
Linear Algebra and its Applications 369 (2003) 319–338
www.elsevier.com/locate/laa

The general trapezoidal algorithm for strongly
regular max–min matrices

Martin Gavalec
Department of Information Technologies, Faculty of Informatics and Management,

University of Hradec Králové, V. Nejedlého 573, Hradec Králové 50003, Czech Republic

Received 25 September 2001; accepted 18 December 2002

Submitted by R.A. Brualdi

Abstract

The problem of the strong regularity for square matrices over a general max–min algebra is
considered. An O(n2 log n) algorithm for recognition of the strong regularity of a given n × n

matrix is proposed. The algorithm works without any restrictions on the underlying max–min
algebra, concerning the density, or the boundedness.
© 2003 Elsevier Science Inc. All rights reserved.

AMS classification: Primary 08A72; Secondary 15A06, 15A33

Keywords: Strong regularity; Max–min algebra; Trapezoidal matrix; Fuzzy algebra

1. Introduction

In many applications, e.g. in the theory of discrete dynamic systems, fuzzy control
systems, or knowledge engineering, fuzzy relation equations play an important role,
see e.g. [10] (or [9], in a similar context). The solvability of fuzzy relation equations
was studied in [17,18], and later in many other works, see e.g. [13,15,16].

The solvability and unique solvability of linear systems in the max–min algebra,
which is one of the most important fuzzy algebras, and the related question of the
strong regularity of max–min matrices was considered in [1,4,5,7]. The relation of
the strong regularity to other types of regularity and linear independence is described
in [2,8]. A number of interesting results were found for special cases of max–min

E-mail address: martin.gavalec@uhk.cz (M. Gavalec).

0024-3795/03/$ - see front matter � 2003 Elsevier Science Inc. All rights reserved.
doi:10.1016/S0024-3795(03)00369-0

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/82650568?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

320 M. Gavalec / Linear Algebra and its Applications 369 (2003) 319–338

algebras, such as discrete, dense, bounded, or unbounded algebras. The results were
completed and generalized for general max–min algebras in [11,12].

An algorithm for checking strong regularity of matrices in the dense unbounded
max–min algebra (bottleneck algebra) was first presented in [3]. Later, similar algo-
rithms were described in [4,5,7], for other types of max–min algebra. Recognition
of the strongly regular matrices, and of the closely related trapezoidal matrices, is
important in solving the bottleneck assignment problem and the 3D axial assignment
problem, see [2,6,14].

The aim of this paper is to solve the question of recognizing the strong regularity
for square matrices in a general max–min algebra. An O(n2 log n) algorithm for
recognition of the strong regularity of a given max–min matrix is described and its
correctness is proved. The algorithm is based on the results presented in [12] and it
works without any restrictions on the underlying max–min algebra, concerning the
density, or the boundedness.

2. Strong regularity

By a max–min algebra we mean any linearly ordered set (B, �, ⊕, ⊗) together
with the binary operations of maximum and minimum, denoted by ⊕ and ⊗. The
quadruple will be abbreviated just to B, if no confusion arises. The lower (upper)
bound in B is denoted by O (by I). If B does not have the bound elements (or
one of them), then the missing bound elements are formally added to B. For any
natural n > 0, B(n) denotes the set of all n-dimensional column vectors over B,
and B(m, n) denotes the set of all matrices of the type m × n over B. For
x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn) ∈ B(n), we write x � y, if xi � yi

holds for all i ∈ N = {1, 2, . . . , n}, and we write x < y, if x � y and x /= y.
A vector x ∈ B(n) is called increasing (strictly increasing), if xi � xj holds
for every i � j (xi < xj holds for every i < j). The matrix operations over B
are defined with respect to ⊕, ⊗, formally in the same manner as the matrix
operations over any field.

