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Parent of Origin, Mosaicism, and Recurrence Risk:
Probabilistic Modeling Explains the Broken Symmetry
of Transmission Genetics

Ian M. Campbell,1 Jonathan R. Stewart,2 Regis A. James,3 James R. Lupski,1,4,5,6 Pawe1 Stankiewicz,1,7

Peter Olofsson,8 and Chad A. Shaw1,2,9,*

Most newmutations are observed to arise in fathers, and increasing paternal age positively correlates with the risk of new variants. Inter-

estingly, newmutations in X-linked recessive disease show elevated familial recurrence rates. In male offspring, these mutations must be

inherited from mothers. We previously developed a simulation model to consider parental mosaicism as a source of transmitted muta-

tions. In this paper, we extend and formalize themodel to provide analytical results and flexible formulas. The results implicate parent of

origin and parental mosaicism as central variables in recurrence risk. Consistent with empirical data, our model predicts that more trans-

mittedmutations arise in fathers and that this tendency increases as fathers age. Notably, the lack of expansion later in themale germline

determines relatively lower variance in the proportion of mutants, which decreases with paternal age. Subsequently, observation of a

transmitted mutation has less impact on the expected risk for future offspring. Conversely, for the female germline, which arrests after

clonal expansion in early development, variance in the mutant proportion is higher, and observation of a transmittedmutation dramat-

ically increases the expected risk of recurrence in another pregnancy. Parental somatic mosaicism considerably elevates risk for both par-

ents. These findings have important implications for genetic counseling and for understanding patterns of recurrence in transmission

genetics. We provide a convenient online tool and source code implementing our analytical results. These tools permit varying the un-

derlying parameters that influence recurrence risk and could be useful for analyzing risk in diverse family structures.
Introduction

New mutations are the sole source of disease risk for ge-

netic disorders that eliminate reproductive fitness and for

lethal alleles that can only exist in a mosaic state. Likewise,

newmutations account for approximately one-third of dis-

ease risk in severe X-linked recessive conditions that

diminish reproduction. In some instances, these new mu-

tations are mitotic in origin (they arise during embryologic

development of a parent) and are present in a low-level

mosaic state. Such mutations can include single-nucleo-

tide variations (SNVs), indels, nonrecurrent copy-number

variations (CNVs), and other nonrecurrent copy-number-

neutral structural variations.1 Importantly, these muta-

tions can be present in the germline of parents and

can be potentially recurrently transmitted to future

offspring.2–4 Unexpected recurrences can occur, as evi-

denced by multiple affected children harboring the same

apparently de novo variation. The birth of a single child

with a severe genetic disease presents considerable psycho-

logical, social, and economic challenges; consequently,

recurrence of the same disorder in a second child is a situ-

ation many couples prefer to avoid.5 Families who have

had children affected by apparently de novo mutations

can therefore benefit from well-informed risk counseling

to make reproductive choices and plan prenatal care for
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additional pregnancies. These recurrence-risk estimates

are an important aspect of the health care provided to

such couples, particularly in severe and highly penetrant

genetic disorders for which medical therapy remains

limited.

Geneticists commonly use the value of <1% to estimate

the risk of recurrence for simplex de novomutations6 to be

transmitted to additional pregnancies. However, consider-

ation of the literature shows that this risk assessment is

often inconsistent with empirical risk for some specific dis-

orders,7 particularly those caused by mutations in genes

located on the X chromosome.8,9 These examples provide

insight into understanding exceptions to rarity of recur-

rence of apparently de novo mutations: males affected by

X-linked recessive conditions necessarily harbormutations

on the chromosome inherited from their mothers. This

maternal bias stands in contrast to the observations that

most new mutations arise in the paternal lineage and

that the risk of de novo mutation increases with paternal

age.10,11 This paternal bias is broadly consistent with the

mitotic origin of many de novo mutations and the addi-

tional mitoses experienced by germ cells as fathers age.

We hypothesized that sexual dimorphism in gametogen-

esis might underlie the juxtaposition of these contrasting

biases in higher recurrence risk for X-linked disease and

the increased paternal origin of most de novo transmitted
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Figure 1. Stochastic-Process Model of Sexual Dimorphisms dur-
ing Gametogenesis
Phase 1: both males and females experience a stochastic exponen-
tial cell-expansion phase modeling embryogenesis and germ cell
proliferation. Mutations can arise in any cell division, and if
they persist in the clonal lineage, they could ultimately be avail-
able to be transmitted to the next generation.
Phase 2: in males, expansion is followed by a stochastic but non-
expanding self-renewal process modeling spermatogenesis.
Phase 3: a single sperm and egg are randomly sampled after
meiosis to fertilize an offspring. Adapted from Campbell et al.4

with permission.
mutations. To address this hypothesis, we developed a

comprehensive, flexible mathematical model that de-

scribes the emergence of new transmitted variants. We

show how recurrence risk can be computed on the basis

of conditional probability analyses applied to these models

in the context of observed affected offspring. These ana-

lyses give a comprehensive picture of the emergence of

de novo variation and a systematic framework for quanti-

tative analysis of recurrence. The main conclusion of our

work is that the parent of origin and the presence of

parental somatic mosaicism are major determinants of

recurrence risk.
Material and Methods

Models of Mutation and Germline Development
For our investigations, we utilized multitype Galton-Watson pro-

cesses to model gametogenesis. These approaches are well estab-

lished in probability theory and have been used for over a century;

however, they have seldom been used in statistical genetics. Previ-

ous studies of mosaicism led us to hypothesize that this modeling

framework could be useful in the analysis of sexual dimorphisms

in gametogenesis.4 Our model of gametogenesis is composed of

three stages (Figure 1). We can optionally include a fourth initial

stage that allows stochastic exponential growth without mutation

to exclude extremely early embryologic mutations that potentially

cause the somatically mosaic parent to be affected. In the first

stage of ourmainmodel, we consider clonal expansion that results

in the initial germ pool during embryogenesis. This expansion

phase is parameterized by three variables: the doubling rate of

wild-type cells (p), the doubling rate of mutant cells (q), and the

per-mitosis mutation rate (l1). In the second male-specific stage,
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we consider the self-renewing process of spermatogenesis. This

phase is relatively stable in terms of the total population size

and is parameterized by five variables: the doubling rate of wild-

type spermatogonial cells (a), the self-renewal rate of wild-type

cells (b), the doubling rate of mutant spermatogonial cells (g),

the self-renewal rate of mutant cells (x), and the per-mitosis muta-

tion rate (l2). The final phase is meiosis, where diploid mutant

cells give rise to haploid mutant gametes at a rate of 50% of the

pool of mutant cells. We then select a single gamete from each

parent to determine transmission.

We previously developed exact formulas for analyzing single-

phase Galton-Watson models.12 Here, we extended these sam-

pling formulas to encompass themultistage process (see Appendix

A). In brief, this approach requires composition of the output of

each prior phase and the subsequent phase. We determined an

exact integral expression for the mean and variance of the propor-

tion of cells with mutations at a particular locus within a parent’s

germ pool on the basis of the probability generating functions of

the composite process. We also developed a recursive computa-

tional scheme to numerically determine the required integrands.

Mathematica code implementing the formulas determined in

Appendix A is provided on our website.

However, for numbers of mitoses consistent with human devel-

opment, it is impractical to compute the number of terms in the

generating-function expansions. Furthermore, numerical integra-

tion approaches based on a finite grid break down well in advance

of useful numbers of mitoses. Therefore, we sought an alternative

method to determine model properties and recurrence-risk esti-

mates. We developed an exact matrix formulation for the first

two moments of the multistage Galton-Watson model (Appendix

B). We used these results and Taylor approximations for the mo-

ments of functions of random variables (in this case, a proportion)

to determine approximations of the mean and variance of the pro-

portion of mutants as a function of paternal age and other model

parameters (Appendix B).

Updating the expected proportion of mutants given the obser-

vation of a transmitted mutation is essential to determining recur-

rence risk. We used the definition of conditional probability to

determine an expression for the conditional expectation of the

proportion of mutants on the basis of the unconditional moments

of the proportion. Our results reveal that the conditional expecta-

tion of the proportion of mutants given an observed transmission

is equivalent to the size-biased mean of the proportion, a more

general mathematical result (Appendix C).

