
Journal of Algebra 352 (2012) 104–140
Contents lists available at SciVerse ScienceDirect

Journal of Algebra

www.elsevier.com/locate/jalgebra

Representations of rank two affine Hecke algebras at roots
of unity

Matt Davis 1

Department of Mathematics, Harvey Mudd College, 301 Platt Boulevard, Claremont, CA, United States

a r t i c l e i n f o a b s t r a c t

Article history:
Received 27 April 2011
Available online 2 December 2011
Communicated by Peter Littelmann

Keywords:
Affine Hecke algebras
Roots of unity
Combinatorial representation theory

In this paper, we will fully describe the irreducible representations
of the crystallographic rank two affine Hecke algebras using
algebraic and combinatorial methods, for all possible values of q.
The focus is on the case when q is a root of unity of small order.

© 2011 Elsevier Inc. All rights reserved.

1. Introduction

The affine Hecke algebra H was introduced by Iwahori and Matsumoto [3]. Knowing the represen-
tations of H gives a substantial amount of information about the representations of a closely related
p-adic group. The definition of H involves a parameter q which can have a large effect on the struc-
ture of the algebra. In this paper, we will fully describe the irreducible representations of the affine
Hecke algebras of type C2 and G2, for all possible values of q. The methods are essentially those
introduced in [9], with the modifications required to deal with q being a root of unity.

The representations in type A were described in the non-root of unity case by Zelevinsky, in terms
of combinatorial objects called multisegments (see [1] and [14]). In the root of unity case, these
representations are indexed by the aperiodic multisegments (see the appendix of [7] for an argument
relying on the results of [8]). The representations of H in all types have been classified geometrically
by Kazhdan and Lusztig [6] in the non-root of unity case, and studied in the root of unity case by
Grojnowski [2] and N. Xi [12,13], among others. In the root of unity case, Grojnowksi gives a simple
description of a geometric indexing set [2, Theorem 2] only in type A. However, Theorem 1 of [2] does
not apply in all cases (see the remark on p. 524 of [12]). And, to this author, at least, it is not obvious
how to turn the statement of Theorem 1 into Theorem 2. One hopes that a better understanding of
the representations of H in some small cases will help clarify these issues.
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We begin by defining the affine Hecke algebra H, and recalling some basic facts about the rep-
resentations of H. We will make extensive use of C[X], a large commutative subalgebra of H, and
weights, elements of Hom(C[X],C), which describe the simple representations of C[X]. An H module
M can be described in part by which weights appear, i.e. which simple C[X] modules are composition
factors of it. The most important construction we will use is that of the principal series module M(t)
which can be constructed from any weight t ∈ T , since every simple H-module is a quotient of M(t)
for an appropriate choice of a weight t (Proposition 1(c)). We also recall from [9] several facts needed
to analyze the modules M(t), with some adaptations as necessary to deal with the root of unity case.

The main goal of the paper is to describe a way of visualizing and describing the composition
factors of M(t) directly from the combinatorial data of the weight t . This can be done with particular
pictures based on the root system underlying H. The following are examples in the type A2 case.

The lines in this picture represent the hyperplanes perpendicular to the roots α, and are drawn as
solid, shaded, or dotted based on the values of the weight t on the elements Xα ∈ H. Each dot in the
picture represents one dimension of the module M(t), and dots are connected if a single composition
factor of M(t) contains both of these basis elements. The general goal is to determine a few rules that
determine which of these lines should be drawn. That is, we hope to find a few algebraic statements
that describe how M(t) breaks down into composition factors which can be translated into these
pictures. Essentially, Theorem 3(b), Proposition 4, and Theorem 5 below are sufficient to complete the
classification in the rank two cases, for all values of q. These pictures provide a very straightforward
way of determining the composition factors of M(t), without relying on heavy computations. One
also hopes that a complete classification of the rank two crystallographic cases will facilitate a greater
understanding of the representation theory of H in all types.

2. Definitions

In this section, we introduce the needed definitions and several preliminary results about the affine
Hecke algebra. Proofs of most previously known results will not be given.

The affine Hecke algebra. Let R be a root system in R
n with simple roots α1, . . . αn . Let R+ be the

set of positive roots and R− the set of negative roots. We define the rank of R to be the number of
simple roots n.

Two examples of root systems in R
2

The reflection through Hα will be denoted by sα , or si for the reflection through Hαi . If π/mij is
the angle between Hαi and Hα j , then mij ∈ {2,3,4,6} for 1 � i, j � n, and the Weyl Group W0 has
presentation
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W0 = 〈
s1, . . . sn

∣∣ s2
i = 1, si s j si . . .︸ ︷︷ ︸

mij factors

= s j si s j . . .︸ ︷︷ ︸
mij factors

, for 1 � i, j � n
〉
.

Let P be the weight lattice, spanned by the elements ωi satisfying

〈ωi,α j〉 = δi j · 1

2
〈α j,α j〉,

for αi and α j simple roots. Let Q be the lattice spanned by the simple roots αi . Let

X = {
Xλ

∣∣ λ ∈ P
}
, with Xλ · Xμ = Xλ+μ for λ,μ ∈ P . (1)

Then W0 acts on X by

w · Xλ = X w·λ,

and this action extends linearly to an action of W0 on the group algebra C[X].
The affine Hecke algebra H is the C-algebra generated by {Ti | i ∈ I} and {Xλ | λ ∈ P }, where C[X]

is a subalgebra of H, and subject to the relations

T 2
i = (

q − q−1)Ti + 1, for i = 1,2, . . .n, (2)

Ti T j T i . . .︸ ︷︷ ︸
mij factors

= T j Ti T j . . .︸ ︷︷ ︸
mij factors

for i �= j, and (3)

XλTsi = Tsi Xsi ·λ + (
q − q−1) Xλ − Xsiλ

1 − X−αi
, for λ ∈ P , 1 � i � n. (4)

The rank of H̃ is defined to be the rank of the underlying root system R . For w ∈ W0, let

T w = Ti1 Ti2 . . . Tik

for a reduced word w = si1 si2 . . . sik in W0. Then {T w Xλ | w ∈ W0, λ ∈ P } is a C-basis for H.

Weights. Let T = Hom(X,C
×) be the set of group homomorphisms from X to C

× . Then T is an
abelian group with W0-action given by

w · t
(

Xλ
) = t

(
X w−1·λ) for t ∈ T , w ∈ W0, λ ∈ P .

An element of T is called a weight. For a weight t , the subgroup of W0 that fixes t under this action
is generated by {si | t(Xαi ) = 1}. (This relies on the fact that we chose P rather than Q to build H.
See [11], 3.15, 4.2, and 5.3).

For any finite-dimensional H-module M , define the t-weight space and the generalized t-weight
space of M by

Mt = {
m ∈ M

∣∣ Xλ · m = t
(

Xλ
)
m for all Xλ ∈ X

}
, and

Mgen
t = {

m ∈ M
∣∣ for all Xλ ∈ X,

(
Xλ − t

(
Xλ

))k
m = 0 for some k ∈ Z>0

}
,
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respectively. Then M = ⊕
t∈T Mgen

t is a decomposition of M into Jordan blocks for the action of C[X].
An element t ∈ T is a weight of M if Mgen

t �= 0.

Induced modules and intertwining operators. If I ⊆ {1, . . .n}, define W I = 〈si | i ∈ I〉 and

HI = {
T w Xλ

∣∣ λ ∈ P , w ∈ W I
}
.

For example, H∅ = C[X], while H{i} is the subalgebra of H{i} generated by C[X] and Ti . Then for
t ∈ T such that t(Xαi ) = q2 for i ∈ I , define Cvt to be the one-dimensional H I -module spanned by
vt , with H I action given by

Ti · vt = qvt and Xλ · vt = t
(

Xλ
)

vt, for Xλ ∈ X .

Proposition 1. (See [9], Lemma 1.17.) Let Cvt be defined as above, and let M = IndH
H I

Cvt . Let W I = 〈si |
i ∈ I〉, and let W0/W I be a set of minimal length coset representatives of W I -cosets in W0 .

(a) Then the weights of M are {wt | w ∈ W0/W I }, and

dim
(
Mgen

wt

) = (# of v ∈ W0/W I with vt = wt).

(b) There is a basis of M consisting of elements of the form

mw = T w vt +
∑

u<w,u∈W0/W I

pw,u Tu vt,

for w ∈ W0/W I , such that mw ∈ Mwt .
(c) If t is a weight of an irreducible H-module N and I = ∅, then N is a quotient of M. In fact, if v ∈ N is a

non-zero vector in Nt , then

φ : M → N,

vt 	→ v

extends to a surjective H-module homomorphism.

In particular, if I = ∅, then we call

M(t) = H ⊗C[X] Cvt = span{T w vt | w ∈ W0}
the principal series module for t .

Part (c) of this lemma implies that the weights of a single simple finite-dimensional module M lie
in a single orbit W t . We call this orbit (and, by abuse of terminology, any element of the orbit) the
central character of M . In fact, H has finite dimension over its center, and thus all simple H-modules
are finite-dimensional (see [9], Section 2.3). Thus, this proposition tells us that understanding the
composition factors of all the principal series modules M(t) is sufficient for understanding all the
simple H̃-modules.

For a weight t with t(Xαi ) �= 1 and an H-module M , define a C-linear operator τi : Mgen
t → M by

τi(m) =
(

Ti − q − q−1

1 − X−αi

)
· m. (5)
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Theorem 2. (See [9], Proposition 1.18.)

(a) 1 − X−αi is invertible as an operator on Mgen
t , so that τi : Mgen

t → M is well defined.
(b) As operators on Mgen

t , Xλτi = τi X siλ for all Xλ ∈ X, so that τi(Mgen
t ) ⊆ Mgen

sit .

(c) As operators on Mgen
t ,

τiτi = (q − q−1 Xαi )(q − q−1 X−αi )

(1 − Xαi )(1 − X−αi )
.

(d) The maps τi : Mgen
t → Mgen

sit and τi : Mgen
sit → Mgen

t are both invertible if and only if t(Xαi ) �= q±2 .
(e) If i �= j and mij is defined as in (3), then τiτ jτi . . .︸ ︷︷ ︸

mij factors

= τ jτiτ j . . .︸ ︷︷ ︸
mij factors

, whenever both sides are well-defined

operators.

For t ∈ T , the calibration graph of t is the graph with vertices labeled by the elements of the orbit
W0t and edges (wt, si wt) if (wt)(Xαi ) �= q±2. The τ operators are used to prove the following.

Theorem 3.

(a) (See [10], Proposition 2.3.) If w ∈ W0 and t ∈ T then M(t) and M(wt) have the same composition factors.
(b) (See [9], Proposition 1.6.) Let M be a finite-dimensional H-module, and let t and wt be two elements of

W0t in the same connected component of the calibration graph for t. Then

dim
(
Mgen

t

) = dim
(
Mgen

wt

)
.

(c) (See [4].) M(t) is irreducible if and only if P (t) := {α ∈ R+ | t(Xα) = q±2} = ∅.

The structure of modules. Theorem 3(b) shows that the connected components of the calibration
graph encode certain sets of weights whose corresponding weight spaces Mgen

t must have the same
dimension in any irreducible H̃-module M . These ideas lead us to the following propositions which
will be fundamental in our later classification.