A square matrix A ∈ B(n, n) in a max–min algebra B is strongly regular if there
is b ∈ B(n) such that A ⊗ x = b is a uniquely solvable system of linear equations.
The strong regularity over a general max–min algebra has been studied in [12], and
its relation to the trapezoidal property was described. In this section, we present the
basic notation and results, which will be later used.

For x ∈ B, the general successor GS(x) of x is defined by

GS(x) := max{y ∈ B; x � y ∧ ¬(∃z)x < z < y}.
Clearly, if x is equal to the greatest element I ∈ B, then GS(x) = GS(I) = I . If
x < I , then the set Sx = {y ∈ B; y > x} is non-empty. If Sx has the least element
y, then GS(x) = y, otherwise GS(x) = x. Thus, GS(x) is always well-defined. It is
easy to verify that

M. Gavalec / Linear Algebra and its Applications 369 (2003) 319–338 321

GS(x ⊕ y) = GS(x) ⊕ GS(y)

holds true for any x, y ∈ B. The formula will be helpful in Section 4.
In the special case when the max–min algebra B is discrete, the above definition

of general successor gives the same notion as in [4]. If B is dense, then GS(x) = x

for every x ∈ B. The above definition applies also in the case when B is neither
discrete nor dense. We say that x ∈ B is an upper density point in B, if GS(x) =
x < I .

The general successor of a vector x ∈ B(n) is a vector y = GS(x) ∈ B(n) with
yi = GS(xi), for all i ∈ N . If the vector x ∈ B(n) is increasing, then GS(x) is in-
creasing as well. However, if x ∈ B(n) is strictly increasing, then GS(x) need not be
strictly increasing, as we can see in the following example.

Example 1. Let us consider the max–min algebra

B = {0, 1, 2, 6, 7, 8} ∪ (3, 5〉 ∪
{

6 + 1

2n
; n = 1, 2, 3, . . .

}

Algebra B is bounded by elements O = 0 and I = 8. By the above definition,
GS(x) > x for x = 0, 1, 5, 7 and for x = 6 + 2−n, n = 1, 2, 3, . . . Namely, GS(0) =
1, GS(1) = 2, GS(5) = 6, GS(7) = 8, GS(6 + 1/2) = 7, GS(6 + 1/4) = 6 + 1/2,
GS(6 + 1/8) = 6 + 1/4, . . .

For x = 2, 6, 8 and for 3 < x < 5, we have GS(x) = x. With the exception of 8,
these are the upper density points in B.

Let us put n = 5 and consider vectors u = (0, 2, 4, 5, 7)T, v = (1, 2, 6, 7, 8)T in
B(n). By definition, we get GS(u) = (1, 2, 4, 6, 8)T, GS(v) = (2, 2, 6, 8, 8)T. Al-
though both vectors u, v ∈ B(n) are strictly increasing, only the general successor
GS(u) is strictly increasing, and GS(v) is not.

For vectors x, y ∈ B(n), we say that x is strongly greater than y, and we write
x�y, when the strict inequality xi > yi is fulfilled for every i ∈ N . Further, we say
that x is almost strongly greater than y, and we write x � y when, for every i ∈ N ,
xi > yi or xi = I holds true.

For A ∈ B(n, n), the diagonal vector d(A) ∈ B(n) and the overdiagonal maxi-
mum vector a�(A) ∈ B(n) are defined by

di(A) := aii , a�

i (A) :=
i∑

k=1

⊕ n∑
j=k+1

⊕
akj .

We shall sometimes abbreviate d(A), a�(A) to d , a�, if the matrix A is clear from
the context.

322 M. Gavalec / Linear Algebra and its Applications 369 (2003) 319–338

If A ∈ B(n, n) with n � 2, then we define the overdiagonal delimiter α(A) as
the least element in the partially ordered set consisting of all vectors α ∈ B(n) with
properties

(i) α � GS(a�)

(ii) i � j ⇒ αi � αj

(iii) j < i, αj � aij ⇒ GS(αj) � αi

for all i, j ∈ N . We say that the overdiagonal delimiter α(A) is strict in A, if for
any j, k ∈ N , j /= k, the equalities αj (A) = αk(A) = I imply ajk < I . Similarly as
above, we shall sometimes use a shorter notation α, instead of α(A).