We subsequently explored the Beta-Binomial conjugate family13

as a useful and convenient Bayesian method to determine risk in

diverse family structures. We parameterized a Beta distribution

for the unconditional mean and variance of the proportion of mu-

tants by using the results from the Galton-Watson model. We

observed that the Beta-Binomial model gives exactly the same

result as that obtained by the size-biased mean of the proportion

of mutants for a single transmission. Therefore, we utilized the

Beta-Binomial model as a flexible and effective method to estimate

recurrence risk for arbitrary family sizes and the number of

affected and unaffected offspring. Notably, unaffected offspring

provide different information about the proportion of mutants

in the germ pool of the transmitting parent depending onwhether

or not they inherit the risk haplotype—the chromosome on

which the transmitted new mutation occurred. If haplotype

information is unavailable, the information for updating the

proportion is correspondingly diminished. Inheritance of the

nonrisk haplotype conveys almost no information. To incorporate
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Table 1. Selected Observed Recurrence Rates from the Literature

Disease (MIM) Inheritance Observations Recurrence Rate 95% Confidence Interval Reference

Achondroplasia (100800) autosomal dominant 443 0.2% 0.005%–1.3% Mettler and Fraser14

Osteogenesis imperfecta type II
(166210)

autosomal dominant 76 1.3% 0.03%–7.3% Pyott et al.7

Hemophilia A (306700) X-linked recessive 61 3.3% 0.4%–11.8% Leuer et al.9

Duchenne muscular dystrophy
(310200) and Becker muscular
dystrophy (300376)

X-linked recessive 318 8.6% 4.8%–12.2% Helderman-van den
Enden et al.8

Note that these data might reflect heterogeneous mutational mechanisms.
this consideration when haplotype information was unavailable,

we computed a probability-weighted average recurrence risk by

summing across the binomial number of unaffected offspring

who share the risk haplotype with the affected individual and

assuming 50/50 segregation of parental homologs.

Finally, we considered the information gained from experi-

mental observation of somatic mosaicism in the parent of origin,

for example, from molecular studies of parental blood. Identifica-

tion of themutation in parental somatic tissue is evidence that the

mutation was present in the clonal lineage prior to the segregation

of the germline, which occurs at approximately 15 divisions.4 To

update the mutant proportion, we determined the expectation

and variance given that a nonzero number of mutants was present

in the parent before germ cell segregation (Appendix D).
Results

Empirical Recurrence Rates

To motivate our work, we conducted a survey of the exist-

ing literature and examined the available empirical data.

Studies appropriately structured to address the issue

of empirical recurrence rates are sparse.8 Table 1 lists a

selection of studies with sufficient observations (n > 50

families) to attempt useful comparisons. Recurrence of

autosomal-dominant disease caused by new mutations ap-

pears to be rare. However, these data are most likely influ-

enced by average family size in cultures where biomedical

research has traditionally been undertaken. A second ma-

jor observation is that recurrence rates are apparently

higher for some sex-linked traits caused by mutations in

genes on the X chromosome (Table 1). To better contextu-

alize these observations, we sought to mathematically

model the process of germ cell formation.
Model of Gametogenesis

Wepreviously developed a three-phase simulationmodel of

gamete formation and selection4 (Figure 1). Phase 1 deter-

mines the size of the germ cell pool and consists of an expo-

nential expansion occurring during 30 rounds of mitosis.

The approximate number of mitoses between generations

in human females is 30.15 According to our standard param-

eters for cellular fitness (Figure 2), this process defines

4.55 3 107 5 2.28 3 107 cells, a number approximately 1

order of magnitude higher than that identified in second-
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trimester human embryos,16 allowing for additional expan-

sion later in development. Phase 2 occurs only inmales and

represents the self-renewal process of spermatogenesis, dur-

ing which spermatogonial stem cells asymmetrically divide,

beginning at puberty, to produce sperm every 16 days.17

Phase 3 is meiosis and gamete selection, where 50% of gam-

etes are produced frommutant germ cells and one gamete is

randomly selected from each parent.

Risk of a First Affected Offspring

For our analyses, we considered each mitosis as equally

likely to result in a mutation, although our framework is

not limited in this regard. By varying the per-mitosis muta-

tion rate (l), we were able to effectively model mutations

that cause sporadic genetic diseases with a variety of prev-

alence rates. As an example, parameterizing l ¼ 1 3 10�10

resulted in an expected proportion of offspring harboring a

mutation of 2.06 3 10�8 in a mating with a 30-year-old

male, which is consistent with previous estimates of hu-

man mutation rates per base pair per generation.18,19

Studies usingmassively parallel sequencing have identified

a strong paternal bias in the origin of new mutations,

which increases with age.10 Our modeling suggests that

additional mitoses during spermatogenesis are a potential

source of this bias, as previously hypothesized (Fig-

ure 2A).10 Because female gametes do not undergo mitosis

after birth, risk of SNVs and nonrecurrent CNVs is not pre-

dicted to vary with maternal age.10

Interestingly, the variance of theproportionofmutants is

relatively stable with paternal age. However, the expecta-

tion of the proportion is steadily increasing. Therefore,

the coefficient of variation, defined as the ratio of the stan-

dard deviation to the expectation, decreases as a father ages

(Figure 2B). This finding has direct consequences for recur-

rence risk aswe update our expectation of the proportion of

mutants on the basis of the observation of an affected child.

Recurrence Risk

Recurrence risk in the context of a new transmitted muta-

tion is defined as the chance that parents will have a sec-

ond child harboring the same DNA mutation as a previous

child. Analysis of recurrence risk must consider two

distinct underlying biological processes that can lead to

recurrence: (1) when a mutation arises and is maintained
n Journal of Human Genetics 95, 345–359, October 02, 2014 347



10 20 30 40 50 60 70 80
Paternal Age At Conception (Years)

E
xp

ec
te

d 
R

is
k

Mutant Sperm

Affected Offspring
1 x 10-9

5 x 10-9

1 x 10-8

5 x 10-8

20 30 40 50 60 70 80

0
10

0
20

0
30

0
40

0
50

0

Paternal Age at Conception (Years)

C
oe

ffi
ci

en
t o

f V
ar

ia
tio

n

A B Figure 2. Analysis of the Mean and Vari-
ance of the Unconditional Proportion of
Mutant Gametes
(A) Unconditional on the observation of an
affected offspring, the mean proportion of
mutant sperm and the expected risk of a
first affected offspring (the sum of sperm
and egg) are presented over various possible
paternal ages according to our model. Mu-
tation risk increases with paternal age.
(B)Coefficient of variationof theproportion
of mutant sperm as a function of paternal
age. Notably, the curve sharply decreases,
indicating that although the proportion of
mutant gametes increases, the variability
among fathers of a given age decreases in
relation to the mean. For these analyses,
we set l1 ¼ l2 ¼ 1 3 10�10, p ¼ q ¼ 0.9,
a ¼ 0.05, b ¼ 0.05, g ¼ 0.05, and x ¼ 0.05
(see Material and Methods). An interactive
version of this analysis is available online.
in the lineage of clonally related cells ancestral to a mutant

sperm or egg and (2) when an identical mutation arises

more than once within the developing germ cells across

multiple clonal sublineages. The contribution of the latter

is highly influenced by the per-mitosis mutation rate of the

given variant, but for most estimates of mutation rate, the

contribution of independent mutations to recurrence risk

is negligible. Therefore, our analysis of recurrence consid-

ered the clonal development, persistence, and selective

forces20 on germ cells and the propagation of mutations

within these clonal lineages.

Our results show that recurrence risk depends on the

parent of origin of the transmitted mutation. For mater-

nally transmitted mutations, recurrence risk is consider-

ably higher than empiric estimates for autosomal-domi-

nant conditions but is consistent with observations for

X-linked recessive disease (Tables 1 and 2). For paternally

transmitted mutations, recurrence risk is similar overall

to empirical risk estimates; however, the analyses revealed

that paternal age is an important variable modifying recur-

rence risk. For young fathers who transmit a mutant

gamete, recurrence risk is determined to be considerably

higher because sampling a mutant is more unexpected

and corresponds to a large increase in the expected risk

of additional transmission (Figure 3). However, recurrence

risk decreases with paternal age because observation of a

transmitted mutation is more consistent with the expected

increase in mutations in the paternal germ pool. In many

real-life situations, knowledge of the parent of origin of

new mutations is unavailable. In this circumstance, anal-

ysis of recurrence risk must consider the asymmetry in

the parent of origin of new mutations. In this case, we

calculate the recurrence risk by multiplying the sum of

the risk for each parent by the probability that the sampled

mutation was transmitted from that parent (Figure 3).