Proposition 4. Let M be an irreducible 2-dimensional H-module and assume q2 �= 1.

(a) If M has two different weight spaces Mt and Mt′ , then t′ = sit for some i, and t(Xαi ) �= q±2 or 1, but
t(Xα j ) = q±2 and sit(Xα j ) = q±2 for j �= i. Moreover, there is a unique 2-dimensional module (up to
isomorphism) containing these two weight spaces.

(b) If M has only one weight space Mgen
t , then t(Xαi ) = 1 for some i, and for j �= i, t(Xα j ) = q2 , and either

〈α j,α
∨
i 〉 = 0 or else q2 = −1 and it is not the case that 〈αi,α

∨
j 〉 = −1 and 〈α j,α

∨
i 〉 = −2.

Proof. (a) If t(Xαi ) = 1 for some i, then consider M as an H{i}-module. By Kato’s criterion (Theo-
rem 3(c)), the fact that q2 �= 1, and Proposition 1(c), there is only one irreducible H{i}-module N with
central character t , where t(Xαi ) = 1. This module is 2-dimensional with dim Ngen

t = 2. Thus M ∼= N
as H{1}-modules and t = t′ .

Assume M has two different weight spaces Mt and Mt′ . Then since M is irreducible, some τi
must be non-zero on Mt , and t′ = sit . Then τi must also be non-zero on Msit , and t(Xαi ) �= q±2.
Since Ms jt = 0 = Ms jt′ for j �= i, t(Xα j ) = q±2 and sit(Xα j ) = q±2. The weight structure determines
the action of C[X] on M , and since we know how the operators τi act, the actions of the Ti are
determined as well, so that the module structure of M is determined by its weight structure.

(b) Assume M consists of one generalized weight space Mgen
t , with vt ∈ Mt . If all the operators

τi were defined on Mt , then τi(vt) = 0 for all i. Hence Ti vt ∈ Cvt for all i and vt would span a
submodule of M , a contradiction. Thus some τi is not well defined and t(Xαi ) = 1.
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If t(Xα j ) = 1 for any j �= i, then t(Xβ) = 1 for any β in the span of αi and α j . Then M as an
H{i, j}-module contains a principal series module, and must have dimension at least as large as the
number of roots in the root subsystem generated by αi and α j , which is a contradiction since this
number will be greater than 2. Then t(Xα j ) �= 1 for all j �= i.

Then consider M as an H{i} module, which is irreducible by Theorem 3(c). The action of H on the
basis {vt , Ti vt} is given by

M(Ti) =
[

0 1
1 q − q−1

]
, and M

(
Xα j

) = t
(

Xα j
)[

1 (q − q−1)〈α j,α
∨
i 〉

0 1

]
.

Then since τ j (which is well defined since t(Xα j ) �= 1) must be the zero map on Mgen
t , we have

M(T j) = M(
q−q−1

1−X−α j
), and

M(T j) = (
q − q−1)( 1

1 − t(X−α j )

)[
1 (q−q−1)t(X−α j )

1−t(X−α j )
〈−α j,α

∨
i 〉

0 1

]
.

However, since the relation (2) can be written (T j −q)(T j +q−1) = 0, M(T j) must have eigenvalues
q or −q−1 and t(X−α j ) = q±2.

If q2 �= −1, so that q �= −q−1, then either M(T j) − qI or M(T j) + q−1 I is invertible, so that the
other must actually be zero and so the off-diagonal term must be zero. The only way this can occur
is if 〈α j,α

∨
i 〉 = 0.

If q2 = −1 then

M(T j) =
[

q 〈α j,α
∨
i 〉

0 q

]
.

Then M(Ti) and M(T j) must satisfy the same braid relation as Ti and T j , which is determined by the
type of root system spanned by αi and α j . A check of the possible root systems (A1 × A1, A2, C2,
and G2) shows that the braid relation is satisfied unless 〈αi,α

∨
j 〉 = −1 and 〈α j,α

∨
i 〉 = −2. �

Theorem 5. (See [9], Lemma 1.19.) Assume q2 �= 1. Let t ∈ T such that t(Xαi ) = 1 and suppose that M is an
H(q)-module such that Mgen

t �= 0. Let Wt be the stabilizer of t under the action of W0 on T . Assume that
w ∈ W0/Wt is such that t and wt are in the same connected component of the calibration graph for t, and let
w be a minimal length coset representative for w. Then

(a) dim(Mgen
wt ) � 2 and dim Mgen

wt > dim Mwt .

(b) If Mgen
s j wt = 0 then (wt)(Xα j ) = q±2 and if, in addition, q2 �= −1, then 〈w−1α j,α

∨
i 〉 = 0.

Visualizing modules. For t ∈ T , define

Z(t) = {
α ∈ R+ ∣∣ t

(
Xα

) = 1
}

and P (t) = {
α ∈ R+ ∣∣ t

(
Xα

) = q±2}.
Notice that |Z(t)| and |P (t)| are constant on orbits W0t , since the action of W0 permutes the multiset
{t(Xα) | α ∈ R}.

The τ operators and the sets Z(t) and P (t) provide extensive information about the structure
(and sometimes the composition factors) of M(t). Let Hα be the hyperplane fixed by sα for α ∈ R . A
chamber is a connected component of R

n \ ∪α∈R+ Hα , and W0 acts faithfully and simply transitively
on the set of chambers. Choose a fundamental chamber C and define the positive side of a hyperplane
Hα to be the side on which C lies. The map
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{chambers} ↔ W0,

w−1C 	→ w (6)

is a bijection.
By 3.15, 4.2, and 5.3 of Steinberg [11] the stabilizer of t is

Wt = 〈
sα

∣∣ α ∈ Z(t)
〉
.

Thus, if W0/Wt is a set of minimal length coset representatives of Wt -cosets in W0, then

W0/Wt ↔ W0t ↔ {
chambers on the positive side of all Hα, α ∈ Z(t)

}
,

w 	→ wt 	→ w−1C, for w ∈ W0/Wt (7)

are bijections. Again using type A2 as an example, each W0-orbit in T has a representative such that
the bijection (7) is illustrated by one of the following pictures.

The bijection (7) shows that the weights of M(t) are in bijection with the chambers on the positive
side of the Hα with α ∈ Z(t), so that M(t) can be visualized within those chambers. Recall that the
elements of the orbit W0t are the vertices of the calibration graph. The hyperplanes Hα for α ∈ P (t)
(which are drawn as dashed lines) divide the chambers into subsets corresponding to the components
of the calibration graph. To visualize M(t) in the picture of the chambers, we draw a number of dots
in each chamber equal to the dimension of the corresponding weight space. (See Fig. 1.) Then the
behavior of the τ operators between two weight spaces is also encoded in the lines between the
corresponding chambers – solid, dashed, and dotted hyperplanes correspond to τ operators that are,
respectively, undefined, defined but not invertible in both directions, or defined and invertible in both
directions. All this information can be combined to visualize the composition factors of M(t), which
is the main goal of this paper.

Fig. 1. Visualizing modules in type A2.
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The structural theorems above tell us which dots to connect together in these drawings, and the
resulting picture describes the composition factors of M(t) – dots are connected via some path ex-
actly when the corresponding basis vectors lie in the same composition factor. In particular, the third
drawing gives a good picture of Theorem 3(b). If two chambers have a common boundary that is a
dotted hyperplane, then the τ operator between the two corresponding weight spaces will be invert-
ible in both directions, and those weight spaces must have the same dimension in any irreducible
H-module with the central character shown in the picture. Thus in this case, the basis vectors with
those weights lie in the same composition factor and are connected above. Similarly, the second draw-
ing demonstrates Theorem 5. For this central character, Theorem 5 implies that the t-weight space of
an irreducible H-module must have dimension 0 or 2, and an irreducible containing a 2-dimensional
generalized t weight space must also have a non-zero s2t weight space. Thus, in the picture, the dots
in the t chamber are connected, and are jointly connected to a dot in the s2t chamber, since the
corresponding basis vectors must lie in a 3-dimensional composition factor. In the first picture, M(t)
is irreducible by Theorem 3(c), so the dots are all connected.

Calibrated modules and weights. A weight t is defined to be regular if Wt , the subgroup of the Weyl
group that fixes t , is trivial. Then a weight t is regular if and only if Z(t) = ∅.

A representation M is calibrated if

Mgen
t = Mt

for all weights t , i.e. the subalgebra C[X] ⊆ H acts diagonally on M .

Proposition 6. (See [9], Proposition 1.10.)

(a) If q2 �= 1, an irreducible H-module is calibrated if and only if

dim
(
Mgen

t

) = 1

for all weights t of M.
(b) If M is an H-module with regular central character, then M is calibrated.

When q2 = 1, all irreducible modules are calibrated, as will be shown by Theorem 9.

Calibrated modules with regular central character.

Theorem 7. (See [9], Proposition 1.11.) Assume q2 �= 1. Let t be a regular central character, and let G be a
component of the calibration graph. Define

H(t,G) = C-span{v w | wt ∈ G}.
Then the vector space H(t,G) is an irreducible calibrated H-module with action

Xλ · v w = (wt)
(

Xλ
)

v w for Xλ ∈ X, w ∈ W0, and

Ti · v w = (Ti)w v w + (
q−1 + (Ti)w

)
vsi w for 1 � i � n, w ∈ W0,

where (Ti)w = q−q−1

1−wt(X−αi )
, and vsi w = 0 if si wt /∈ G.

Note that since t is a regular central character, wt(Xαi ) �= 1 for w ∈ W0 and i = 1, . . . ,n. Hence
(Ti)w is always well defined. The most difficult part of this theorem is checking that the given
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H-module structure satisfies the braid relation. Since t is assumed to be regular, this essentially
follows from the braid relation on the τi . (See [9] for details.) In fact, more is true.

Theorem 8. (See [9], Proposition 1.11.) Assume q2 �= 1, and let M be an irreducible H-module with regular
central character t. (M is therefore calibrated). Then if wt is a weight of M, let G be the component of the cali-
bration graph containing wt. Then the weights of M are exactly the vertices in G. In addition, M is isomorphic
to the module H(t,G) given in Theorem 7.

Clifford theory when q2 = 1. Let q2 = 1. Then we can identify the subalgebra H spanned by {T w |
w ∈ W0} with C[W0], so that

H = span
{

w Xλ
∣∣ w ∈ W0, λ ∈ P

}
.

Let M be a finite-dimensional simple H-module and let t ∈ T such that Mt �= 0. Let Wt be the
stabilizer of t in W0. As vector spaces, Mt ∼= Mwt via the map m 	→ wm, and

M =
⊕

w∈W0/Wt

Mwt,

since M is simple and the right-hand side is a submodule of M . (This implies that all H modules are
calibrated.)

Theorem 9. (See also [5].) Let q2 = 1 and let M be an irreducible H-module. Let t ∈ T be such that Mt �= 0.
Define HWt = C-Span({w Xλ | w ∈ Wt , λ ∈ P }), a subalgebra of H. Then

(a) Mt is an irreducible Wt -module.
(b) Mt is an HWt -module and

M ∼= H ⊗HWt
Mt .

Thus, when q2 = 1, the standard conclusions of Clifford Theory completely describe the irreducible
representations of H.

3. Type A1

We begin with the type A1 affine Hecke algebra. The results here are known, but this section
serves as a model for the other types.

