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a b s t r a c t

All single-species differential-equation population models incorporate parameters which
define the model - for example, the rate constant, r , and carrying capacity, K , for the
Logistic model. For constant parameter values, an exact solution may be found, giving
the population as a function of time. However, for arbitrary time-varying parameters,
exact solutions are rarely possible, and numerical solution techniques must be employed.
In this work, we demonstrate that for a Logistic model in which the rate constant and
carrying capacity both vary slowly with time, an analysis with multiple time scales leads
to approximate closed form solutions that are explicit, are valid for a range of parameter
values and compare favourably with numerically generated ones.

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

Modelling the development of populations using differential equations has a long history. Although the number of
individuals in a population changes in discrete steps, representing them as continuous variables has been shown to yield
useful results in many applications. Neglecting spatial effects such as diffusion and dispersion reduces the mathematical
model of a single-species population to an initial-value problem involving a single ordinary differential equation — see for
example, [1] or [2]. While a gross simplification, such models are applicable to modelling of such unrelated phenomena as
the evolution of fish school populations, and the spread of a single innovation (see [1,3] or [4]).
Such single-speciesmodels involve parameters, that define the evolutionary characteristics of the population. In general,

these may themselves vary with time, t . Thus, the general Logistic model

dP(t)
dt
= r(t)P(t)

(
1−

P(t)
K(t)

)
, P(t = 0) = P0, (1)

incorporates the growth coefficients r(t) and K(t)- the growth rate and carrying capacity respectively - which are positive
valued functions on t ≥ 0. While it is possible to write down an explicit solution of (1)

P(t) =
P0 exp

∫ t
0 r(ξ)dξ

1+ P0
∫ t
0 (r(ξ)/K(ξ)) exp(

∫ ξ
0 r(η)dη)dξ

, (2)

the integrals involved in (2) may only be evaluated for a very limited choice of r(t) and K(t) (including that of r and K being
positive constants). For other cases, approximatemethodsmust be used, to solve (1) or evaluate (2)- in particular, numerical
techniques. These have the disadvantage of applying only to particular instances of the functions r and K .
In many cases, r and K vary slowly, relative to the changing population. This may arise from slow changes in the

population species itself, or in the background environment, or a combination of these. In such cases, r and K may be
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represented as (positive valued) functions r(εt) and K(εt), where t is time, and ε is a small, positive parameter. Thus,
‘‘normal size’’ (i.e., O(1) as ε → 0+) changes in the argument of these functions, εt , correspond to ‘‘large’’ (i.e., O(1/ε)
as ε → 0+) changes in t , i.e., r(εt) and K(εt) are slowly varying compared to P(t, ε). In this case, the Logistic model (1)
becomes

dP(t, ε)
dt

= r(εt)P(t, ε)
(
1−

P(t, ε)
K(εt)

)
, P(t = 0, ε) = P0. (3)

In what follows, we will demonstrate a technique that constructs an approximation to the solution of (3), valid for
all times t ≥ 0. This method belongs to a class of related methods, termed multi-timing or multi-scaling methods, well-
established in the physical and engineering science literature — see, for example, [5], Ch. 3, or [6], Ch. 6, among many. Such
methods exploit the disparate time variation of components of a system, to produce an algorithm capable of generating an
approximate solution. In the present case, the disparity is between the rate of variation of the population and that of r and
K . It should be noted that such a method has been applied to (3) in the case where only K varies slowly, and r is constant
(see [7,8]). In the present case, the method must be modified to deal with two slowly varying parameters.

2. The multi-scale Logistic equation

The model (3) depends on the two time scales t and εt . However, while the analysis of [7,8] successfully applied a
multi-timing method based on these two scales, in the general case here, of both r and K slowly varying, it turns out to
be appropriate to consider the generalized time scales

t0 =
1
ε
h(t1) and t1 = εt, (4)

where h(t1) is a function to be found. Note that t1 ≥ 0, and we expect h(t1) to be a positive valued function on all t1 > 0,
with h(0) = 0. Note also that for t0 and t1 to be dimensionless and dimensionally consistent, we require that ε and h have
dimensions of reciprocal time.
Here t0 is the ‘‘normal’’ time variable and t1 is the ‘‘slow’’ time variable. ThismakesK(εt) and r(εt) functions of t1 only. The

‘‘normal’’ time scale, t0, is determined by the form of the function h(t1). Noting that t1 = εt , we have, on taking differentials,
dt0 = h′(t1)dt , soO(1) as ε→ 0+ changes in t are reflected asO(1) changes in t0, provided h′(t1) isO(1) as ε→ 0+. Further,
since we require that there be a one-to-one correspondence between t0 and t values, we need h′(t1) to be mono-signed;
thus, we assume that h′(t1) > 0.
Regarding P(t, ε) as a function of these two time scales, i.e., P(t, ε) ≡ p(t0, t1, ε), and applying the chain rule gives the

Logistic differential Eq. (3) in multi-scaled form as

h′(t1)D0 p+ εD1p = r(t1)p
(
1−

p
K(t1)

)
, (5)

where D0 and D1 are partial derivatives taken with respect to t0 and t1 respectively.
We note that the ordinary differential equation in (3) is now equivalent to the partial differential equation (5), for the

unknown function p(t0, t1, ε). This apparent increase in complexity is offset by the fact that now, the dependence on ε is
displayed explicitly (rather that implicitly, as in (3)). Thus, Eq. (5) is now in a suitable form for solution by a perturbation
method based on the limit ε→ 0. We carry this analysis out next.