The birth of additional offspring, either affected or unaf-

fected, provides additional insight into the number of

mutant gametes in the germ pool of the transmitting

parent. Importantly, the information derived from unaf-
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fected offspring depends on the haplotype that they in-

herited from the transmitting parent. Inheriting the same

haplotype as the affected sibling but with a wild-type allele

provides information about the frequency of mutant

diploid germ cells. Inheritance of the haplotype from the

homologous parental chromosome provides almost no

information. Table 2 lists posterior recurrence-risk esti-

mates based on a Beta-Binomial Bayesian formulation

(see Material and Methods) for a number of potential fam-

ily structures. For transmitting mothers, the observation of

a second affected offspring raises the recurrence risk of a

third affected offspring to a potentially clinically action-

able level. However, for transmitting fathers, risk of a third

affected offspring is still less than 1% according to our

model. Surprisingly, when information of an unexpected

recurrence from an unknown parent is incorporated, the

paternal bias of new mutations disappears and each parent

is equally likely to have transmitted the mutation.

Parental Somatic Mosaicism and Recurrence Risk

Somaticmosaicism is the presence of amutation in a subset

of body tissues other than, or in addition to, the germ-

line.21 Our previous studies suggest that parental somatic

mosaicism for transmittedmutations (at least for nonrecur-

rent CNV alleles) is more common than previously identi-

fied and occurs at a rate of ~4%.4 Detecting somatic mosa-

icism in a transmitting parent—for example, in peripheral

blood—provides information regarding the timing of a

mutation because the germline becomes segregated from

the rest of the embryo within the first 15 mitoses.22,23 Ac-

cording to our analysis, compared to mutations for which

no information is known, mutations that are also somati-

cally mosaic in the transmitting parent are twice as likely

to recur for mothers and, surprisingly, 513 more likely to

recur in 30-year-old fathers (Table 2). For most reasonable

mutation rates and paternal ages, somatically mosaic par-

ents of either sex are at roughly equivalent risks of recur-

rence. Although definitively determining that mutant cells

are exclusively confined to the parental germline is not
02, 2014



Table 2. Selected Recurrence-Risk Estimates Calculated from Our Analyses

Parent Age
Mosaic in
Blood

Recurrence-Risk Estimates

Risk Haplotype Unknown Haplotype

One Affected and
Zero Unaffected

One Affected and
One Unaffected

Two Affected and
Zero Unaffected

Three Affected and
Zero Unaffected

One Affected and
One Unaffected

Mother any unknown 2.60% 2.48% 4.95% 7.07% 2.54%

Father 20 unknown 0.235% 0.234% 0.468% 0.699% 0.235%

Father 25 unknown 0.142% 0.142% 0.28% 0.42% 0.142%

Father 30 unknown 0.102% 0.102% 0.203% 0.305% 0.102%

Father 35 unknown 0.080% 0.079% 0.159% 0.238% 0.080%

Father 40 unknown 0.065% 0.065% 0.130% 0.195% 0.065%

Father 50 unknown 0.048% 0.048% 0.096% 0.143% 0.048%

Unknown 30 unknown 0.197% – – – –

Unknown 50 unknown 0.094% – – – –

Mother any yes 5.21% 4.72% 9.40% 12.9% 4.96%

Father any yes 5.21% 4.72% 9.40% 12.9% 4.96%

Information gained about recurrence risk from observation of unaffected offspring depends on the chromosome haplotype inherited from the parent who trans-
mitted the mutant allele to the affected offspring. Inheriting the chromosome on which the mutation occurred (the risk haplotype) but with a wild-type allele
provides much more information than inheriting the homologous chromosome’s haplotype. Absence of evidence of somatic mosaicism is treated as unknown
because only a subset of tissue can be tested. Updating recurrence risk on the basis of additional offspring for an unknown transmitting parent is not considered
in this manuscript. We caution against using this model-based table directly in clinical practice.
experimentally feasible, our analyses suggest that recur-

rence risk for such parents is 2–3 orders of magnitude lower

than that for parents with mutations that occurred before

the segregation of the germline.
Recurrence-Risk Calculator

Tomake our analyses more accessible, we developed an on-

line tool to explore how changes in parameters of the

model and parent of origin influence estimates of recur-

rence. The parameters used for Table 2 are provided as

the default. This tool is detailed in the Web Resources

and might help to conceptualize the complex interplay

among the factors that determine gametogenesis. None-

theless, across a wide parameter space, the major conclu-

sions remain: parent of origin and somatic mosaicism are

major determinants of recurrence risk.
Discussion

Estimating recurrence risk is an important clinical concept

that directly affects the medical management and repro-

ductive choices of couples with children affected by ge-

netic disease. Geneticists and genetic counselors often

rely on empirical understanding of recurrence risk, but spe-

cific information is available for only the most common

and well-understood diseases. Thus, frequently, they can

only advise on the basis of experience with a broad spec-

trum of diseases and mutation types. Our analyses yield

new insights into recurrence and implicate the parent of

origin as a central variable in the analysis of risk, but we
The America
caution against using these estimates directly in routine

clinical practice. Nonetheless, we have found that muta-

tions of maternal origin determine higher recurrence risk

than do paternal mutations. The analysis that underlies

this finding requires detailed consideration of the funda-

mental developmental processes that lead to the transmis-

sion of new mutations. A comprehensive mathematical

treatment of recurrence risk in humans is not available in

the literature, and the authoritative reference does not

consider the complexity of sampling stochastic clonal

expansion or spermatogonial self-renewal.24 Other studies

have considered the consequences of mosaicism (also

called ‘‘premeiotic clusters’’) but were directed more to-

ward the study of population genetics.3,25,26

Our model predictions are consistent with the unex-

plained observation of increased recurrence risk among

X-linked recessive diseases. This elevated recurrence risk

is not a feature of a special choice of parameters in our

model but is instead a result of the structural difference

in gametogenesis between the sexes. For females, muta-

tions during the clonal-expansion phase are rare, but the

observation of a transmitted mutation is a strong indica-

tion that the maternal germline is rich in mutant gametes.

In probabilistic terms, although the expected proportion

of mutants is quite small, the prior variance in the propor-

tion is quite large. Subsequently, the observation of a trans-

mitted mutation has considerable information to update

and increase the expected proportion of mutants in the

maternal germ pool.

The situation for males is different. According to our

model, and consistent with observations, the expected
n Journal of Human Genetics 95, 345–359, October 02, 2014 349
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Figure 3. Analysis of Recurrence Risk as a Function of Parent of
Origin and Paternal Age
Because oogenesis completes during embryogenesis, recurrence
risk of maternally transmitted mutations is not expected to vary
with maternal age. According to our model, recurrence risk of
paternally transmitted mutations steadily decreases with age,
despite an increasing risk of a first affected offspring. When the
parent of origin is unknown, the overall recurrence risk is the
probability-weighted sum of the recurrence risks for both parents.
An interactive version of this analysis is available online.
proportion of mutants is higher in males and steadily in-

creases with age. However, our analyses show that the

coefficient of variation of this proportion of mutants is

modest and steadily decreases with paternal age. As such,

observation of a transmitted mutation does not shift the

expectation of the fraction of mutants in the sperm pool

as strongly as for female germ cells. Observation of a

transmitted mutation from the paternal side contains

comparatively less information to alter the expected risk

of recurrence.

Our model framework permits us to analyze the impact

of mosaicism on recurrence risk. Emerging evidence sug-

gests that parental somatic mosaicism for transmitted mu-

tations is more common than previously thought and

might have a clinically significant impact on recurrence

risk. Our results indicate that compared to observation of

a transmission alone, observation of somatic mosaicism

increases recurrence risk 2-fold in mothers and more

than 50-fold in fathers.

The conclusions of our model can be tested by analysis

of the parent of origin and parental mosaicism in families

where transmitted genetic disease is caused by new muta-

tions, including families with and without observed

recurrences. Although these analyses are not commonly

performed, our results suggest that identification of the

parent of origin is a key consideration for intrafamilial

recurrence risk. In the absence of genome-wide data that

permit phasing of the mutant allele, personalized assays
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such as single-gene sequencing or customized PCR to

determine the parent of origin might be useful. Likewise,

parental somatic mosaicism can be molecularly identi-

fied,8 and techniques with improved sensitivity should

also be developed.