If A ∈ B(n, n) with n = 1, then we put α1(A) = O. It is easy to verify that, in
the case n � 2, the vector α computed by the following recursion

α1 := GS(a�

1),

αi := αi−1 ⊕ GS(a�

i) ⊕ max{GS(αk); k < i, αk = αi−1 � aik} for i > 1

satisfies the properties (i)–(iii) in the definition of the overdiagonal delimiter. More-
over, the recursively defined vector α is the least vector with these properties, i.e., α

is the overdiagonal delimiter α(A). Therefore, the overdiagonal delimiter is always
well-defined, by the above recursion.

We say that a matrix A ∈ B(n, n) is generally trapezoidal, if the overdiagonal
delimiter α(A) is strict in A and d(A) � α(A).

Example 2. Let B be the max–min algebra described in Example 1, and let us
consider the following matrix A ∈ B(5, 5):

A =

7 0 0 0 0
8 6 0 0 0
4 5 8 5 6.5
5 6 7 8 1
8 4 4 2 8

 .

Applying the above definitions, we get a�(A) = (0, 0, 6.5, 6.5, 6.5)T and
GS(a�(A)) = (1, 1, 7, 7, 7)T. The vector GS(a�(A)) fulfills the conditions (i) and
(ii) in the definition of the overdiagonal delimiter, but it does not satisfy the condition
(iii). When the underdiagonal elements a21 = 8 and a43 = 7 are considered, then
the condition (iii) gives α(A) = (1, 2, 7, 8, 8)T. The overdiagonal delimiter α(A) is
strict in A, and the diagonal vector d(A) = (7, 6, 8, 8, 8)T is almost strongly greater
than α(A). Therefore, the matrix A is generally trapezoidal.

For the special case of a discrete max–min algebra B, the overdiagonal delimiter
α(A) was defined in [4] (without any special name) and a generally trapezoidal
matrix in the sense of the above definition was called strongly trapezoidal. For a

M. Gavalec / Linear Algebra and its Applications 369 (2003) 319–338 323

dense algebra B, the overdiagonal delimiter is equal to the overdiagonal maximum
vector α(A) = a�(A) and our definition of a generally trapezoidal matrix coincides
with the definition of a trapezoidal matrix in a dense algebra [2,5]. Thus, the above
definition is a generalization of both cases and applies for any general case of max–
min algebra B.

Theorem 2.1 describes a close relation between generally trapezoidal matrices
and strongly regular matrices over a given max–min algebra B. For a square matrix
A ∈ B(n, n) and for permutations ϕ, ψ on N , we denote by Aϕψ ∈ B(n, n) the re-
sult of applying the permutation ϕ to the rows and the permutation ψ to the columns
of the matrix A. We say that matrices A, B are equivalent if there are permutations
ϕ, ψ with B = Aϕψ .

Theorem 2.1 [12]. Let A ∈ B(n, n). Then the following statements are equivalent

(i) A is strongly regular;
(ii) A is equivalent to a generally trapezoidal matrix, i.e. there are permutations

ϕ, ψ such that Aϕ,ψ is generally trapezoidal.

Remark 2.1. It should be emphasized, that the notion of the generalized successor
heavily depends on the max–min algebra in consideration. As a consequence, the
notions of the overdiagonal delimiter, general trapezoidality and the strong regularity
of a matrix, are also dependent on the underlying max–min algebra.

3. The general trapezoidal algorithm

Theorem 2.1 leads to a natural question: can the strong regularity of a given
square matrix over a given max–min algebra be recognized in a polynomial time?
In this section we give a positive answer to this question. Namely, we describe an
O(n2 log n) algorithm recognizing whether a given matrix A ∈ B(n, n) is strongly
regular, or not.