3. Perturbation analysis

Expressing p as a Poincaré expansion in ε,

p(t0, t1, ε) = p0(t0, t1)+ ε p1(t0, t1)+ ε2 p2(t0, t1)+ · · · , (6)

and substituting into Eq. (5) gives

h′(t1)D0(p0 + εp1 + · · ·)+ εD1(p0 + εp1 + · · ·) = r(t1)(p0 + εp1 + · · ·)
(
1−

(p0 + εp1 + · · ·)
K(t1)

)
. (7)

Equating like powers of ε in (7) gives a sequence of differential equations. For terms independent of ε,

h′(t1)D0p0 = r(t1)p0

(
1−

p0
K(t1)

)
; (8)

and for O(ε) terms,

h′(t1)D0p1 + D1p0 = r(t1)p1

(
1−

2p0
K(t1)

)
, (9)
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with analogous equations for p2, p3, p4, . . ..
Now, solving the partial differential equation (8) gives

p0(t0, t1) =
K(t1)

1+ C(t1)K(t1)e−θ(t1)t0
, (10)

where C(t1) is an arbitrary function of t1, being introduced when integration with respect to t0 is carried out, and θ(t1) =
r(t1)/h′(t1). Note that θ(t1) is a positive function of t1 on t1 ≥ 0. Note also that Eq. (9) is a linear differential equation for p1
as a function of t0, that is readily solved, given p0.
In what follows, we seek a particular solution only of (9), since the original differential equation is first order, so the

overall solution should involve only one arbitrary ‘‘constant’’ (a function of t1 here).
Solving (9) for p1 gives this particular solution as

p1 =
−K ′(t1)/θ(t1)+ 1

2K(t1)
2θ ′(t1)C(t1)t20e

−θ(t1)t0 − K(t1)2C ′(t1)2t0e−θ(t1)t0

h′(t1)
(
1+ C(t1)K(t1)e−θ(t1)t0

)2 , (11)

where the primes denote derivatives taken with respect to the argument, t1.
Substituting p0 and p1 into the Poincaré expansion (6) gives a two-term expansion for the function p(t0, t1, ε), assumed

valid on all t0, t1 ≥ 0.
We note from (10) that as t0 → ∞, p0 → K(t1); and p1 → − K ′(t1)/(θ(t1)h′(t1)). However, the presence of the

t0e−θ(t1)t0 and t20e
−θ(t1)t0 terms in p1 means that convergence of p1 to its limit is slower than that of p0; and, as t0 →∞ the

difference between p1 and its limit becomes larger than the corresponding difference for p0. To ensure that this condition
does not occur, we set the coefficients of t0e−θ(t1)t0 and t20e

−θ(t1)t0 to zero. Thus, to do this, we choose C ′(t1) = 0 and
θ ′(t1) = 0, which conditionmay bemet by choosing C(t1) and θ(t1) to be constants. In particular, wemay choose θ(t1) = 1,
giving h′(t1) = r(t1) on t1 ≥ 0. This leads, with (4), to

t0 =
1
ε

∫ t1

0
r(s)ds, (12)

defining the timescale t0. This reinforces our earlier contention that here, the time scales are not the same as those adopted
in [8].
With the choices above, expansion (6) then becomes

p(t0, t1, ε) =
K(t1)

1+ cK(t1)e−t0
− ε

K ′(t1)

r(t1) (1+ cK(t1)e−t0)2
+ · · · , (13)

where c is an arbitrary constant. Since our expansion consists of both leading order terms and O(ε) terms, we assume the
constant c takes on the same form, i.e. c = c0 + εc1 + · · ·.
Substituting the initial condition from (3) into the expansion (13) gives

P0 =
K(0)

1+ (c0 + εc1 + · · ·)K(0)
− ε

K ′(0)

r(0) (1+ (c0 + εc1 + · · ·)K(0))2
+ · · · . (14)

By expanding this out using series, collecting coefficients of like powers of ε, then solving for c0 and c1, we find our two-term
expansion (13) for the solution of the slowly varying Logistic model to be

P(t, ε) =
K(εt)P0K(0)

P0K(0)− [K(εt)P0 − K(εt)K(0)]e−t0
−

εP20 [K
′(εt)K(0)2r(0)− K(εt)2K ′(0)r(εt)e−t0 ]

r(εt)r(0)[P0K(0)+ (K(εt)K(0)− K(εt)P0)e−t0 ]2
+ · · · , (15)

with t0 as in (12).