In addition to somatic-mosaicism status and parent of

origin, the type of mutation in question most likely influ-

ences the parameters determining recurrence risk. The so-

called ‘‘paternal-age effect’’ disorders20 provide particularly

prominent examples. The high prevalence of Apert syn-

drome is attributed to mutant spermatogonial stem cells

dividing more frequently than wild-type cells.17 Although

the analysis we present in the text does not address this

type of effect, our model and online explorer (see Web

Resources) have provisions to modify these parameters.

Likewise, some mutation types, such as CpG dinucleotide

transitions or CNVs, might occur at higher or lower rates

in spermatogonial stem cells or vary by sex. Moreover,

genetic diversity in individual parents might influence

mutation rate globally27 or for select mutation types dur-

ing mitosis, as has been observed for meiotic mutational

mechanisms.28 Our model can also accommodate inquiry

into these aspects of human variation.

We suggest that our modeling framework is flexible and

that our results are robust across many choices of parame-

ters of mutation rate and cellular fitness. However, our

modeling framework does not account for all sources of

new disease-causing mutations. Importantly, we do not

consider meiotic-originmutations, such as nondisjunction

events that mediate aneuploidy. As such, disorders such as

Down syndrome and other conditions associated with

increasing maternal age are not the focus of our work.

Other classes of deleterious mutations could cause recur-

rent disease under more complex patterns of inheritance.

Our modeling is focused on autosomal-dominant alleles,

in which a single copy of a mutant allele determines dis-

ease state. This model is also directly applicable for

computing recurrence risk for X-linked recessive disease.

In other unexpected recurrence situations involving new

mutations, disease occurs through compound heterozy-

gosity, in which a new mutation from one parent is

randomly paired with a nonfunctional recessive allele in-

herited from the other parent. In these situations, familial

recurrence rates would be half of what is predicted by our

model, given that disease recurrence requires the nonfunc-

tional familial allele from the other parent to also be trans-

mitted to the offspring. Although our analysis focused on

the inheritance of new mutations for couples, it might

also contribute to understanding apparent violations of

Mendelian expectations in some pedigrees.

In addition to their immediate applicability to recur-

rence risk of new mutations, our analytic results also

represent a technical advance in the theory of branch-

ing processes. We extend the exact sampling formulas

for multitype Galton-Watson processes to multiphase

models, which in this application permitted us to con-

sider both clonal-expansion and self-renewal phases of
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gametogenesis. This advancemight extend the application

of Galton-Watson models and sampling results to other

contexts in biology, such as population genetics or the

emergence of mutations in model organisms that can be

experimentally assayed.29 We also developed an inter-

esting result concerning the analysis of stochastic propor-

tions. We showed that sampling a rare particle updates

the expected proportion of that rare particle to the value

determined by the size-biased distribution of the propor-

tion. This general fact could have other uses in statistics

and probability.

Ourmodeling framework considers only two types, wild-

type and mutants. This simplifying choice is appropriate

for the analysis of recurrent transmission of an index mu-

tation within a family. We recognize that additional work

is required for considering the full spectrum of variation

that can emerge during clonal divisions and ultimately

be transmitted by gametes between generations. We

suggest that the basic structure of our model can be

extended to considering an arbitrary number of mutation

types. The framework of our model is to allow new mu-

tants to arise and reproduce starting from a parental cell

type. If we iterate this approach, allowing mutant cells

from our model to initiate additional compound mutant

lineages, then the basic mathematical structure as pre-

sented in Appendices A and B can be extended to consid-

ering arbitrary accumulation of mutations as well as back

mutation. Future work in this area could advance the un-

derstanding of clonal heterogeneity, potentially of use in

the study of malignancy.

Our results suggest that parent of origin and somatic-

mosaicism status have considerable utility to inform esti-

mation of recurrence risk. Our results naturally raise the

question, ‘‘should clinicians quote a value different than

<1%’’? Empirical evidence,8 together with our model, sug-

gests that for some clearly defined mutations, on average,

risk is considerably higher. Large-scale empirical studies

of parent of origin, parental somatic mosaicism, and muta-

tional mechanisms are required for fully understanding

recurrence risk. For any particular mutation, the interplay

between these contributory factors determines risk, but

their superposition makes it difficult to disentangle

them. Further modeling based on improved empirical

data would be an excellent approach. Nonetheless, we sug-

gest that for families most concerned about recurrence,

particularly those with younger fathers, investigations

into parent of origin and mosaicism can help to reassure,

improve family planning, or direct the potential use of pre-

implantation or prenatal genetic diagnostics.
Appendix A: Exact Formulas for Mutant

Proportions in the Paternal Germline

A Two-Phase Model of Gametogenesis

This study considers sexual dimorphism in gametogenesis,

mosaicism, and the consequences of these phenomena for
The America
mutation transmission between parents and offspring.

Although we are considering diploid cells that precede

the formation of haploid gametes, we consider cells as a

whole rather than each homologous chromosome sepa-

rately. Under this scheme, a cell with at least one mutation

at a given locus is considered mutant, whereas a cell with

only wild-type copies of DNA at that locus is considered

wild-type. This simplification is reasonable for low muta-

tion rates because the chance that two identical variations

will arise on each of the homologs in a cellular lineage is

extremely low.

For a single locus, the dynamics of this process can be

modeled with only two types: wild-type and mutant. Our

previous work12 provides exact sampling formulas for a

single-phase two-type Galton-Watson model of clonal

expansion with mutation, and this model is suitable to

represent the female germline. Here, we extend our ana-

lyses to consider a two-stage, two-type Galton-Watson pro-

cess suitable to represent the male germline. By two-stage

we mean that the progeny distributions start according

to the clonal-expansion rules as used in our earlier work

but then switch at a fixed generation j from clonal expan-

sion to self-renewal, under which the overall population

size of the germ pool remains relatively stable. This self-

renewal process proceeds for n � j ¼ k generations. This

two-stage model of expansion followed by an extended

period of self-renewal reflects the characteristics of the

male germline. The formulas for the model initiated from

a single wild-type cell at generation 0 are presented below.

In what follows, we definewild-type cells as type 0 andmu-

tants as type 1.

Probability Generating Functions

The fundamental tool for analysis of Galton-Watson

branching processes is the probability generating function

(pgf). A pgf is a polynomial transformation used to repre-

sent a discrete probability distribution. The real valued ar-

guments to pgfs are ‘‘dummy variables,’’ where powers of

these arguments correspond to the possible values of the

discrete random variable whose distribution is being

analyzed. The coefficient of each polynomial term corre-

sponds to the probability that the random variable being

modeled takes on the values indexed in the exponents.

For instance, for a variable X taking on the values {0,1,2},

let f(u) be the pgf of X. We could write f(u) ¼ 0.25 þ
0.5u þ 0.25u2, indicating that X takes the value 0 with

probability 0.25, the value 1 with probability 0.5, and

the value 2 with probability 0.25. Joint distributions of

two or more random variables can be similarly modeled

with bivariate or multivariate pgfs. For instance, for the

pair of random variables X and Y, each taking on values

in {0,1,2}, we could write f(u,v) ¼ 0.25 þ 0.5uv þ 0.25u2,

modeling a bivariate distribution where the only allowed

values of the ordered pair (X,Y) are (0,0), (1,1), and (2,0)

and where (1,1) occurs with probability 0.5.

The benefit of this notation is that various properties of

discrete distributions can be determined by analytic
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properties of the pgf. For instance, the distribution of sums

of independent discrete random variables can be analyzed

by products of pgfs, and for multitype branching pro-

cesses, function composition of the pgfs for the progeny

determines the distribution of the evolution of the process.
Using pgfs in Our Two-Phase Model

In our previously published work,12 we defined progeny

pgfs for the clonal-expansion process. f0 represents the

offspring of a wild-type cell, and f1 is the pgf for the

offspring of a mutant cell. The bivariate pgfs for wild-

type (dummy variable u) andmutant cells (v) during clonal

expansion are the following:

f0ðu; vÞ ¼ 1� pþ pluv þ pð1� lÞu2 (Equation A1)

f1ðu; vÞ ¼ 1� qþ qv2: (Equation A2)

Wild-type cells double with probability p or expire with

no progeny with probability 1 � p. Independently,

dividing wild-type cells could either produce two wild-

types with probability 1 � l or give rise to one wild-type

and one mutant with probability l. Mutant cells can

only give rise to two additional mutants with probability

q or die without division with probability 1 � q.