The affine Hecke algebra. The type A1 affine Hecke algebra is built on the root data of SL2. Let

R = Zα1, P = Zω1 and X = {
Xkω1

∣∣ k ∈ Z
}

so that X is the group generated by Xω1 and is isomorphic to P . The Weyl group is W0 = {1, s1} with
s2

1 = 1, and setting s1 Xω1 = X−ω1 defines an action of W0 on X . Let q ∈ C
× . The affine Hecke algebra

of type A1 is defined as in Section 2. We let tz denote the weight given by tz(Xω1 ) = z.

Proposition 10. Let M(tz) denote the principal series module for a weight tz .

(a) If z �= ±q±1 , then M(tz) is irreducible.

(b) If z = ±q±1 , then M(tz) has two 1-dimensional composition factors.

(c) If q2 = 1 and z = ±q, M(tz) is a direct sum of its composition factors.
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Proof. Part (a) is given by Kato’s criterion (Theorem 3(c)), which also shows that M(t) must be re-
ducible if t(Xω1) = ±q±1. In parts (b) and (c), it is straightforward to explicitly calculate the action of
H on the basis {vt , T1 vt}. �

To visualize this classification, identify {tqx | x ∈ R} with the real line. In this picture, the hyper-
plane Hα1 is marked with a solid line, while Hα1±δ are denoted by dashed lines.

If q is a primitive 2
th root of unity then {tqx | x ∈ R} is identified with R/2
Z and Hα = {k
 |
k ∈ Z}. The following picture shows the specific case 
 = 2, so that t1 = tq2 = · · · , and 
 = 1, in which
case t1 = tq = tq2 = · · · . The periodicity is evident in the picture.

The following pictures show the chambers around t as in Fig. 1, which give a picture of M(t) and
its composition factors.

The visualization is not as clear in this case as in others, since it is the smallest example of the
affine Hecke algebra, but the essential ingredients are present. The chamber pictures should be in-
terpreted as those in Fig. 1. The weights of the M(t) are all displayed, as are the actions of the τ
operators that determine the composition factors of M(t). Notice also the connection to the drawings
of central characters above. The pictures of the M(tqx ) are a picture of a small open neighborhood
around the point tqx in the picture of the characters. The complete classification of H modules is
summarized in the following tables (see Table 1).

Table 1
Table of possible central characters in type A1.

Dims. of irreds. by weight

t1 t−1 tq t−q tz , z �= ±1 or ±q

q4 �= 1 2 2 1,1 1,1 2
q2 = −1 2 2 1,1 N/A 2
q = −1 1,1 1,1 N/A N/A 2

The way that the representation theory of H varies with q can be seen through a number of
different lenses. The structure of M(t) is controlled by the τ operators, which in turn are largely
controlled by the sets P (t) and Z(t). In the picture of the characters, we see that the hyperplanes
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Hα and Hα±δ are distinct unless q2 = ±1. When these hyperplanes coincide, the sets P (t) and Z(t)
change, changing the structure of the corresponding modules. Similar interpretations of course hold
in all types.

4. Type A2

The type A2 root system is R = {±α1,±α2,±(α1 + α2)}, where 〈α1,α
∨
2 〉 = −1 = 〈α2,α

∨
1 〉, with

Weyl group W0 ∼= S3. The simple roots are α1 and α2, and α1 + α2 is the only other positive root.

The type A2 root system

In this picture, si is reflection through the hyperplane perpendicular to αi . The fundamental
weights satisfy

ω1 = 1

3
(2α1 + α2), α1 = 2ω1 − ω2,

ω2 = 1

3
(2α2 + α1), α2 = 2ω2 − ω1.

Let

P = Z-span{ω1,ω2} and Q = Z-span(R)

be the weight lattice and root lattice of R , respectively.
The affine Hecke algebra H is defined as in Section 2. Let

C[Q ] = {
Xλ

∣∣ λ ∈ Q
}

and T Q = HomC-alg
(
C[Q ],C

)
.

Define

tz,w : C[Q ] → C by tz,w
(

Xα1
) = z and tz,w

(
Xα2

) = w.

For each tz,w ∈ T Q , there are 3 elements t ∈ T with t|Q = tz,w , determined by

t
(

Xω1
)3 = z2 w and t

(
Xω2

) = t
(

X−ω1
) · zw.

The dimension of the simple modules with central character t and the submodule structure of M(t)
depends only on t|Q . Thus we begin by examining the W0-orbits in T Q . For a generic weight t ,
P (t) and Z(t) are empty so that M(t) is irreducible by Theorem 3(c). Thus we examine only the
non-generic orbits.
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Proposition 11. If t ∈ T Q , and P (t) ∪ Z(t) �= ∅, then t is in the W0-orbit of one of the following weights:

t1,1, t1,q2 , tq2,1, tq2,q2 ,
{

t1,z
∣∣ z ∈ C

×z �= 1, q±2},
or

{
tq2,z

∣∣ z ∈ C
×z �= 1, q±2, q−4}.

Proof. The proof consists of exhausting all possibilities for Z(t) and P (t), up to the action of W0.
Case 1: If Z(t) contains two positive roots, then it must contain the third. This implies t = t1,1.
Case 2: If Z(t) contains only one root, by applying an element of W0, assume that it is α1. Then

t(Xα2) = t(Xα1+α2 ), so either P (t) = ∅ or P (t) = {α2,α1 + α2}. The first central character is t1,z for
some z �= 1 or q±2. (If z = 1 or z = q±2, either P (t) or Z(t) would be larger.) For the second case,
there are two potential choices for the orbit, arising from choosing t(Xα2) = q2 or q−2. However, t1,q−2

is in the same orbit as tq2,1.

Case 3: Now assume that Z(t) = ∅. If P (t) is not empty, assume that α1 ∈ P (t) and t(Xα1) = q2.
Then t(Xα2) �= q−2 by assumption on Z(t). Then it is possible that α2 ∈ P (t), in which case t = tq2,q2 .

If α1 + α2 ∈ P (t), then t(Xα2 ) = q−4 and t = tq2,q−4 = s2s1tq2,q2 . Otherwise, t = tq2,z for some z �=
1,q±2,q−4. �
Remark. Note that if q2 = −1, then t1,q2 , tq2,1, and tq2,q2 are all in the same W0-orbit. If q2 = 1, then
t1,1 = tq2,1 = t1,q2 = tq2,q2 , and t1,z = tq2,z . Also, for every generic weight tz,w , there are six weights in
its W0-orbit, all of which are generic.

It is helpful to draw a picture of the weights {tqx,qy |x, y ∈ R} for various values of q. Solid lines in
these pictures show the hyperplanes Hα , while dashed lines denote hyperplanes Hα±δ , for α ∈ R+ .
The weight tqx,qy is the point x units away from Hα1 and y units away from Hα2 .
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Analysis of the characters.

Proposition 12. There are six 1-dimensional representations of H. Three of these representations are given by
the three weights t with t|Q = tq2,q2 , with each Ti acting with eigenvalue q. The other three are given by the

three weights t with t|Q = tq−2,q−2 , with each Ti acting with eigenvalue −q−1 .

Proof. The relation (2) determines the two possible eigenvalues for the action of T1 on a 1-
dimensional module. The relation in (4) relates the eigenvalues for Xω1 and T1. �
Principal series modules. We now examine the pictures of the chambers around a weight t|Q , as
a way of visualizing M(t). The solid, dashed and dotted hyperplanes hold the same interpretation
as in Fig. 1. These hyperplanes encode the action of the τ operators, which largely determine the
composition factors of M(t). Assume for now that q2 �= 1.

Case 1: P (t) empty. By Theorem 3(c), if P (t) = {α ∈ R+|t(Xα1) = 1} is empty, then M(t) is irre-
ducible and is the only irreducible module with central character t . This case includes the central
characters t1,1, t1,z , and tz,w for generic z, w – that is, any z and w for which P (tz,w) = Z(tz,w) = ∅.

Case 2: Z(t) = ∅, P (t) �= ∅. This case includes the central characters tq2,q2 , and tq2,z . If Z(t) is
empty, then M(t) is calibrated and the irreducible modules with central character t are in one-to-one
correspondence with the components of the calibration graph.

Case 1:

Case 2:

Case 3: P (t) �= ∅, Z(t) �= ∅. The only central characters with both Z(t) and P (t) non-empty are t1,1
and t1,z when q2 = 1, and tq2,1 and t1,q2 in all cases. If q4 = 1, then tq2,1 and t1,q2 are in the same

orbit, and are in the same orbit as tq2,q2 . If q2 = 1, then tq2,1 = t1,q2 = t1,1.

If q2 �= ±1 and t|Q = t1,q2 or tq2,1, then Theorem 5 shows that M(t) has two 3-dimensional com-

position factors. When q2 = −1 and t|Q = t1,q2 , Proposition 4 shows the two-dimensional weight

space M(t)gen
t makes up an entire composition factor, as does M(t)gen

s1s2t . The remaining composition
factors are two copies of the 1-dimensional module with weight s2t .
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Explicitly, let Cq2,1 be the 1-dimensional H{1}-module spanned by vt and let C1,q−2 be the 1-
dimensional H{2}-module spanned by vs2s1t , given by

Xλvt = t
(

Xλ
)

vt and T1 vt = qvt, and

Xλvs2s1t = (s2s1t)
(

Xλ
)

vs2s1t and T1 vs2s1t = −q−1 vs2s1t .

Then

M = H ⊗H{1} Cq2,1 and N = H ⊗H{2} C1,q−2

are 3-dimensional H-modules with central character tq2,1.

Proposition 13. Let M = H ⊗H{1} Cq2,1 and N = H ⊗H{2} C1,q−2 .

(a) If q4 �= 1 then M and N are irreducible.
(b) If q2 = −1 then Ms1t is an irreducible submodule of M and Ns1t is an irreducible submodule of N. The

quotients N/Ns1t and M/Ms1t are irreducible.

Proof. (a) Assume q4 �= 1. If either M or N were reducible, it would have a 1-dimensional submodule
or quotient, which cannot happen since the 1-dimensional modules have central character tq2,q2 . Thus
both M and N are reducible.

(b) If t|Q = tq2,1, then the action of τ1 is non-zero on Mgen
t by Proposition 1, and Mgen

t is not
a submodule of M . But M is not irreducible, and the only possible remaining submodule is Ms1t .
A similar argument shows the result for N as well. �

The modules with central character t such that t|Q = t1,q2 can be constructed in an entirely anal-

ogous fashion, for q2 �= 1. Finally, if q2 = 1, then Theorem 9 suffices to classify the representations of
H with central characters t1,1 and t1,z for z �= q±2.

Summary. Table 2 summarizes the classification.
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Table 2
Table of possible central characters in type A2.

Dims. of irreds. by weight

t1,1 t1,z t1,q2 tq2,1 tq2,q2 tq2,z tz,w , z, w �= ±1 or q±2

q6 �= 1, q4 �= 1 6 6 3,3 3,3 1,1,2,2 3,3 6
q6 = 1 6 6 3,3 3,3 1,1,1,1,1,1 3,3 6
q2 = −1 6 6 1,2,2 N/A N/A 3,3 6
q = −1 1,1,2 3,3 1,2,2 N/A N/A N/A 6

5. Type C2

The type C2 root system is R = {±α1,±α2,±(α1 + α2),±(2α1 + α2)}, where 〈α1,α
∨
2 〉 = −1 and

〈α2,α
∨
1 〉 = −2. Then the Weyl group is W0 = 〈s1, s2 | s2

1 = s2
2 = 1, s1s2s1s2 = s2s1s2s1〉, which is iso-

morphic to the dihedral group of order 8. The simple roots are α1 and α2, with additional positive
roots α1 + α2 and 2α1 + α2. Then the action of W0 on R can be seen in the following picture, where
si acts by reflection through Hαi , the hyperplane perpendicular to αi .