4. Results and discussion

The expression (15) provides a straightforward explicit approximation to the evolving population P(t, ε) for given
functions r and K . From this, we see that as t →∞ the population will tend to

K(εt)−
ε

r(εt)
K ′(εt)+ · · · , (16)

i.e., a varying small neighbourhood of the carrying capacity K(εt). For many carrying capacities of interest, the derivative
K ′(εt)will tend to zero as t →∞, so in these cases the population, P(t, ε), will tend to the carrying capacity plus/minus an
O(ε2) term.
As we have noted above, there are no examples of exact solutions of (3) in the literature, for which both r and K vary -

slowly or otherwise. Thus, we have no exact solutions to compare with the results of applying the expansion (15) to slowly
varying r andK , and the only option is to comparewith numerical solutions of (3). However, Banks [9] gives a comprehensive
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list of examples of solutions of (3) where r and K vary with time separately (but not together). In what follows, we consider
three examples from [9] and show that these may be reconciled with the results obtained by applying (15).
We begin with an exponentially varying K , K = K0eεt and r = constant ([9], Sec. 5.1), where ε is an arbitrary constant.

Here, the problem (3) has an exact solution, given by (2) as

P =
K0

( r
r−ε )e

−εt + [K0/P0 − ( r
r−ε )]e

−rt
. (17)

Substitution of K = K0eεt , r = constant (with ε small and positive, giving a slowly exponentially varying K ) into (15) gives,
after some manipulation,

P =
K0

e−εt + (K0/P0 − 1)e−rt
− ε

K0(e−εt − e−rt)
r[e−εt + (K0/P0 − 1)e−rt ]2

+ · · · . (18)

It is a simple matter to show that when (17) is expanded for small ε (keeping the e−εt intact), we obtain (18), thus
confirming (15) in this case.
As a second example, we choose K = K0 + Ka sin εt , r = constant. For small ε, this gives a slowly varying periodic K .

For this K and r , the integrals in (2) cannot be evaluated, and there is no exact solution. However, when Ka/K0 is small, the
integrands may be expanded in powers of Ka/K0, and an expression can be obtained for P as a power series in Ka/K0 — see
Banks ([9], Sec. 5.5). If we further expand this result for small positive ε, we obtain after some manipulation,

P =
K0

1+ (K0/P0 − 1)e−rt
+
Ka(sin εt + ε(cos εt − e−rt)/r)

(1+ (K0/P0 − 1)e−rt)2
+ · · · . (19)

Substituting this choice of K and r above into (15), and expanding in powers of Ka/K0, gives this same result, after some
manipulation, thus reconciling the two approaches.
A third example lets r vary, while keeping K constant. Thus, we consider the linearly varying rate r = r0(1 − εt) and

K = constant. Although no exact solution exists for finite K , it may be shown ([9], Sec. 4.1) that when K = ∞ (unconstrained
growth), we get, from (2),

P = P0er0t(1−εt/2). (20)

Applying this r and K to (15) gives

P =
P0

P0/K − (P0/K − 1)e−r0t(1−εt/2)
+ · · · , (21)

with the O(ε) term vanishing identically. Letting K →∞ in (21) gives (20). Again, this confirms the validity of (15).
The distinct advantage of the result (15) is that it provides an approximation when both r and K are (slowly) varying.

With no exact solutions to compare with in this case, we compare the result (15) with a numerical solution. As a typical
example, we choose a periodically varying carrying capacity and growth rate, given by

K(εt) = K0 + δ sin εt r(εt) = r0 +∆ sin εt (22)

where ε is small, while δ,∆ are the amplitudes of the oscillatory components. Here, the carrying capacity and rate oscillate
around their initial values K0 and r0. Such behaviour is typical of environments which slowly fluctuate over time. For
example, in a marine environment the changing tides resulting from the phases of the moon bring slow variation in the
ability of the environment to support a given species.
Fig. 1 gives a comparison of the multi-timing approximation (15) with the numerical solution of (3) for a choice of

parameter values in the periodic growth coefficients (22).
If we regard the numerical solution as an ‘exact’ solution, this shows that the expansion (15) provides an extremely

good approximation to the solution (3) in this case. In fact, the two plots are almost coincident. Fig. 1 also shows that the
population very quickly moves from its initial value to a small neighbourhood of the carrying capacity, and remains there
for all subsequent time, alternating between values above and below the carrying capacity as the sign of K ′(εt) changes.
This reflects (16).

5. Conclusion

The multi-scaling technique has been successfully applied to a Logistic population model in which the defining
parameters vary slowly with time, giving an explicit, closed form, easily used approximation for the evolving population,
which may be shown to reduce to known results from the literature. It also compares very favourably with the results of
numerical computations in particular cases, while being valid for a range of parameter values.
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Fig. 1. Logistic multi-scale approximation (black) vs. numerical solution (red) using (22), with K0 = 1, r0 = 0.9, δ = 0.2,∆ = 0.2, P0 = 0.3 and ε = 0.1.
The carrying capacity is shown in blue (dashed line). (For interpretation of the references to colour in this figure legend, the reader is referred to the web
version of this article.)
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