The process of spermatogonial self-renewal proceeds by

asymmetric cell division, in which spermatogonial cells

most often produce a single renewal cell and only rarely

double or expire with no progeny. As in clonal expansion,

mutant cells can give rise to mutants, whereas wild-types

can produce either wild-type or mutant offspring. We

define the pgfs for the self-renewal process as j0 for wild-

type and j1 for mutant spermatogonial cells:

j0ðu; vÞ ¼ 1� a� bþ au2 þ blv þ bð1� lÞu
(Equation A3)

j1ðu; vÞ ¼ 1� g� xþ gv2 þ xv: (Equation A4)

Wild-type spermatogonial cells self-renew with proba-

bility b(1 � l), divide with probability a, and expire

with probability 1 � a � b. They generate mutant sper-

matogonial cells with probability bl. Similarly, for mutant

spermatogonial cells, they self-renew with probability x,

divide with probability g, and expire with probability

1 � g � x.

As discussed above, male germline gametogenesis can be

modeled by iterative composition of these progeny pgfs.

The two-stage process has a total pgf that combines the j-

fold compositions of the first-stage expansion process

with n � j ¼ k-fold composition of the second-stage self-

renewal process. As a reminder, we use the Greek letter f

for the first-stage expansion-phase pgf and the letter j

for the second-stage of self-renewal. By j
ðkÞ
0 we intend the

k-fold composition of the second-stage process starting

from a single wild-type cell, and f
ðjÞ
0 is the j-fold composi-

tion of the expansion phase; we use the subscript 1 for

the corresponding functions beginning from mutants.
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p
ðnÞ
0 represents the total pgf for the two-stage process start-

ing from a single wild-type cell, whereas p
ðnÞ
1 is the corre-

sponding function for a process initiated by a mutant:

p
ðnÞ
0 ðu; vÞ ¼ f

ðjÞ
0

�
j
ðkÞ
0 ðu; vÞ;jðkÞ

1 ðu; vÞ
�

(Equation A5)

p
ðnÞ
1 ðu; vÞ ¼ f

ðjÞ
1

�
j
ðkÞ
0 ðu; vÞ;jðkÞ

1 ðu; vÞ
�
: (Equation A6)

According to our prior work,12 if we let Z0
n and Z1

n be the

number of wild-type and mutant cells, respectively, at gen-

eration n, then the mean and variance of the proportion of

mutants in this two-stage process can be determined with

the first and second derivatives of the bivariate pgf. The

expression for the expected proportion of mutants is

E

"
Z1
n

Z0
n þ Z1

n

jZ0
n þ Z1

n > 0

#

¼ 1

1� p
ðnÞ
0 ð0;0Þ

Z 1

0

v

vv
p
ðnÞ
0 ðu; vÞ j u¼v¼sds:

(Equation A7)

A related expression involving second derivatives deter-

mines the variance. Applying the chain rule to consider

the first derivatives, we have

vp
ðnÞ
0

vv
ðu; vÞ ¼ vf

ðjÞ
0

vj
ðkÞ
0

vj
ðkÞ
0

vv
þ vf

ðjÞ
0

vj
ðkÞ
1

vj
ðkÞ
1

vv
(Equation A8)

vp
ðnÞ
1

vv
ðu; vÞ ¼ vf

ðjÞ
1

vj
ðkÞ
0

vj
ðkÞ
0

vv
þ vf

ðjÞ
1

vj
ðkÞ
1

vj
ðkÞ
1

vv
: (Equation A9)

The chain rule shows that the total derivative requires

determination of derivatives for both wild-type and

mutant cells in both the first- and second-stage processes.

Similarly, computing second derivatives, as required for

the variance determination, also depends on differenti-

ating both pgfs for both stages. The derivatives for the first

stage are available in our prior work. The derivatives for the

second-stage process are determined as follows:

j
ð0Þ
0 ðu; vÞ ¼ u (Equation A10)

j
ð1Þ
0 ðu; vÞ ¼ 1� a� bþ au2 þ blv þ bð1� lÞu

(Equation A11)

vj
ð1Þ
0

vv
ðu; vÞ ¼ bl (Equation A12)

v2j
ð1Þ
0

vv2
ðu; vÞ ¼ 0 (Equation A13)

j
ðkÞ
0 ðu; vÞ ¼ 1� a� bþ a

�
j
ðk�1Þ
0 ðu; vÞ

�2
þ blj

ðk�1Þ
1 ðu; vÞ

þ bð1� lÞjðk�1Þ
0 ðu; vÞ:

(Equation A14)

Suppressing (u,v) on the right-hand side, we have
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vj
ðkÞ
0

vv
ðu; vÞ ¼ 2a

"
j
ðk�1Þ
0

vj
ðk�1Þ
0

vv

#
þ bl

vj
ðk�1Þ
1

vv
þ bð1� lÞ vj

ðk�1Þ
0

vv

(Equation A15)

v2j
ðkÞ
0

vv2
ðu; vÞ ¼ 2a

2
4jðk�1Þ

0

v2j
ðk�1Þ
0

vv2
þ
 
vj

ðk�1Þ
0

vv

!2
3
5þ bl

v2j
ðk�1Þ
1

vv2

þ bð1� lÞ v
2j

ðk�1Þ
0

vv2
:

(Equation A16)

And for mutants, we have

j
ð0Þ
1 ðu; vÞ ¼ v (Equation A17)

j
ð1Þ
1 ðu; vÞ ¼ 1� g� xþ gv2 þ xv (Equation A18)

vj
ð1Þ
1

vv
ðu; vÞ ¼ 2gv þ x (Equation A19)

v2j
ð1Þ
1

vv2
ðu; vÞ ¼ 2g (Equation A20)

j
ðkÞ
1 ðu; vÞ ¼ 1� g� xþ g

�
j
ðk�1Þ
1

�2
þ xj

ðk�1Þ
1

(Equation A21)

vj
ðkÞ
1

vv
ðu; vÞ ¼ 2gj

ðk�1Þ
1

vj
ðk�1Þ
1

vv
þ x

vj
ðk�1Þ
1

vv
(Equation A22)

v2j
ðkÞ
1

vv2
ðu; vÞ ¼ 2g

2
4 vjðk�1Þ

1

vv

!2

þ j
ðk�1Þ
1

v2j
ðk�1Þ
1

vv2

3
5þ x

v2j
ðk�1Þ
1

vv2
:

(Equation A23)

To compute the integrands for the mean and variance

formulas, we first compute the inner function composition

for the second-stage self-renewal process and then use this

as the initial condition for evaluating the composition of

the first-stage clonal-expansion process. It is important to

note that evaluation of these function compositions pro-

ceeds from the ‘‘inside out’’; that is, the compositions pro-

ceed from the final generation of the process backward to-

ward ancestral cells and ultimately to the single wild-type

progenitor cell. The superscripts index the number of func-

tion compositions, but these compositions are computed

in the reverse order from the forward indexing of cell divi-

sion. Thus, it is important to track the j and k indices for a

fixed n. Recall that for a self-renewal process that proceeds

for k generations after j generations of clonal expansion,

n ¼ jþ k (Equation A24)

k ¼ 0:::ðn� jÞ: (Equation A25)

To initialize the two-stage composition, we start with the

final round of clonal expansion, composed of the total

composition representing k generations of self-renewal:
The America
p
ð1þkÞ
0 ðu; vÞ ¼ 1� pþ plj

ðkÞ
0 ðu; vÞjðkÞ

1 ðu; vÞ� �2

þ pð1� lÞ j

ðkÞ
0 ðu; vÞ : (Equation A26)

Again suppressing (u,v) on the right-hand side, we have

vp
ð1þkÞ
0

vv
ðu; vÞ ¼ pl

"
vj

ðkÞ
0

vv
j
ðkÞ
1 þ j

ðkÞ
0

vj
ðkÞ
1

vv

#
þ 2pð1� lÞjðkÞ

0

vj
ðkÞ
0

vv

(Equation A27)

v2p
ð1þkÞ
0

vv2
ðu; vÞ ¼ pl

"
v2j

ðkÞ
0

vv2
j
ðkÞ
1 þ 2

vj
ðkÞ
0

vv

vj
ðkÞ
1

vv
þ j

ðkÞ
0

v2j
ðkÞ
1

vv2

#

þ 2pð1� lÞ
2
4 vjðkÞ

0

vv

!2

þ j
ðkÞ
0

v2j
ðkÞ
0

vv2

3
5 :

(Equation A28)