The fundamental weights satisfy

ω1 = α1 + 1

2
α2, α1 = 2ω1 − ω2,

ω2 = α1 + α2, α2 = 2ω2 − 2ω1.

Let

P = Z-span{ω1,ω2} and Q = Z-span(R)

be the weight lattice and root lattice of R , respectively.
Then the affine Hecke algebra H is defined as in Section 2.



M. Davis / Journal of Algebra 352 (2012) 104–140 119
For all weights tz,w ∈ T Q , there are 2 elements t ∈ T with t|Q = tz,w , determined by

t
(

Xω1
)2 = z2 w and t

(
Xω2

) = zw.

We denote these two elements as tz,w,1 and tz,w,2. Which particular weight tz,w,i is which is unim-
portant since we will always be examining them together. And in fact, most of the time, we will
only refer to the restricted weight tz,w , since the dimension of the modules with central character t
depends only on t|Q . One important remark, though, is that if t(Xα1) = −1, then the two weights t
with t|Q = t−1,w are in the same W0-orbit and represent the same central character.

We begin by examining the W0-orbits in T Q . The structure of the modules with weight t depends
virtually exclusively on P (t) = {α ∈ R+ | t(Xα) = q±2} and Z(t) = {α ∈ R+ | t(Xα) = 1}. For a generic
weight t , P (t) and Z(t) are empty, so we examine only the non-generic orbits.

Proposition 14. Let q be generic. If t ∈ T Q , and P (t) ∪ Z(t) �= ∅, then t is in the W0-orbit of one of the
following weights:

t1,1, t−1,1, t1,q2 , tq2,1, t±q,1, tq2,q2 , t−1,q2 ,
{

t1,z
∣∣ z �= 1, q±2}, {

tz,1
∣∣ z �= ±1, q±2, ±q±1},{

tq2,z

∣∣ z �= 1, q±2, q−4, q−6}, or
{

tz,q2

∣∣ z �= ±1, q±2, −q−2, q−4, ±q−1}.
Proof. The proof consists of exhausting all possibilities for Z(t) and P (t), up to the action of W0. In
the following, we refer to α1 and α1 + α2 as “short” roots, and α2 and 2α1 + α2 as “long” roots.

Case 1: |Z(t)| � 2.
If Z(t) contains a short root and any other root, then t = t1,1. If Z(t) contains two long roots, then

t = t−1,1.
Case 2: |Z(t)| = 1.
If Z(t) contains exactly one root, we may assume it is either α1 or α2. If t(Xα1) = 1, then t(Xα2 ) =

t(Xα1+α2 ) = t(X2α1+α2 ). Thus either P (t) = {α2,α1 + α2,2α1 + α2}, or P (t) = ∅. That is, t is in the
orbit of t1,q2 or t1,z for some z �= q±2,1. If t(Xα2) = 1, then t(Xα1) = t(Xα1+α2 ). Then either P (t) =
{α1,α1 +α2}, P (t) = {2α1 +α2}, or P (t) = ∅. These are the orbits of tq2,1, t±q,1, and tz,1, respectively,

where z �= q±2,±q±1, or 1.
Case 3: Z(t) = ∅.
Now assume that Z(t) is empty, and P (t) is not empty. First assume that P (t) contains at least

one short root. We can apply an element of w to assume that α1 ∈ P (t) and t(Xα1 ) = q2. Then if
α2 ∈ P (t), we must have t(Xα2 ) = q2 or else Z(t) would be non-empty. Thus t = tq2,q2 . If α1 + α2 ∈
P (t), then t(Xα1+α2 ) = q±2, so that either t(Xα2) = 1 or t(X2α1+α2 ) = 1. If 2α1 + α2 ∈ P (t), then
t(X2α1+α2 ) = q−2 or else α1 + α2 ∈ Z(t). Hence t(Xα2) = q−6. But then s2s1s2t = tq2,q2 . If P (t) = {α1},

then t = tq2,z for some z �= 1, q±2, q−4, q−6.
Now, assume that P (t) contains a long root but no short roots. Then we may assume that

t(Xα2) = q2. If t(X2α1+α2 ) = q2 then t(Xα1) = −1. If t(X2α1+α2 ) = q−2 then t(Xα1) = −q−2. How-
ever, s1s2s1t−q−2,q2 = t−1,q2 . Thus t is in the same orbit as t−1,q2 or tz,q2 for z �= ±1,q±2,q−4,−q−2,

±q−1. �
Remark. If q2 is a root of unity of order less than or equal to 4, there is redundancy in the list of
characters given above. Essentially, this is a result of the periodicity in T Q when q2 is an 
th root of
unity. If q2 is a primitive fourth root of unity, then tq2,q2 = s1s2s1t−1,q2 .

If q2 is a primitive third root of unity, tq2,q2 = s2s1s2tq2,1. Also, one of tq,1 and t−q,1 is equal

to tq−2,1 and is in the same orbit as tq2,1. (Which one it is depends on whether q3 = 1 or −1.
In either case, tq2+1,1 is in a different orbit than tq2,1, so tq2+1,1 is our preferred notation for this
character.)
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If q2 = −1, then t−1,1 = tq2,1, and t1,q2 is in the same orbit as tq2,q2 = t−1,q2 . Also in this
case, tz,q2 = tz,−1 = s2t−z,−1. Finally, if q = −1, we have t1,1 = tq2,1 = t1,q2 = tq2,q2 = t−q,1. Also,
t−1,1 = t−1,q2 , while tq2,z = t1,z and tz,q2 = tz,1.

Analysis of the characters.

Proposition 15. There are eight 1-dimensional representations of H, one for each weight t with t|Q = tq±2,q±2 .

In each of these representations, Ti acts with eigenvalue q or −q−1 when t(Xαi ) = q2 or q−2 , respectively.

Proof. As in Proposition 12. �
Remark. We will use the notation Lz,w,i to denote the 1-dimensional representation with weight
tz2,w2,i , where each of z and w is either q or −q−1. Note that if q is a primitive fourth root of unity,
then Lq,q,i ∼= Lq,−q−1,3−i

∼= L−q−1,q,i
∼= L−q−1,−q−1,3−i , for i = 1 or 2.

Principal series modules. A weight t|Q corresponds to a point in the root lattice Q as described
above. The composition structure of the principal series module M(t) is largely determined by the
structure of the operators τi , which can be encoded in the following pictures of small neighborhoods
of the various points t in Q . The solid lines are the hyperplanes Hαi , while the dashed lines represent
the hyperplanes Hαi±δ . Thus the hyperplanes in the picture of the neighborhood of t show which τ
operators are invertible and which are not (or are not well defined). In most cases, this is enough to
determine the exact composition factors of M(t).

Case 1: P (t) = ∅.
If P (t) = ∅, then by Kato’s criterion (Theorem 3(c)), M(t) is irreducible and is the only irreducible

module with central character t . The weights of M(t) are in bijection with W0/Wt , the cosets of
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the centralizer of t in W , and dim(M(t)wt) = |Wt |. If w and si w are distinct weights in M(t), then
τi : M(t)t → M(t)sit is a bijection.

Case 2: Z(t) = ∅, but P (t) �= ∅.
If Z(t) = ∅ then t is a regular central character. Then the irreducibles with central character t are

in bijection with the connected components of the calibration graph for t , and can be constructed
using Theorem 7.

Case 1:

Case 2:
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Case 3: Z(t) �= ∅, P (t) �= ∅.
The only central characters not covered in Cases 1 and 2 are those in the orbits of t1,q2 , tq2,1, and

t±q,1.
t|Q = tq2,1.

If q2 = 1, then Theorem 9 shows that H has five irreducible representations – four of them 1-
dimensional, and one 2-dimensional.

Assume q2 �= 1 and let

w1 =
{

s1 if q2 = −1,

s1s2s1 if q2 �= −1.

Then let Cq2,1 and Cq−2,1 be the 1-dimensional H{1}-modules spanned by vt and v w1t , respec-
tively, given by

Xλvt = t
(

Xλ
)

vt and T1 vt = qvt, and

Xλv w1t = (w1t)
(

Xλ
)

v w1t and T1 v w1t = −q−1 v w1t .

Then

M = H ⊗H{1} Cq2,1 and N = H ⊗H{1} Cq−2,1

are 4-dimensional H-modules.

Proposition 16. If q2 = −1 and M = H ⊗H{1} Cq2,1 and N = H ⊗H{1} Cq−2,1 then

(a) M is irreducible, and
(b) The map

φ : N → M,

hv wt 	→ hv, for h ∈ H

is an H-module isomorphism, where v = T1T2 vt − qT2 vt − vt ∈ M, and
(c) Any irreducible H-module L with central character t is isomorphic to M.

Proof. (a) If q is a primitive fourth root of unity, then M has weight spaces Mgen
t , and Mgen

s1t , each of
which is 2-dimensional. By Theorem 5 and Proposition 4, M is irreducible.
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(b) Let v = T1T2 vt − qT2 vt − vt . Then a straightforward computation using equation (4) shows
that v spans a 1-dimensional H{1}-submodule of M , given by

T1 v = qv, and Xλv = s1t
(

Xλ
)

v.

Then the H{1}-module map given by v wt 	→ v corresponds to φ under the adjunction

HomH(H ⊗H{1} Cq−2,1, M) = HomH{1}(Cq−2,1, M|H{1}).

Thus φ is an H-module map and since M is irreducible, the map is surjective. Since M and N have
the same dimension, φ is an isomorphism.

(c) Let L be an irreducible H-module with central character t , which must have weights t and s1t .
Then, viewing L as an H{1}-module, it must have all 1-dimensional composition factors, and it must
have a 1-dimensional H{1}-submodule, with weight t or s1t . Then the same argument as in part (b)
gives an isomorphism from M to L or from N to L. �

Proposition 17.

(a) If q2 is a primitive third root of unity then Ms2s1t is a submodule of M isomorphic to L−q−1,q,±1 and
M/Ms2s1t is irreducible. In addition, Ns1t is a submodule of N isomorphic to Lq,−q−1 , and N/Ns1t is irre-
ducible.

(b) If q2 is not ±1 or a primitive third root of unity then M and N are irreducible and nonisomorphic.

Proof. (a) Assume q2 is a primitive third root of unity. Then Proposition 1 shows that τ2 : Ms1t →
Ms2s1t is non-zero. But s2s1t(Xα2) = q2 so that τ2 : Ms2s1t → Ms1t is the zero map by Theorem 2, and
Ms1s2t is a submodule of M . By Theorem 5, M/Ms1s2t is irreducible. A parallel argument shows that
Ns1t is a submodule of N , with N/Ns1t irreducible.

