry = 0 '
0
: .0 V2
L0 0 V2 0.

of order k x k.
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4.2. Balanced 2P-ary tree

In the tree %y, from the root vertex until the vertices in the level (kK — 1),
each vertex originates two more new vertices. Let us consider a tree of k levels
in which from the root vertex until the vertices in the level (k — 1), each vertex
originates 27 more new vertices. We call this tree a balanced 2P-ary tree and we
denote it by 93,’: .

Example 5. The tree ,@% is

1"

L\

LI
1 23 4 5 6 7 8 1415 16 17 18 19 202

The total number of vertices in ﬂ,’g is

2kp 1
— 142 4. ..apk=bp =~ ~
n +2P + .+ 71
Now dy = 27 for the root vertex degree, dy— ;1 = 2” + 1 and n:"’il = 27 for
—J
j=2,3,...,k—1,and nx_1 = 27. Then
o (L(A)) = U_ o (T)),
where T}, j=1,...,k—1, is the j x j principal submatrix of k x k symmetric
tridiagonal matrix
1 2P o ... 0 ]
V2P 2P 41
0 -
T, =
0
2P +1 /2P

0 0 2P 2p
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For the adjacency matrix of .@f we have

o (AA#)) = U5_ 10 (R)),

where, for j =1,...., k — 1,the matrix R; is the j x j principal submatrix of the
k x k symmetric tridiagonal matrix
) J2r 0 ... 0 ]
/2P 0
0 :
R, =
0
0 /2P
| 0 o0 W2r 0 |

Example 6. The eigenvalues of the Laplacian matrix and adjacency matrix of %%
are the eigenvalues of the principal submatrices of the matrices

1 2 0
Ts=12 5 2
0 2 4
and
0 2 0
Ry=1|2 0 2{,
0 2 0
respectively. These eigenvalues are
T1 . 1
T : 0.1716 5.8284
T3 : 0 3 7
for the Laplacian matrix and
R : 0
R> : -2 2

Ry: —2.8284 0 2.8284

for the adjacency matrix.

4.3. Balanced factorial tree

We introduce a balanced tree of k levels in which, from the root vertex until the
vertices in the level (k — 1), each vertex in the level j originates (j + 1) new vertices.
Let us denote this tree by . For example, the tree % 4 is
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21

12 34 5678 91011 12 222324 25 2627 2829303132 33

The degree of the vertices in each level of .7 is as follows:

Jj — level

j=1 dp =2
Jj=2 dp1 =4
J=3 di—2=5
j=4 dr_3=06

j=k—1 dy=k+1
j=k d = 1.
Then
o (L(F)) = U_ 0 (T)),

where, for j =1,...,k — 1, T; is the j x j principal submatrix of the k x k tridi-
agonal matrix

1 Vk 0 0]

Vk o k+1 k—1
0 k—1 k

T, = '
0
: 4 V2
| 0 0 2 2 |
and
o (A(F 1) =Uj_jo(R)),
where, for j =1,...,k — 1, R; is the j x j principal submatrix of the k x k tridi-

agonal matrix



116 0. Rojo, R. Soto / Linear Algebra and its Applications 403 (2005) 97-117

0 Jk 0 0]
NCEEN k—1
0 k-1
R, = )
0
: L0 V2
L 0 e . 0 V2 0 |
Example 7. For the tree 4 4 we have
1 2 0 0
|2 5 V30
Tlo V3 o4 2
0 0 V2 2
and the eigenvalues of L(Z 4) to four decimal places are
T1 . 1

T : 0.1716 5.8284
T3 : 0.0464 3.1794 6.7742
Ty : 0 1.2363 3.8748 6.8890

The eigenvalues of the adjacency matrix A(Z 4) are the eigenvalues of the principal
submatrices of

0 2 0 0
Ro_|2 O V3 0
Tlo V3 o0 V2
0 0 V2 0
and they are
R] . 0
Ry : -2 2

Ry: —2.6458 0 2.6458
Ry: —2.8284 —1 1 2.8284
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