Subsequently for j>1,

p
ðjþkÞ
0 ðu; vÞ ¼ 1� pþ plp

ðjþk�1Þ
0 p

ðjþk�1Þ
1 þ pð1� lÞ

�
p
ðjþk�1Þ
0

�2
(Equation A29)

vp
ðjþkÞ
0

vv
ðu; vÞ ¼ pl

"
vp

ðjþk�1Þ
0

vv
p
ðjþk�1Þ
1 þ p

ðjþk�1Þ
0

vp
ðjþk�1Þ
1

vv

#

þ 2pð1� lÞpðjþk�1Þ
0

vp
ðjþk�1Þ
0

vv
(Equation A30)

v2p
ðjþkÞ
0

vv2
ðu; vÞ ¼ pl

"
v2p

ðjþk�1Þ
0

vv2
p
ðjþk�1Þ
1 þ 2

vp
ðjþk�1Þ
0

vv

vp
ðjþk�1Þ
1

vv

þ p
ðjþk�1Þ
0

v2p
ðjþk�1Þ
1

vv2

#
þ2pð1�lÞ

2
4 vpðjþk�1Þ

0

vv

!2

þ p
ðjþk�1Þ
0

v2p
ðjþk�1Þ
0

vv2

3
5 :

(Equation A31)

Again for mutants,

p
ð1þkÞ
1 ðu; vÞ ¼ 1� qþ q

�
j
ðkÞ
1

�2
(Equation A32)

vp
ð1þkÞ
1

vv
ðu; vÞ ¼ 2qj

ðkÞ
1

vj
ðkÞ
1

vv
(Equation A33)

v2p
ð1þkÞ
1

vv2
ðu; vÞ ¼ 2q

 
vj

ðkÞ
1

vv

!2

þ 2qj
ðkÞ
1

v2j
ðkÞ
1

vv2
(Equation A34)

p
ðjþkÞ
1 ðu; vÞ ¼ 1� qþ q

�
p
ðjþk�1Þ
1

�2
(Equation A35)

vp
ðjþkÞ
1

vv
ðu; vÞ ¼ 2qp

ðjþk�1Þ
1

vp
ðjþk�1Þ
1

vv
(Equation A36)
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v2p
ðjþkÞ  

vp
ðjþk�1Þ!2

v2p
ðjþk�1Þ
1

vv2
ðu; vÞ ¼ 2q 1

vv
þ 2qp

ðjþk�1Þ
1

1

vv2
:

(Equation A37)

Recursive Scheme for Pointwise Function Evaluation

Expansion of the polynomials defined above by recursive

function composition proves impractical. As in our previ-

ous work,12 we developed a recursive scheme for point-

wise function evaluation to permit numerical evaluation

of the integrand for determining the exact mean and vari-

ance of the mutant proportion. We define this notation

here:

HkðsÞ ¼ j
ðkÞ
0 ðs; sÞ; hkðsÞ ¼ vj

ðkÞ
0

vv
ðu; vÞ j u¼v¼s; hhkðsÞ

¼ v2j
ðkÞ
0

vv2
ðu; vÞ j u¼v¼s

(Equations A38)

MkðsÞ ¼ j
ðkÞ
0 ðs; sÞ; mkðsÞ ¼ vj

ðkÞ
1

vv
ðu; vÞ j u¼v¼s; mmkðsÞ

¼ v2j
ðkÞ
1

vv2
ðu; vÞ j u¼v¼s

(Equations A39)

FjðsÞ ¼ f
ðjÞ
0 ðs; sÞ; fjðsÞ ¼ vf

ðjÞ
0

vv
ðu; vÞ j u¼v¼s; ffjðsÞ

¼ v2f
ðjÞ
0

vv2
ðu; vÞ j u¼v¼s

(Equations A40)

GjðsÞ ¼ f
ðjÞ
0 ðs; sÞ; gjðsÞ ¼ vf

ðjÞ
1

vv
ðu; vÞ j u¼v¼s; ggjðsÞ

¼ v2f
ðjÞ
1

vv2
ðu; vÞ j u¼v¼s:

(Equations A41)

We obtain the following recursive scheme:

HkðsÞ ¼ 1� a� bþ aH2
k�1ðsÞ þ blMk�1ðsÞ þ bð1� lÞHk�1ðsÞ

(Equation A42)

hkðsÞ ¼ 2a½Hk�1ðsÞhk�1ðsÞ� þ blmk�1ðsÞ þ bð1� lÞhk�1ðsÞ
(Equation A43)

hhkðsÞ ¼ 2a
h
Hk�1ðsÞhhk�1ðsÞ þ h2

k�1ðsÞ
i
þ blmmk�1ðsÞ

þ bð1� lÞhhk�1ðsÞ
(Equation A44)

MkðsÞ ¼ 1� g� xþ gM2
k�1ðsÞ þ xMk�1ðsÞ (Equation A45)

mkðsÞ ¼ 2gMk�1ðsÞmk�1ðsÞ þ xmk�1ðsÞ (Equation A46)
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mmkðsÞ ¼ 2g
�
m2

k�1ðsÞ þMkk�1ðsÞmmk�1ðsÞ
�þ xmmk�1ðsÞ

(Equation A47)

FjðsÞ ¼ 1� pþ plFj�1ðsÞGj�1ðsÞ þ pð1� lÞF2
j�1ðsÞ

(Equation A48)

fjðsÞ ¼ pl
h
fj�1ðsÞGj�1ðsÞ þ Fj�1ðsÞgj�1ðsÞ

i
þ 2pð1� lÞFj�1ðsÞfj�1ðsÞ (Equation A49)

ffjðsÞ ¼ pl
h
ffj�1ðsÞGj�1ðsÞ þ 2fj�1ðsÞgj�1ðsÞ þ Fj�1ðsÞggj�1ðsÞ

i
þ 2pð1� lÞ

h
f 2j�1ðsÞ þ Fj�1ðsÞffj�1ðsÞ

i
(Equation A50)

GjðsÞ ¼ 1� qþ qG2
j�1ðsÞ (Equation A51)

gjðsÞ ¼ 2qGj�1ðsÞgj�1ðsÞ (Equation A52)

ggjðsÞ ¼ 2q
h
g2j�1ðsÞ þ Gj�1ðsÞggj�1ðsÞ

i
: (Equation A53)

The initial conditions are

H1ðsÞ ¼ 1� a� bþ as2 þ bs (Equation A54)

h1ðsÞ ¼ bl (Equation A55)

hh1ðsÞ ¼ 0 (Equation A56)

M1ðsÞ ¼ 1� g� xþ gs2 þ xs (Equation A57)

m1ðsÞ ¼ 2gsþ x (Equation A58)

mm1ðsÞ ¼ 2g (Equation A59)

F1ðsÞ ¼ 1� pþ pH2
k ðsÞ (Equation A60)

f1ðsÞ ¼ pl½hkðsÞMkðsÞ þHkðsÞmkðsÞ� þ 2pð1� lÞHkðsÞhkðsÞ
(Equation A61)

ff1ðsÞ ¼ pl½hhkðsÞMkðsÞ þ 2hkðsÞmkðsÞ þHkðsÞmmkðsÞ�
þ 2pð1� lÞ

h
h2
kðsÞ þHkðsÞhhkðsÞ

i
(Equation A62)

G1ðsÞ ¼ 1� qþ qM2
k ðsÞ (Equation A63)

g1ðsÞ ¼ 2qMkðsÞmkðsÞ (Equation A64)

gg1ðsÞ ¼ 2qm2
kðsÞ þ 2qMkðsÞmmkðsÞ: (Equation A65)

For the female line composed of only clonal expansion,

the initial conditions are
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F1ðsÞ ¼ 1� pþ ps2 (Equation A66)

f1ðsÞ ¼ pls (Equation A67)

ff1ðsÞ ¼ 0 (Equation A68)

G1ðsÞ ¼ 1� qþ qs2 (Equation A69)

g1ðsÞ ¼ 2qs (Equation A70)

gg1ðsÞ ¼ 2q: (Equation A71)

Mathematica code implementing these recurrences can

be found on our website. We note that the spermatogonial

self-renewal model can be extended to allow mutation at

spermatogonial division:

j0ðu; vÞ ¼ 1� a� bþ ð1� lÞau2 þ lauv þ blv þ bð1� lÞu:
(Equation A72)