(b) If q4 �= 1 and q6 �= 1, then P (t) = {α1,α1 + α2}. Then Theorem 5 shows that the composi-
tion factor M ′ of M with (M ′)t �= 0 has dim(M ′)gen

t � 2 and (M ′)s1t �= 0. Then by Theorem 3(b),
(M ′)s2s1t �= 0, so that M ′ = M . Similarly, Theorem 5 and Theorem 3(b) show that N is irreducible.
Since they have different weight spaces, they are not isomorphic. �

t|Q = t1,q2 .

Note that if q2 = 1, then t1,q2 = tq2,1 = t1,1, so this case has already been addressed.
Let C1,q2 and C1,q−2 be the 1-dimensional H{2}-modules spanned by vt and v w0t , respectively,

and given by

T2 vt = qvt and Xλvt = t
(

Xλ
)

vt, and

T2 v w0t = −q−1 v w0t and Xλv w0t = w0t
(

Xλ
)

v w0t .
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Then

M = H ⊗H{2} C1,q2 and N = H ⊗H{2} C1,q−2

are 4-dimensional H-modules.

Proposition 18. Assume q2 = −1 and let M = H ⊗H{2} C1,q2 and N = H ⊗H{2} C1,q−2 . Then

(a) Ms1s2t is a submodule of M, and the image of Ms2t is a submodule of M/Ms1s2t . The resulting 2-
dimensional quotient of M is irreducible. Also, Ns2t is a submodule of N and the image of Ns1s2t in N/Ns2t

is a submodule of N/Ns2t . The resulting 2-dimensional quotient of N is irreducible, and
(b) Any composition factor of M(t) is a composition factor of either M or N.

Proof. (a) If q2 = −1, then M has weight spaces Mgen
t , which is two-dimensional, and Ms2t and Ms1s2t ,

both of which are 1-dimensional. Proposition 1 and Theorem 2 show that τ1 is non-zero on Ms2t , but
zero on Ms1s2t , so that Ms1s2t is a submodule of M . The resulting quotient must be reducible, but
since vt generates all of M , the generalized t weight space cannot be a submodule. Thus the s2t
weight space is the submodule, and its quotient must be the 2-dimensional module constructed in
Proposition 4, since it accounts for the entire t weight space of M(t). A similar argument shows the
result for N .

(b) By counting dimensions of weight spaces, the remaining composition factor(s) of M(t) must
have weights s2t and s1s2t . If there were only one composition factor L left, it would contain both
weight spaces which would each have dimension 1, which is impossible by Proposition 4. Thus the
remaining composition factors are more copies of the 1-dimensional modules. �

Proposition 19. Assume q2 �= ±1. Then Ms1s2t is a submodule of M and M/Ms1s2t is irreducible. Similarly,
Ns2t is a submodule of N and N/Ns2t is irreducible.
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Proof. If q4 �= 1, then by the same reasoning as in Proposition 18, Ms1s2t must be a submodule of M .
Similarly, Ns2t is a submodule of N . Then Theorem 5 shows that the resulting 3-dimensional quotients
of M and N are irreducible. �

If q2 �= 1, the composition factors of M and N account for all 8 dimensions of M(t).
t|Q = t±q,1.
Let C±q,1 and C±q−1,1 be the 1-dimensional H{2}-modules spanned by vs1t and vs2s1t , respectively,

and given by

T2 vs1t = qvs1t and Xλvs1t = s1t
(

Xλ
)

vs1t, and

T2 vs2s1t = −q−1 vs2s1t and Xλvs2s1t = s2s1t
(

Xλ
)

vs2s1t .

Then

M = H ⊗H{2} C±q,1 and N = H ⊗H{2} C±q−1,1

are 4-dimensional H-modules.
If t|Q = t−q,1 and q is a primitive sixth root of unity or if t|Q = tq,1 and q is a primitive third

root of unity, then t|Q = tq−2,1, which is in the same orbit as tq2,1, and the irreducibles with central
character t have already been analyzed.

Proposition 20. Let M = H ⊗H{2} C±q,1 and N = H ⊗H{2} C±q−1,1 . Unless t|Q = t−q,1 and q is a primitive
sixth root of unity or t|Q = tq,1 and q is a primitive third root of unity, M and N are irreducible.

Proof. By assumption, P (t) = {2α1 + α2}. Then the claim follows from Theorem 5. �
Since they have different weight spaces and are thus not isomorphic, M and N are the only two

irreducibles with central character t .

Summary. Table 3 summarizes the classification. Note that in this table, the entries for t±q,1 assume
that ±q �= q−2, as described above.

6. Type G2

The type G2 root system is

R = {±α1,±α2,±(α1 + α2),±(2α1 + α2),±(3α1 + α2),±(3α1 + 2α2)
}
,
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Table 3
Table of possible central characters in type C2, with varying values of q.

Dims. of irreds.

t q8 �= 1, q6 �= 1 q8 = 1, q4 �= 1 q6 = 1 q2 = −1 q = −1

t1,1 8 8 8 8 1,1,1,1,2
t−1,1 8 8 8 4 2,2,2,2
t1,z 8 8 8 8 4,4
t1,q2 1,1,3,3 1,1,3,3 1,1,3,3 1,1,2,2 N/A
tq2,1 4,4 4,4 1,1,3,3 N/A N/A
tq,1 4,4 4,4 4,4 4,4 N/A
t−q,1 4,4 4,4 4,4 N/A N/A
tz,1 8 8 8 8 4,4
tq2,q2 1,1,3,3 1,1,1,1,2,2 N/A N/A N/A
tq2,z 4,4 4,4 4,4 4,4 N/A
t−1,q2 2,2,2,2 N/A 2,2,2,2 N/A N/A
tz,q2 4,4 4,4 4,4 4,4 N/A
tz,w 8 8 8 8 8

with 〈α1,α
∨
2 〉 = −1 and 〈α2,α

∨
1 〉 = −3. Then the Weyl group is

W0 = 〈
s1, s2

∣∣ s2
1 = s2

2 = 1, s1s2s1s2s1s2 = s2s1s2s1s2s1
〉
,

isomorphic to the dihedral group of order 12. The simple roots are α1 and α2, and α1,α1 + α2,

3α1 + α2 will be referred to as short roots, while α2,2α1 + α2, and 3α1 + 2α2 will be referred to as
long roots.

The fundamental weights satisfy

ω1 = 2α1 + α2, α1 = 2ω1 − ω2,

ω2 = 3α1 + 2α2, α2 = 2ω2 − 3ω1.

Let

P = Z-span{ω1,ω2}.
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This is the same lattice spanned by α1 and α2. Then W0 acts on X by

s1 · Xω1 = Xω2−ω1 ,

s1 · Xω2 = Xω2 ,

s2 · Xω1 = Xω1 , and

s2 · Xω2 = X3ω1−ω2 .

The affine Hecke algebra H of type G2 is defined as in Section 2.
Let T = HomC-alg(C[X],C) and define

tz,w : T → C by tz,w
(

Xα1
) = z and tz,w

(
Xα2

) = w.

The structure of the modules with weight t depends virtually exclusively on P (t) and Z(t). For a
generic weight t , P (t) and Z(t) are empty, so we examine only the non-generic orbits.

Theorem 21. If q2 is not a primitive 
th root of unity for 
 � 6 and Z(t) ∪ P (t) �= ∅, then t is in the same
W0-orbits as one of the following weights.

t1,1, t1,−1, t11/3,1, t1,q2 , t1,±q, tq2,1, t±q,1, tq2/3,1, tq2,−q−2 , t11/3,q2 , tq2,q2 ,{
t1,z

∣∣ z ∈ C
×, z �= ±1, q±2, ±q±1}, {

tz,1
∣∣ z ∈ C

×, z �= ±1, 11/3, q±2, ±q±1, q±2/3},
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{
tq2,z

∣∣ z ∈ C
×,

{
1,q2,q−2} ∩ {

z,q2z,q4z,q6z,q6z2} = ∅}
, or

{
tz,q2

∣∣ z ∈ C
×,

{
1,q2,q−2} ∩ {

z,q2z,q2z2,q2z3,q4z3} = ∅}
.

Proof. In general, the third roots of unity in this theorem are assumed to be primitive, so that there
are two different weights that we call t11/3,1 and t11/3,q2 . Similarly, tq2/3,1 typically refers to one of

three different characters, corresponding to the three third roots of q2. We refer to α1, α1 + α2, and
2α1 + α2 as “short” roots. The other roots are referred to as “long” roots.

Case 1: |Z(t)| � 2.
If Z(t) contains at least two roots, and one of them is short, then Z(wt) contains α1 for some

w ∈ W0. If Z(wt) also contains any of α2,α1 +α2,2α1 +α2, or 3α1 +α2, then it contains both simple
roots and thus wt = t1,1. It is also possible that Z(wt) = {α1,3α1 +2α2}, in which case wt(Xα1+α2 ) =
−1, and wt(Xα2) = −1, so that wt = t1,−1.

If Z(t) contains no short roots, it contains two of α2, 3α1 + α2, and 3α1 + 2α2. But then it must
also contain the third, and Z(t) = {α2,3α1 + α2,3α1 + 2α2}. In this case, wt(Xα2) = 1, but wt(Xα1 )

is a third root of unity, so that wt = t11/3,1.
Case 2: |Z(t)| = 1.
If Z(t) has exactly one root, then there is some w ∈ W0 with Z(wt) = {α1} or Z(wt) = {α2}.
If Z(wt) = {α1}, then P (t) either contains all of α2,α1 +α2,2α1 +α2, and 3α1 +α2, or it contains

none of them. If it contains all of them, wt(Xα2 ) = q±2, and t is in the same W0-orbit as t1,q2 . If

3α1 + 2α2 ∈ P (wt), then wt(Xα2 ) = ±q±1, and t is in the same orbit as t1,±q . Otherwise, wt = t1,z

for some z besides ±q±1 and q±2. Also then, z �= ±1 by assumption on Z(t).
If Z(wt) = {α2}, then any two roots that differ by a multiple of α2 are either both in P (wt) or

both not in P (wt). By applying w0 if necessary, we can assume that wt(Xα) = q2 for the α that are
in P (wt). If α1 ∈ P (wt), then wt(Xα1) = q2, and wt = tq2,1. If 2α1 + α2 ∈ P (wt), then wt = t±q,1. If

3α1 + α2 ∈ P (wt), then wt(Xα1 ) is a third root of q2 and wt = t1,q2/3 . Otherwise, wt = tz,1 for some

z so that none of z, z2, z3 is equal to q±2 or 1. That is, z �= ±1,11/3,q±2,±q±1,q±2/3.
Case 3: |Z(t)| = ∅.
If Z(t) is empty but P (t) contains a short root, then α1 ∈ P (wt) for some w ∈ W0. If P (wt)

contains another short root, then we can apply s1 if necessary so that P (t) contains α1 and α1 + α2.
Then either wt(Xα1 ) = wt(Xα1+α2 ) so that wt(Xα2) = 1, or wt(Xα1) and wt(Xα1+α2 ) are q2 and
q−2 in some order, so that wt(X2α1+α2 ) = 1. Thus P (wt) contains at most one short root. If P (wt)
also contains a long root, then applying s1 if necessary, we can assume P (wt) contains either α2
or 3α1 + 2α2. If P (wt) contains α1 and α2, then we can apply w0 to assume that wt(Xα1) = q2.
If wt(Xα2) = q−2, then α1 + α2 ∈ Z(wt). Then wt(Xα2) = q2 and wt = tq2,q2 . If P (wt) contains α1
and 3α1 + 2α2, then since α1 is perpendicular to 3α1 + 2α2, we can apply s1 and/or s3α1+2α2 to
assume wt(Xα1 ) = q2 = wt(X3α1+2α2 ). Hence wt(X2α2) = q−4 and by assumption, wt = tq2,−q−2 . If

P (wt) = {α1}, then wt = tq2,z does not take the value 1 or q±2 on any other positive root. Then

{1,q2,q−2} ∩ {z,q2z,q4z,q6z,q6z2} = ∅.
If P (t) contains no short roots, but at least two long roots, then wt(Xα2) = q2 = wt(X3α1+α2 )

for some w ∈ W0. (If wt(Xα2) = q−2, then wt(X3α1+2α2 ) = 1, a contradiction.) Hence wt(Xα1) is a
primitive third root of unity and wt = t11/3,q2 . If P (t) contains exactly one long root, then wt = tz,q2

for some z ∈ C
× so that wt does not take the value 1 or q±2 on any other positive root. Thus

{1,q2,q−2} ∩ {z,q2z,q2z2,q2z3,q4z3} = ∅. �
Remark. There are some redundancies in this list for specific values of q. If q2 is a primitive fifth root
of unity, then q and −q are equal to q−4 and −q−4 in some order depending on whether q5 = 1 or
−1. Then tq2,q2 is in the same orbit as tq−4,1, which is equal to either tq,1 or t−q,1.