We elected not to use this form for two reasons: (1) the

main dynamics of the model are not substantively

altered, and (2) we wished to conform with the simu-

lation model used in our previously published work.4

Likewise, l can be modeled to take on different values

in the two phases of gametogenesis or vary by generation

of cell division.
Appendix B: Taylor Approximations to the

Moments of the Proportion of Mutants

Calculating the numerical integration of the formulas pre-

sented in Appendix A proves difficult. Approximations

of the mean and variance of the proportion of mutants

can be obtained with Taylor approximations of the mo-

ments of functions of random variables. In order to apply

these approximations, we require the mean, variance,

and covariance of the number of wild-type and mutant

cells in each generation. In this problem, there are seven

fundamental parameters that are determined from the

progeny pgfs, and these are given in Table B1 below:
Table B1. Model Parameter Determined by the Progeny
Generating Function

Parameter Description

m00 expected wild-types born to a wild-type

m01 expected mutants born to a wild-type

m11 expected mutants born to a mutant

s200 variance of wild-types born to a wild-type

s201 variance of mutants born to a wild-type

s211 variance of mutants born to a mutant

r01 the expectation of the product of the number of
wild-types and mutants born to a wild-type

The America
Importantly, the key structure of the model—where mu-

tants can give additional mutants but wild-types make

wild-types or mutants—is unchanged between the

clonal-expansion and self-renewal phases. Depending on

the previous generation, a single homogenous, linear

recurrence in five-state variables determines the two

means, the two variances, and the covariance of the num-

ber of wild-type and mutant cells in each generation. Spec-

ifying the initial state (the number of wild-type and

mutant cells at the first generation) and the values of the

parameters described above determines the evolution of

the process. Let Z0
n be the number of wild-type cells in gen-

eration n and Z1
n be the number of mutants at n. Let

Zn ¼ ðZ0
n;Z

1
nÞt . We obtain

E
�
Z0
n

� ¼ E
�
E
�
Z0
n jZ0

n�1

�� ¼ u00E
�
Z0
n�1

�
(Equation B1)

V
�
Z0
n

� ¼ E
�
V
�
Z0
n jZ0

n�1

��þ V
�
E
�
Z0

n jZ0
n�1

��
¼ E

�
Z0
n�1

�
s2
00 þ m2

00V
�
Z0
n�1

�
: (Equation B2)

Similarly, for Z1
n we have

E
�
Z1
n

� ¼ E
�
E
�
Z1
n jZ0

n�1;Z
1
n�1

�� ¼ u01E
�
Z0
n�1

�þ u11E
�
Z1
n�1

�
(Equation B3)

V
�
Z1
n

� ¼ V
�
E
�
Z1
n jZ0

n�1;Z
1
n�1

��þ E
�
V
�
Z1
n jZ0

n�1;Z
1
n�1

��
¼ s2

01E
�
Z0
n�1

�þ m2
01V

�
Z0
n�1

�þ s2
11E
�
Z1
n�1

�
þ m2

11V
�
Z1
n�1

�
:

(Equation B4)

Finally, for the covariance, we have this identity:

Cov
�
Z0
n;Z

1
n

� ¼ E
�
Cov

�
Z0
n;Z

1
n jZn�1

��
þ Cov

�
E
�
Z0
n jZn�1

�
; E
�
Z1

n jZn�1

��
¼ ðr01 � m00m01ÞE

�
Z0
n�1

�þ m00m01V
�
Z0
n�1

�
þ m00m11Cov

�
Z0
n�1;Z

1
n�1

�
:

(Equation B5)

Examining these recurrence formulas for generation

n, we observe that they are homogeneous, first-order

linear recurrences that depend only on the values of

the previous generation, n � 1. Therefore, we can

simplify and write a matrix expression for the vector:

bn ¼ ðE½Z0
n�;V ½Z0

n�;E½Z1
n�;V ½Z1

n�;Cov½Z0
n;Z

1
n�Þt .

bn ¼ Abn�1 (Equation B6)

A ¼

2
66664

m00 0 0 0 0
s2
00 m2

00 0 0 0
m01 0 m11 0 0
s2
01 m2

01 s2
11 m2

11 0
ðr01 � m00m01Þ m00m01 0 0 m00m11

3
77775

(Equation B7)

Because the two phases share the form A, we can deter-

mine the evolution of the two-phase process by matrix
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multiplication initializing from a single wild-type cell in

generation 0. Let A1 be the matrix for phase 1 and A2 be

the matrix for phase 2. Then,

bn ¼ Ak
2A

j
1

2
66664
1
0
0
0
0

3
77775: (Equation B8)

Using the parameters of the pgfs, we can determine the

values of the seven parameters that define the two phases

(Table B2):
Table B2. Expressions Determining the Model Parameters

Parameter Phase 1 Phase 2

m00 p(2 � l) 2a þ b(1 � l)

s200 4p(1 � p) � 3pl
� 2p2l � p2l2

4a(1 � a) þ b(1 � l)
(1 � b(1 � l)) � 4ab(1 � l)

m01 pl bl

s201 pl(1 � pl) bl(1 � bl)

m11 2q 2g þ x

s211 4q(1 � q) 4g(1 � g) þ x(1 � x) � 4gx

r01 pl 0
We point out that

Cov
�
Z1
n;Z

0
n þ Z1

n

� ¼ Cov
�
Z1
n;Z

0
n

�þ V
�
Z1
n

�
(Equation B9)

V
�
Z0

n þ Z1
n

� ¼ V
�
Z1
n

�þ V
�
Z0
n

�þ 2Cov
�
Z1
n;Z

0
n

�
:

(Equation B10)

And therefore, using Taylor approximations, we can

approximate the moments of the proportion of mutants:

E

"
Z1
n

Z1
n þ Z0

n

jZ0
n þ Z1

n > 0

#
z

E
�
Z1
n

�
E
�
Z0
n þ Z1

n

�� Cov
�
Z1
n;Z

0
n þ Z1

n

�
E
�
Z0
n þ Z1

n

�2
þ E

�
Z1
n

�
E
�
Z0
n þ Z1

n

�3 V�Z0
n þ Z1

n

�
(Equation B11)

V

"
Z1
n

Z1
n þ Z0

n

jZ1
n þ Z0

n > 0

#
z

V
�
Z1

n

�
E
�
Z0
n þ Z1

n

�2 � 2E
�
Z1
n

�
E
�
Z0
n þ Z1

n

�3
3Cov

�
Z1
n;Z

0
n þ Z1

n

�
þ E

�
Z1
n

�2
E
�
Z0
n þ Z1

n

�4 V�Z0
n þ Z1

n

�
:

(Equation B12)

R code implementing the above approximations as well

as an interactive exploration tool that uses these approxi-

mations can be found on our website. These expressions

can also be adjusted to account for potential mutation in

spermatogonial division, as described in Appendix A.
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Appendix C: A Size-Biased Result for Updating the

Expected Mutant Proportion

To obtain the conditional mean of the proportion of

mutants given the observation of a transmitted mutation,

we apply the definition of conditional expectation. We

note that there are many biological constraints, but for

analysis of this model, transmission can only occur when

Z1
n > 0 and subsequently when Z0

n þ Z1
n > 0. Let qn ¼ Z1

n=

ðZ0
n þ Z1

nÞ, X represent the number of transmitted muta-

tions observed, and y be a dummy variable that represents

the possible proportions of mutants for a given parent:

E½qn jX ¼ 1� ¼
X
y

yP½qn ¼ y jX ¼ 1�
¼
X
y

y
P½X ¼ 1 j qn ¼ y�P½qn ¼ y�

P½X ¼ 1� :

(Equation C1)

For a single Bernoulli trial, we note

P½X ¼ 1 j qn ¼ y� ¼ y: (Equation C2)

Unconditionally, we note

P½X ¼ 1� ¼ E½P½X ¼ 1 j qn�� ¼ E½qn� : (Equation C3)

Therefore,

E½qn jX ¼ 1� ¼ 1

P½X ¼ 1�
X
y

y2P½qn ¼ y� ¼
E
h
ðqnÞ2

i
E½qn� ;

(Equation C4)

which we notice is the mean of the size-biased distribution

of qn. For clarity, E½ðqnÞ2� ¼ V ½qn� þ ðE½qn�Þ2.
Accounting for meiosis to determine the proportion of

mutant haploid gametes, a factor of one-half appears in

both the numerator and the denominator of these expres-

sions. These factors cancel and therefore do not appear.