If q2 is a primitive fourth root of unity, then one note is necessary on the weight tq2/3,1. Since q−2

is a third root of q2, we take q2/3 to mean a different third root of q2 so that tq2/3,1 and tq2,1 are in
different orbits. In addition, tq2,−q−2 = tq2,q2 , which is in the same orbit as tq2,1.
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If q2 is a primitive third root of unity, then 11/3 = q2,q−2, or 1. Then t11/3,1 is in the same orbit
as tq2,1 or t1,1. Also, t11/3,q2 is in the same orbit as tq2,q2 , which is in turn in the same orbit as t1,q2 .

In addition q and −q are equal to q−2 and −q−2 in some order depending on whether q3 is 1 or
−1. Then t1,q2 is in the same orbit as either t1,q or t1,−q , and tq2,1 is in the same orbit as either tq,1
or t−q,1.

If q2 = −1, then tq2,−q−2 = tq2,1 = t−1,1, which is in the same orbit as tq2,q2 , while t1,q2 = t1,−1. In

fact, t−1,1 = s1s2t1,−1. Also, since q = −q−1, the weights t1,±q are in the same orbit as each other, as
are the weights t±q,1. Finally, t11/3,q2 is in the same orbit as tq2/3,1.

Finally, if q = −1, then t1,1 = tq2,1 = t1,q2 = tq2,q2 = t1,−q = t−q,1. Also, tq,1 = t−1,1, which is
in the same orbit as t1,−1 = t1,q = tq2,−q−2 . Finally, t11/3,1 = tq2/3,1 = t11/3,q2 , while t1,z = tq2,z and
tz,1 = tz,q2 .

Analysis of the characters.

Proposition 22. There are four 1-dimensional representations of H, one for each weight tq±2,q±2 . In these

modules, Ti acts with eigenvalue q or −q−1 when t(Xαi ) = q2 or q−2 , respectively.

Proof. As in Proposition 12. �
Remark. We will use the notation Lz,w to denote the 1-dimensional representation with weight tz2,w2 ,
where each of z and w is either q or −q−1. Note that if q is a primitive fourth root of unity, then all
four 1-dimensional representations are isomorphic.

Principal series modules. We now examine the principal series modules M(t) for all the possible
central characters above.

Case 1: P (t) = ∅.
If P (t) = ∅ then by Kato’s criterion, Theorem 3(c), M(t) is irreducible and thus is the only irre-

ducible module with central character t .
Case 2: Z(t) = ∅.
If Z(t) = ∅ then t is a regular central character. Then the irreducibles with central character t are

in bijection with the connected components of the calibration graph for t , and can be constructed
using Theorem 7.

The following graphs show the pictures of the central characters found in Cases 1 and 2 of The-
orem 21, for the particular values of q for which either Z(t) or P (t) is empty. The remark after
Theorem 21 details these values of q.

Case 1:
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Case 2:

Case 3: Z(t), P (t) �= ∅.
For these central characters, rather than analyzing M(t) directly, it is easier to construct several

irreducible H-modules and show that they include all the composition factors of M(t).
Case 3a: t1,q2 .
Assume α1 ∈ Z(t) and α2 ∈ P (t). Then t = t1,q±2 , but s2s1s2s1s2t1,q−2 = t1,q2 , so that analyzing

M(t1,q2 ) is sufficient. Then let t = t1,q2 . We have Z(t) = {α1} and P (t) = {α2} unless q2 = ±1. Hence

the cases q2 = 1 and q2 = −1 will be treated separately.
If q2 = 1, then Z(t) = P (t) = R+ , and the irreducibles with this central character can be con-

structed using Theorem 9.
If q2 �= 1, let Cvt and Cv w0t be the 1-dimensional H{2}-modules spanned by vt and v w0t , respec-

tively, and given by
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T2 vt = qvt, Xλvt = t(Xλ)vt,

T2 v w0t = −q−1 v w0t, and Xλv w0t = w0t(Xλ)v w0t .

Then define

M = H ⊗H{2} Cvt and N = H ⊗H{2} Cv w0t .

Proposition 23. Assume q2 �= ±1. Let M = H ⊗H{2} Cvt and N = H ⊗H{2} Cv w0t , where t = t1,q2 .

(a) Ms1s2s1s2t is a 1-dimensional submodule of M. M ′ , the image of the weight spaces Ms2s1s2t and Ms1s2t in
M/Ms1s2s1s2t , is a submodule of M/Ms1s2s1s2t . The resulting quotient of M is irreducible.

(b) If q2 is not a primitive third root of unity, then M ′ is irreducible.
(c) If q2 is a primitive third root of unity, then (M ′)s2s1s2t is a submodule of M ′ .
(d) Ns2t is a 1-dimensional submodule of N. N ′ , the image of the weight spaces Ns1s2t and Ns2s1s2t in N/Ns2t ,

is a submodule of N/Ns2t . The resulting quotient of N is irreducible.
(e) If q2 is not a primitive third root of unity, then N ′ is irreducible.
(f) If q2 is a primitive third root of unity, then (N ′)s1s2t is a submodule of N ′ .

Proof. Assume q2 �= −1. Then Z(t) = {α1} and P (t) contains α2,α1 +α2,2α1 +α2, and 3α1 +α2. If q2

is a primitive third root of unity, then P (t) also contains 3α1 + 2α2. Then M has one 2-dimensional
weight space Mgen

t and four 1-dimensional weight spaces Ms2t , Ms1s2t , Ms2s1s2t , and Ms1s2s1s2t . For
w ∈ {s2, s1s2, s2s1s2, s1s2s1s2}, let mwt be a non-zero vector in Mwt . By a calculation as in Proposi-
tion 1(b),

mwt = T w T1 vt +
∑

w ′<w

aw,w ′ T w ′ T1 vt,

for w ∈ {s2, s1s2, s2s1s2, s1s2s1s2}, where aw,w ′ ∈ C. Then if si w > w , τimwt �= 0 for w ∈ {s2, s1s2,

s2s1s2}, since the term Ti T w T1 cannot be canceled by any other term in τimwt .
Thus τ1 : Ms1s2s1s2t → Ms2s1s2t is the zero map since, by Theorem 2, τ 2

1 : Ms2s1s2 t → Ms2s1s2t is the
zero map. Hence Ms1s2s1s2t is a submodule of M . Similarly, τ1 : Ms1s2t → Ms2t must be the zero map
since, by Theorem 2, τ 2

1 : Ms2t → Ms2t is the zero map. Let M1 = M/Ms1s2s1s2t . Then M ′ , the subspace
spanned by ms1s2t and ms2s1s2t in M1, is a submodule of M1. Theorem 5 shows that M2 = M1/M ′ is
irreducible.

(b) If q2 is not a primitive third root of unity, τ 2
2 : (M ′)s1s2t → (M ′)s1s2t is invertible, so that M ′ is

irreducible.
(c) If q2 is a primitive third root of unity, then τ2 : (M ′

1)s2s1s2t → (M ′
1)s1s2t is the zero map and

(M ′
1)s2s1s2t is a 1-dimensional submodule of M ′

1, and M ′
1/(M ′

1)s2s1s2t is 1-dimensional as well.
(d)–(f) The same argument used in (a)–(c) applies, with each weight space Mwt replaced by

Nw w0t . �
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However, the composition factors of M and N are not distinct. If q2 is not a primitive third root of
unity, then M ′ and N ′ are irreducible 2-dimensional modules with the same weight space structure.
Then Proposition 4 shows that M ′ ∼= N ′ . If q2 is a primitive third root of unity, then note that two
1-dimensional modules Cvt and Cvt′ are isomorphic if and only if they have the same weight. Then
M ′

1 and N ′
1 have the same composition factors. In any case, the 3-dimensional modules are different

since their weight space structures are different.

Proposition 24. If q2 �= ±1 then the composition factors of M and N are the only irreducibles with central
character t1,q2 .

Proof. Counting multiplicities of weight spaces in M(t) and the distinct composition factors of M and
N shows that the remaining composition factor(s) of M(t) must contain an s1s2t weight space and an
s2s1s2t weight space, each of dimension 1.

If q2 is not a primitive third root of unity then Theorem 3(b) shows that there must be one re-
maining composition factor with an s1s2t weight space and an s2s1s2t weight space, and Proposition 4
shows that it is isomorphic to M1.

If q2 is a primitive third root of unity then τ 2
2 Ms1s2t → Ms1s2t is not invertible. Hence there cannot

be an irreducible module consisting of an s1s2t weight space and an s2s1s2 weight space, and the
remaining composition factors of M(t) are 1-dimensional. �

If q2 = −1, then dim Mgen
t = dim Mgen

s2t = dim Mgen
s1s2t = 2 and dim Ngen

t = dim Ngen
s2t = dim Ngen

s1s2t = 2.
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Proposition 25. Assume q2 = −1 and t = t1,q2 . Let M = H ⊗H{2} Cvt and N = H ⊗H{1} Cvs1s2t .

(a) M and N each have two 1-dimensional modules and two 2-dimensional modules as composition factors.
(b) The composition factors of M and N are the only irreducible modules with central character t.

Proof. By Proposition 4, there is a 2-dimensional module P with P = P gen
t . Let v ∈ Pt be non-zero.

The map

Cvt → P ,

vt 	→ v

is an H{2}-module homomorphism. Since

HomH(M, P ) = HomH{2}(Cvt, P ),

there is a non-zero map from M to P . Since P is irreducible, this map is surjective and P is a quotient
of M . The kernel of any map from M to P must be

M1 = Mgen
s2t ⊕ Mgen

s1s2t,

which is then a submodule of M .
Then we note that m = T1T2T1T2T1 v − qT2T1T2T1 v − T1T2T1 v + qT2T1 v + T1 v − qv spans

a 1-dimensional submodule of M1. Then let M2 = M1/m, so that T1T2T1T2T1 v = qT2T1T2T1 v +
T1T2T1 v − qT2T1 v − T1 v + qv in M2.