R code implementing the above expressions can be found

on our website.
Appendix D: Updating Risk on the Basis of

Observation of Parental Somatic Mosaicism

Observation of the mutant allele in parental somatic tis-

sues—for example, by amplification with PCR or other

methods—represents important information for updating

the expected proportion of mutants, which we equate

with the risk of recurrence. To analyze the change in the

expected proportion of mutants, we reason that observa-

tion of the transmitted mutation in parental somatic tis-

sues gives information about the nonzero state of the

number of mutants in the parent of origin at generation

i. Here, i represents the cell-division number when the

germline becomes sequestered from the portion of the

embryo that will give rise to the somatic tissues. We

note that i < j, where j is the generation when the
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clonal-expansion phase of gametogenesis ends. In our

work, we set i ¼ 15, consistent with the reported litera-

ture.22,23 To complete our analysis, we first consider the

conditional expectations given the state of mutants at i

without conditioning on observation of a transmission

from parent to child. According to the law of total

expectation,

E½qn� ¼ E
�
qn jZ1

i ¼ 0
�
P
�
Z1
i ¼ 0

�þ E
�
qn jZ1

i > 0
�
P
�
Z1
i > 0

�
:

(Equation D1)

The term E½qnjZ1
i > 0� is the quantity we seek to compute.

E[qn] is available from the Taylor approximation, and we

can compute the probability of 0 mutants in generation i

by evaluating fi
0ð1;0Þ by using the i-fold composition of

Equation A1. Therefore, if we can determine E½qnjZ1
i ¼ 0�,

we can determine the required result:

E
�
qn jZ1

i > 0
� ¼ E½qn� � E

�
qn jZ1

i ¼ 0
�
P
�
Z1
i ¼ 0

�
P
�
Z1
i > 0

� :

(Equation D2)

We take a similar approach to the variance. However, the

variance is necessarily more complex and requires consid-

eration of the result from the conditional mean analysis.

The analysis requires V½E½qnjIZ1
i
¼0��, where I is an indicator

that the number of mutant cells at generation i is 0.

Subsequently,

V
h
E
h
qn j IZ1

i
¼0

ii
¼ E

�
qn jZ1

i ¼ 0
�2
P
�
Z1
i ¼ 0

�
þ E
�
qn jZ1

i > 0
�2
P
�
Z1
i > 0

�
� �E�qn jZ1

i ¼ 0
�
P
�
Z1
i ¼ 0

�
þ E
�
qn jZ1

i > 0
�
P
�
Z1
i > 0

��2
¼ E

�
qn jZ1

i ¼ 0
�2
P
�
Z1
i ¼ 0

�
þ E
�
qn jZ1

i > 0
�2
P
�
Z1
i > 0

�� E½qn�2:
(Equation D3)

We then use this fact to consider the conditional vari-

ance identity:

V ½qn� ¼ E
h
V
h
qn j IZ1

i
¼0

ii
þ V

h
E
h
qn j IZ1

i
¼0

ii
¼ V

�
qn jZ1

i ¼ 0
�
P
�
Z1

i ¼ 0
�þ V

�
qn jZ1

i > 0
�
P
�
Z1
i > 0

�
þ V

h
E
h
qn j IZ1

i
¼0

ii
:

(Equation D4)

Therefore,

V
�
qn jZ1

i > 0
�

¼
V½qn��V

h
E
h
qn j IZ1

i
¼0

ii
�V

�
qn jZ1

i ¼0
�
P
�
Z1
i ¼ 0

�
P
�
Z1

i > 0
� :

(Equation D5)

On the basis of the results above, we have both

E½qnjZ1
i > 0� and V ½qnjZ1

i > 0�. The key quantities to be
The America
approximated are E½qnjZ1
i ¼ 0� and V ½qnjZ1

i ¼ 0�. Then,

using the expressions above and calculating PðZ1
i ¼ 0Þ

from the appropriate pgf, we are able to determine the

updated expected mutant proportion. Let Z be a random

variable with the same distribution as the number of

wild-types cells when there are no mutants at i (that is,

Z¼d Z0
i

��Z1
i ¼ 0). Let S0n�i;m and S1n�i;m be random variables

that count the number of wild-type and mutant particles,

respectively, at generation n and descend from the mth

wild-type particle present at generation i. We proceed as

follows:

E
�
qn jZ1

i ¼ 0
� ¼ E

�
E
�
qn jZ1

i ¼ 0;Z
��

¼ E

" PZ
m¼1S

1
n�i;mPZ

m¼1S
1
n�i;mþ

PZ
m¼1S

0
n�i;m

#
z

E
hPZ

m¼1S
1
n�i;m

i
E
hPZ

m¼1S
1
n�i;mþ

PZ
m¼1S

0
n�i;m

i

�
Cov

hPZ
m¼1S

1
n�i;m;

PZ
m¼1S

0
n�i;m þPZ

m¼1S
1
n�i;m

i
E
hPZ

m¼1S
1
n�i;m þPZ

m¼1S
0
n�i;m

i2

þ
E
hPZ

m¼1S
1
n�i;m

i
E
hPZ

m¼1S
1
n�i;mþ

PZ
m¼1S

0
n�i;m

i3 VhXZ

m¼1
S1n�i;mþ

XZ

m¼1
S0n�i;m

i
:

(Equation D6)

And for clarity,

E½Z� ¼ E
�
Z0
i jZ1

i ¼ 0
�
zE

�
Z0
i

�þ E
�
Z1

i

�
(Equation D7)

V ½Z� ¼ V
�
Z0
i jZ1

i ¼ 0
�
zV

�
Z0
i

�þ V
�
Z1
i

�
(Equation D8)

E

"X
m¼1

Z

S0n�i;m

#
¼ E½Z�E

h
S0n�i;m

i
(Equation D9)

E

"X
m¼1

Z

S1n�i;m

#
¼ E½Z�E

h
S1n�i;m

i
(Equation D10)

V

"X
m¼1

Z

S0n�i;m

#
¼ E½Z�V

h
S0n�i;m

i
þ E

h
S0n�i;m

i2
V½Z�

(Equation D11)

V

"X
m¼1

Z

S1n�i;m

#
¼ E½Z�V

h
S1n�i;m

i
þ E

h
S1n�i;m

i2
V½Z�

(Equation D12)

V

"X
m¼1

Z

S0n�i;m þ
X
m¼1

Z

S1n�i;m

#
¼ V

"X
m¼1

Z

S0n�i;m

#
þ V

"X
m¼1

Z

S1n�i;m

#

þ 2,Cov

"X
m¼1

Z

S0n�i;m;
X
m¼1

Z

S1n�i;m

#
:

(Equation D13)

Using the identity for the covariance of random sums as

used in Equation B5, we have
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Cov

"X
m¼1

Z

S1n�i;m;
X
m¼1

Z

S0n�i;m þ
X
m¼1

Z

S1n�i;m

#

¼ Cov

"X
m¼1

Z

S0n�i;m;
X
m¼1

Z

S1n�i;m

#
þ V

"X
m¼1

Z

S1n�i;m

#

¼ E½Z�Cov�S0n�i; S
1
n�i

�þ V½Z�E
h
S0n�i;m

i
E
h
S1n�i;m

i
þ E½Z�V

h
S1n�i;m

i
þ E

h
S1n�i;m

i2
V ½Z�:

(Equation D14)

We can use the results from Appendix B to determine

these moments, giving us the values required for calcu-

lating Equation D2. A similar approximation is available

for the variance:

V
�
qn jZ1

i ¼ 0
�
z

V
hPZ

m¼1S
1
n�i;m

i
V
hPZ

m¼1S
1
n�i;m þPZ

m¼1S
0
n�i;m

i

�
2,E

hPZ
m¼1S

1
n�i;m

i
E
hPZ

m¼1S
1
n�i;m þPZ

m¼1S
0
n�i;m

i3
3Cov

hXZ

m¼1
S1n�i;m;

XZ

m¼1
S0n�i;mþ

XZ

m¼1
S1n�i;m

i

þ
E
hPZ

m¼1S
1
n�i;m

i2
E
hPZ

m¼1S
1
n�i;m þPZ

m¼1S
0
n�i;m

i4
3V

hXZ

m¼1
S1n�i;m þ

XZ

m¼1
S0n�i;m

i
:

(Equation D15)

This expression along with the moments expressions in

Appendix B gives us the values to calculate Equation D5.

With the results of Equations D2 and D5, we again use

the size-biasing result presented in Appendix C to update

the risk given both observed transmission and the pres-

ence of the mutation in parental somatic tissues. In brief,

E
�
qn jZ1

i > 0;X ¼ 1
� ¼ E

�
q2n jZ1

i > 0
�

E
�
qn jZ1

i > 0
� : (Equation D16)

R code implementing the calculations using the for-

mulas above and approximations fromAppendix B is avail-

able on our website.
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