Then by a calculation as in Proposition 1(b), M2 contains an element m′ = T2T1 v − qT1 v − 3v ∈
Ms2t . Then m′ , τ1(m′) and T2 · τ1(m′) are linearly independent (since their leading terms cannot be
canceled) and span M2. However, M3 = 〈τ1(m′), T2 · τ1(m′)〉 is clearly closed under the action of T2.
Also, τ1(m′) ∈ Ms1s2t , so that

Xλ · T2τ1
(
m′) = T2 Xs2λτ1

(
m′) + (

q − q−1) Xλ − Xs2λ

1 − X−α2
τ1

(
m′),

which again lies in M3. Finally, one can compute that

T1 · τ1
(
m′) = −q−1τ1

(
m′), and T1 · T2τ1

(
m′) = q

(
τ1

(
m′)) + T2τ1

(
m′).

Thus M3 is a submodule of M2. By Theorem 5, M3 is irreducible, and M2/M3 is a 1-dimensional
module which is isomorphic to the 1-dimensional module spanned by m.

An analogous argument proves the same result for N . Let Q be the 2-dimensional module with
Q = Q gen

s1s2t . Then there is a surjection from N to Q , and the kernel of this map, N1, consists of the t
and s2t weight spaces of N . Then n = T2T1T2T1T2 v − qT1T2T1T2 v − T2T1T2 v + qT1T2 v + T2 v − qv
spans a 1-dimensional submodule of N1. Let N2 = N1/Cn.

Then Ns2t contains a non-zero element n′ , and n′, τ2(n′), and T1τ2(n′) are linearly independent
and span N2. But τ2(n′) and T1τ2(n′) span a submodule of N2, which is irreducible by Theorem 5.

(b) Let Cvs2t be the one-dimensional H{1}-module with weight s2t , and define L = H ⊗H{1} Cvs2t .
We claim that the composition factors of L are the same as those of M . First, note that the one-
dimensional H-module Lq,q restricted to H{1} is Cvs2t . Then there is an H{1}-module map from
Cvs2t to Lq,q , and thus there is a map from L to Lq,q . Let L1 be the kernel of this map. Then L1 has
a 1-dimensional s2t weight space, and 2-dimensional generalized t and s1s2t weight spaces. Also, L1
contains l = τ2(vs2t) = T2 vs2t − qvs2t , an element of the t weight space of L1. Then we note that T2 ·
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(T2 vs2t − qvs2t) = (q − q−1)T2 vs2t + vs2t − qT2 vs2t = q(T2 vs2t − qvs2t), so that l spans a 1-dimensional
H{2}-submodule of L1, with weight t .

Thus, there is an H2-module map from Cvt to L1, and thus an H-module map from M to L. This
map is surjective since l, T2l, T1T2l, T2T1T2l, and T1T2T1T2l are linearly independent and span L1.
Then L1 is a quotient of M and its composition factors are composition factors of M .

Now, let P be any irreducible H-module with central character t1,q2 . If P is not a composition
factor of M or N , then P must be in the kernel of the (surjective) map from M(t) to M . Hence
P is at most 6-dimensional, and each of its generalized weight spaces is at most 2-dimensional. If
P = P gen

t , then P is 2-dimensional and must be the module described in Proposition 4. Otherwise,
we note that P gen

s2t ⊕ P gen
s1s2t is an H{1}-submodule of P , since the action of τ1 fixes this subspace of P .

Thus P gen
s2t ⊕ P gen

s1s2t contains an irreducible H{1}-submodule. This subspace must be either P gen
s1s2t or a

1-dimensional module with weight s2t . Hence P is a quotient of either L or M and is isomorphic to
a composition factor of M . �

Case 3b: t1,±q .
Let t′ ∈ T and assume α1 ∈ Z(t′) but α2 /∈ P (t′), so that none of α1 +α2,2α1 +α2, or 3α1 +α2 are

in P (t′). Since P (t′) �= ∅, 3α1 +2α2 ∈ P (t′), so that t′(X2α2 ) = q±2 and t′(Xα2) = ±q±1. By applying w0
if necessary, we may assume t′(Xα2) = ±q. Thus we will analyze the weights t1,±q together, except
in one case. If q is a primitive third root of unity then q = q−2 and q−1 = q2, so that t1,q = t1,q−2

was analyzed in Case 3a. If q is a primitive sixth root of unity then −q = q−2 and −q−1 = q2 so that
t1,−q = t1,q−2 was analyzed in Case 3a. Thus these cases are excluded from the following analysis by

simply assuming that t′(Xα2) �= q−2.
If q2 = 1, then Z(t′) = P (t′) = {α1,3α1 + 2α2}, and the irreducibles with central character t can be

constructed using Theorem 9. Specifically, there are four 3-dimensional modules with central charac-
ter t′ .

If q2 �= 1, then s1s2t′(Xα1 ) = t′(X−α1−α2 ) = ±q∓1 and s1s2t′(Xα2 ) = t′(X3α1+2α2 ) = q±2. Then by
Theorem 3, M(t′) and M(t) have the same composition factors, where t = s1s2t′ . Also by assum-
ing that t′(Xα2) �= q−2, we have Z(t) = {2α1 + α2} and P (t) = {α2}. Let Cvt and Cv w0t be the
1-dimensional H{2}-modules spanned by vt and v w0t , respectively, and given by

T2 vt = qvt, Xλvt = t
(

Xλ
)

vt,

T2 v w0t = −q−1 v w0t, and Xλv w0t = w0t
(

Xλ
)

v w0t .

Then define

M = H ⊗H{2} Cvt and N = H ⊗H{2} Cv w0t .
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Proposition 26. Assume q2 �= 1. Let t′ = t1,±q, and define M and N as above. Assume that it is not true that
t′(Xα2) = q−2 . Then M and N are irreducible.

Let t = s1s2t . Under the assumptions, Z(t) = {2α1 + α2} and P (t) = {α2}. Then dim Mgen
t =

dim Mgen
s1t = dim Mgen

s2s1t = 2. By Theorem 5, M has some composition factor M ′ with dim Mgen
s2s1t = 2,

and by Theorem 3(b), M ′ = M and M is irreducible. Similarly, Theorem 5 and Theorem 3(b) show
that N is irreducible. �

Under the assumptions of this theorem, since M and N are each 6-dimensional, they must be the
only composition factors of M(t). If t′(Xα2) = q−2, then w0t′ = t1,q2 , which was discussed in the case
above.

These two cases are the only weights t with P (t) non-empty and Z(t) containing a short root.
Specifically, if t is any weight such that Z(t) contains α1,α1 + α2, or 2α1 + α2, there exists w ∈ W0
so that α1 ∈ Z(wt). Then t is in the orbit of one of the weights in the previous cases. Then for the
following cases, assume α1,α1 + α2,2α1 + α2 /∈ Z(t).

Case 3c: tq2,1.
If α2 ∈ Z(t) and α1 ∈ P (t), then α1 + α2 ∈ P (t) as well, and t = tq±2,1. These weights are in the

same orbit, so we examine M(tq2,1). If q2 = −1 then t(X2α1+α2 ) = 1, so that t is in the orbit of one

of the weights considered in Cases 3a and 3b. If q2 = 1, then t = t1,1 which has also already been
considered. Then we assume q2 �= ±1.

Let Cvt and Cv w0t be the 1-dimensional H{1}-modules spanned by vt and v wt , respectively, and
given by

T1 vt = qvt, Xλvt = t
(

Xλ
)

vt,

T1 v w0t = −q−1 v w0t, and Xλv w0t = w0t
(

Xλ
)

v w0t .

Then define

M = H ⊗H{1} Cvt and N = H ⊗H{1} Cv w0t .

Proposition 27. If q2 is a primitive third root of unity, then M and N are irreducible.

Proof. If q2 is a primitive third root of unity, then Z(t) = {α2,3α1 + α2,3α1 + 2α2} and P (t) =
{α1,α1 + α2,2α1 + α2}.
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Then dim Mgen
t = 4 and dim Mgen

s1t = 2. By Theorem 5, if M ′ ⊆ M is a submodule of M , then

dim(M ′)gen
t � 2 and dim(M ′)gen

s1t � 2. Then dim(M/M ′)gen
t � 2, but dim(M/M ′)gen

s1t = 0, so that The-
orem 5 implies that (M/M ′)t = 0. Thus M ′ = M and M is irreducible. Theorem 5 similarly implies
that N is irreducible. �

Then since M and N have different weight spaces, they are not isomorphic and are the only
irreducibles with central character t .

Proposition 28. Assume q2 �= ±1 and that q2 is not a primitive third root of unity.

(a) If q2 is a primitive fourth root of unity then Ms2s1s2s1t is a 1-dimensional submodule of M, and M ′ , the
image of the weight spaces Ms1s2s1t and Ms2s1t in M/Ms1s2s1t , is an irreducible submodule of M/Ms1s2s1t .
The resulting quotient of M is irreducible.

(b) If q2 is a primitive fourth root of unity then Ns1t is a 1-dimensional submodule of N, and N ′ , the image
of the weight spaces Ns2s1t and Ns1s2s1t in N/Ns1t , is an irreducible submodule of N/Ns1t . The resulting
quotient of N is irreducible.

(c) The composition factors of M and N are the only composition factors of M(t).
(d) If q2 is not a primitive third or fourth root of unity then M and N are irreducible, and are the only irre-

ducible modules with central character t.

Proof. If q2 is not ±1 or a primitive third root of unity, Z(t) = {α2}, so that M has one 2-dimensional
weight space Mgen

t and four 1-dimensional weight spaces Ms1t , Ms2s1t , Ms1s2s1t , and Ms2s1s2s1t .
(a) If q2 is a primitive fourth root of unity, then P (t) = {α1,α1 + α2,3α1 + α2,3α1 + 2α2}. For

w ∈ {s1, s2s1, s1s2s1, s2s1s2s1}, let mwt be a non-zero vector in Mwt . By Proposition 1(b),

mwt = T w T2 vt +
∑

w ′<w

aw,w ′ T w ′ T2 vt,

for w ∈ {s1, s2s1, s1s2s1, s2s1s2s1}, where aw,w ′ ∈ C. Then if si w > w ,

τimwt �= 0

for w ∈ {s1, s2s1, s1s2s1}, since the term Ti T w T2 cannot be canceled by any other term in τimwt .
Thus τ2 : Ms2s1s2s1t → Ms1s2s1t is the zero map since, by Theorem 2, τ 2

2 : Ms1s2s1 t → Ms1s2s1t is
the zero map. Hence Ms2s1s2s1t is a submodule of M . Let M1 = M/Ms2s1s2s1t . Similarly, τ2 : Ms2s1t →
Ms1t must be the zero map since, by Theorem 2, τ 2

2 : Ms1t → Ms1t is the zero map. Then M ′
1, the

subspace spanned by ms2s1t and ms1s2s1t in M1, is a submodule of M1. Since τ 2
1 : (M ′

1)s2s1t → (M ′
1)s2s1t

is invertible, M ′
1 is irreducible, and Theorem 5 shows that M2 = M1/M ′

1 is irreducible.
(b) Replacing t by w0t in this argument shows that N also has three composition factors. The

weight space Ns1t is a submodule of N , and N1 = N/Ns1t has an irreducible 2-dimensional submodule
N ′

1, consisting of the image of Ns2s1t and Ns1s2s1t in N1. Theorem 5 shows that N1/N ′
1 is irreducible.

(c) The composition factors of M and N are not distinct, since M ′
1 and N ′

1 are irreducible 2-
dimensional modules with the same weight spaces, and Proposition 4 shows that M ′

1
∼= N ′

1. The 1-
dimensional composition factors of M and N are not isomorphic since they have different weights,
and the 3-dimensional modules are different since their weight space structures are different.

Counting multiplicities of weight spaces in M , N , and M(t) shows that the remaining compo-
sition factor(s) of M(t) must contain an s2s1t weight space and an s1s2s1t weight space, each of
dimension 1. But Theorem 3(b) shows that there must be one remaining composition factor, and
Proposition 4 shows that it is isomorphic to M1. Then the composition factors of M and N are all the
composition factors of M(t).

(d) Theorems 5 and 3(b) show that both M and N are irreducible if q2 is not a primitive third or
fourth root of unity. Since M and N are not isomorphic and are each 6-dimensional, they are the only
composition factors of M(t). �
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Case 3d: t±q,1.
If α2 ∈ Z(t′) and 2α1 + α2 ∈ P (t′), then t′(X2α1) = q±2 and t′(Xα1) = ±q±1. By replacing t′ by

w0t′ if necessary, it suffices to assume that t′(Xα1) = ±q. If t′(Xα1) = q−2, then t′ was analyzed in
Case 3c. This occurs when q3 = 1 and t′ = tq,1, or when q3 = −1 and t′ = t−q,1. Thus the following
analysis will apply to tq,1 except if q3 = 1, and t−q,1 except for when q3 = −1. (This is tantamount to
assuming that P (t) and Z(t) each contain exactly one element for this t .)

Also, if t′(X3α1) = q−2, then P (t) also contains 3α1 + α2 and 3α1 + 2α2. This occurs when q5 = 1
and t′(Xα1 ) = q or when q5 = −1 and t′(Xα1 ) = −q. When either of these hold, t′ is the same orbit
as tq2,q2 . This case (which was specifically not addressed in Case 2 above) will be treated separately
below.

Define t = s2s1t′ so that t(Xα1 ) = q2 and t(Xα2) = ±q−3. Let Cvt and Cv w0t be the 1-dimensional
H{1}-modules spanned by vt and v wt , respectively, and given by

T1 vt = qvt, Xλvt = t
(

Xλ
)

vt,

T1 v w0t = −q−1 v w0t, and Xλv w0t = w0t
(

Xλ
)

v w0t .

Then define

M = H ⊗H{1} Cvt and N = H ⊗H{1} Cv w0t .

Proposition 29. Let t′ = t±q,1 . Assume that t′(Xα1) �= q−2 and t′(X3α1) �= q−2 . Then M and N are irreducible.
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Proof. Let t = s2s1t′ . Under the assumptions, Z(t) = {3α1 + 2α2} and P (t) = {α1}. Then dim Mgen
t =

dim Mgen
s2t = dim Mgen

s1s2t = 2. Then Theorem 5 and Theorem 3(b) show that M is irreducible. N is also
irreducible by the same reasoning. �

Under the assumption of the theorem, since M and N are not isomorphic and are each 6-
dimensional, they are the only composition factors of M(t). Note that t′(Xα1 ) = q−2 exactly if q3 = 1
or −1 and t′(Xα1) = q or −q, respectively. In this case, the central character t′ has been analyzed
above (Case 3c) Also, t′(Xα1 ) = q−4 exactly if q5 = 1 or −1 and t′(Xα1) = q or −q, respectively. In this
case, t′ is in the same orbit as tq2,q2 .

Proposition 30. If t = tq2,q2 and q2 is a fifth root of unity, then

(a) M has a 5-dimensional irreducible submodule M ′ and
(b) N has a 5-dimensional irreducible submodule N ′ .

Proof. Given these assumptions, Z(t) = {3α1 + 2α2} and P (t) = {α1,α2,3α1 + α2}. Then dim Mgen
t =

dim Mgen
s2t = dim Mgen

s1s2t = 2. Let Lq,q = Cv be the 1-dimensional H module given by

Ti v = qv, Xαi = q2 v, for i = 1,2.

Since

HomH(H ⊗H{1} Cvt, Lq,q) = HomH{1}(Cvt, Lq,q|H{1})

and

φ : Cvt → Lq,q,

vt 	→ v

is a map of H{1}-modules, there is a non-zero map θ : M → Lq,q . Then let M1 be the kernel of θ ,
which is 5-dimensional. Similarly, there is a map ρ : N → Lq−1,q−1 , where Lq−1,q−1 = Cv is given by

Ti = −q−1 v, Xαi = q−2 v, for i = 1,2.

Then if N1 is the 5-dimensional kernel of ρ , Theorem 5 and Theorem 3(b) show that M1 and N1 are
both irreducible. �

These two 5-dimensional modules, plus the 1-dimensional modules Lq,q and L−q−1,−q−1 account
for all the composition factors of M(t).

Case 3e: tq2/3,1.

If α2 ∈ Z(t) and 3α1 + α2 ∈ P (t), then 3α1 + 2α2 ∈ P (t) as well. If t(X3α1+α2 ) = q−2, then
w0t(Xα2 ) = 1 and w0t(X3α1+α2 ) = q2, so by replacing t with w0t if necessary, assume that
t(Xα1 )3 = q2. If α1 ∈ P (t), then this weight was analyzed in Case 3c, and if 2α1 + α2 ∈ P (t), then
this weight was analyzed in Case 3d.

Then we assume Z(t) = {α2} and P (t) = {3α1 + α2,3α1 + 2α2}. Let t′ = s1t so that Z(t′) = {3α1 +
α2} and P (t′) = {α2,3α1 + 2α2}. Let Cvt and Cv w0t′ be the 1-dimensional H{1}-modules spanned by
vt′ and v w0t′ , respectively, and given by

T1 vt′ = qvt′ , Xλvt′ = t′(Xλ
)

vt′ ,

T1 v w0t′ = −q−1 v w0t′ , and Xλv w0t′ = w0t′(Xλ
)

v w0t′ .
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Then define

M = H ⊗H{1} Cvt′ and N = H ⊗H{1} Cv w0t′ .

Proposition 31. Assume t = tq2/3,1 , where q2/3 is a third root of q2 not equal to q±2 or ±q±1 , and that

q2 �= ±1. Then M and N are irreducible.

Proof. Under the assumptions, Z(t′) = {3α1 + α2} and P (t) = {α2,3α1 + 2α2}, so that dim Mgen
t =

dim Mgen
s1t = 2 while dim Ms2s1 = dim Ms1s2s1t = 1. Then Theorem 5 and Theorem 3(b) show that M is

irreducible. Similarly, N is irreducible by the same reasoning, so that M and N are the only irreducible
modules with central character t . �
Proposition 32. Assume q2 = −1 and that t = tq2/3,1 , where q2/3 is a third root of q2 not equal to q±2 or

±q±1 . Then M and N each have an irreducible 2-dimensional submodule consisting of their s2s1t and s1s2s1t
weight spaces. The resulting quotients are irreducible.

Proof. Let X = {e, s1, s2s1, s1s2s1}. By a calculation analogous to that in Proposition 1(b), the gener-
alized t′ weight space of M is generated by vt′ and a vector v of the form

∑
x∈X axTx vt′ , where the

ax are in C and as1s2s1 �= 0. Then τ2(v) �= 0, since it contains a non-zero T2T1T2T1 vt term. But then
τ2τ2(v) = 0 by Theorem 2(c), so that the space M1 = Ms2t′ ⊕ Ms1s2t′ is actually a submodule of M . The
resulting quotient M/M1 is irreducible by Theorem 3. A similar argument shows the same for N . �

Note that Proposition 4 shows that the 2-dimensional composition factors of M and N are isomor-
phic, and this proposition implies that when q2 = −1, the composition factors of M and N are the
only irreducibles with this central character. Counting dimensions of the weight spaces of these irre-
ducibles shows that the final composition factor of M(t) must be 2-dimensional with weights s2t′ and
s1s2t′ , since there are no 1-dimensional modules with this central character. So the last composition
factor of M(t) must also be isomorphic to the 2-dimensional submodule of M .

Summary. We summarize the results of the previous theorems, including our choices of representa-
tives for the various central characters, in Table 4. Some notes are necessary about Table 4. An entry
of “N/A” means that the given central character is in the same orbit as a previous character for that
particular value of q, as described after Theorem 21.

If q10 = 1, we are assuming that q5 = −1, so that t±q,1 = t±q−4,1.

If q8 = 1, then only the central characters tq2,1, tq2,−q−2 , and tq2,q2 change from the generic case.
All three of these characters are now in the same orbit. Also, we assume that for the central character
tq2/3,1, we choose a cube root of q2 besides q−2.
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Table 4

Dims. of irreds.

t q generic q12 = 1 q10 = 1 q8 = 1 q6 = 1 q4 = 1 q = −1

t1,1 12 12 12 12 12 12 1,1,1,1,2,2
t1,−1 12 12 12 12 12 1,2,2 3,3,3,3
t11/3,1 12 12 12 12 N/A 12 3,3,6
t1,q2 1,1,2,3,3 1,1,2,3,3 1,1,2,3,3 1,1,2,3,3 1,1,1,1,3,3 N/A N/A
t1,±q 6,6 6,6 6,6 6,6 6,6 6,6 N/A
t1,z 12 12 12 12 12 12 6,6
tq2,1 6,6 6,6 6,6 1,1,2,3,3 6,6 N/A N/A
tq,1 6,6 6,6 1,1,5,5 6,6 6,6 6,6 N/A
t−q,1 6,6 6,6 6,6 6,6 6,6 N/A N/A
tq2/3,1 6,6 6,6 6,6 6,6 6,6 2,4,4 N/A
tz,1 12 12 12 12 12 12 6,6
t11/3,q2 3,3,3,3 N/A 3,3,3,3 N/A 3,3,3,3 N/A N/A
tq2,−q−2 2,2,4,4 N/A 2,2,4,4 2,2,4,4 N/A N/A N/A
tq2,q2 1,1,5,5 1,1,2,2,3,3 N/A N/A N/A N/A N/A
tq2,z 6,6 6,6 6,6 6,6 6,6 6,6 N/A
tz,q2 6,6 6,6 6,6 6,6 6,6 6,6 N/A
tz,w 12 12 12 12 12 12 12

If q6 = 1, the entries for the central characters t±q,1 and t1,±q only apply to the characters t−q−2,1

and t1,−q−2 (depending on whether q3 is 1 or −1). Then we note that t11/3,1 = tq±2,1, and tq−2,1 is
in the same orbit as tq2,1. Also, t1,q−2 = w0t1,q2 , and tq−2,1 = w0tq2,1. Finally, t11/3,q2 = tq±2,q2 , but
s1tq2,q2 = tq−2,q2 = s2t1,q−2 and so both are in the same orbit as t1,q2 .

When q2 = −1, a number of characters change from the general case. Now, t1,−1 = t1,q2 , which is
in the same orbit as tq2,−q−2 , tq2,q2 and tq2,1. Similarly, t11/3,q2 is in the same orbit as tq2/3,1.

When q2 = 1, Z(t) = P (t) for all t ∈ T .
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