Analogous results were published earlier for max–min algebras with special prop-
erties. The case when B is dense and unbounded was solved in [2] for matrices of
type m × n and a connection with the strong linear independence of columns was
described there. The results of [2] were extended to the dense and bounded case
(the max–min algebra on the closed unit interval 〈0, 1〉) in [5]. An algorithm for
verifying the strong regularity of square matrices over discrete unbounded max–min
algebras was presented in [4] and for discrete bounded algebras in [7]. In this paper,
we consider the general case, i.e. we assume that B is an arbitrary max–min algebra
without any restrictions.

The algorithms mentioned above verify the strong regularity of a matrix by find-
ing permutations of rows and columns of the given matrix so that the permuted ma-
trix contains a square submatrix, of type n × n, which is “trapezoidal” in some sense

324 M. Gavalec / Linear Algebra and its Applications 369 (2003) 319–338

(the algorithms are called trapezoidal, too). The notion of the trapezoidality is mod-
ified according to the special properties of the algebra B.

The basic idea of all the trapezoidal algorithms is the same: chose one or
several suitable entries in the given matrix, shift the corresponding rows and
columns to the first positions and repeat the process with the reduced matrix
without the chosen rows and columns. If this procedure can be continued for every
obtained matrix, then at the end the algorithm gives a permuted matrix in a
trapezoidal form. If no suitable entry can be found at some level of the recursion,
then the algorithm stops with a negative result. Our version of the trapezoidal
algorithm uses a generalization of the same basic idea, allowing to handle the
problem over any possible max–min algebra.

The notion of the overdiagonal delimiter α(A) defined in Section 2 will be gener-
alized by adding a parameter. Let e ∈ B, A ∈ B(n, n). If n � 2, then the e-overdia-
gonal delimiter of A, notation α = α(A, e), is defined by the following recursion

α1 := GS(e ⊕ a�

1(A)),

αi := αi−1 ⊕ GS(a�

i (A)) ⊕ max{GS(αk); k < i, αk = αi−1 � aik}
for i > 1.

If n = 1, then we set α1(A, e) = e.
We say that the e-overdiagonal delimiter α(A, e) is strict in A, if for any j, k ∈ N ,

j /= k, the equalities αj (A, e) = αk(A, e) = I imply ajk < I . We say that a ma-
trix A ∈ B(n, n) is e-generally trapezoidal (e-GT for short), if the e-overdiagonal
delimiter α(A, e) is strict in A and d(A) � α(A, e).

Example 3. We consider the max–min algebra B, described in Example 1, and the
matrix A ∈ B(n, n) with n = 5, described in Example 2. For e = 4, we compute the
e-overdiagonal delimiter α(A, e) = α. We get, by definition,

α1 = GS(e ⊕ a�

1(A)) = GS(4 ⊕ 0) = GS(4) = 4,

α2 = α1 ⊕ GS(a�

2(A)) ⊕ max{GS(αk); k < 2, αk = α1 � a2k}
= 4 ⊕ GS(0) ⊕ max{GS(αk); k = 1} = 4 ⊕ 1 ⊕ 4 = 4,

α3 = α2 ⊕ GS(a�

3(A)) ⊕ max{GS(αk); k < 3, αk = α2 � a3k}
= 4 ⊕ GS(6.5) ⊕ max{GS(αk); k = 1, 2} = 4 ⊕ 7 ⊕ max{4, 4} = 7,

α4 = α3 ⊕ GS(a�

4(A)) ⊕ max{GS(αk); k < 4, αk = α3 � a4k}
= 7 ⊕ GS(6.5) ⊕ max{GS(αk); k = 3} = 7 ⊕ 7 ⊕ 8 = 8,

α5 = α4 ⊕ GS(a�

5(A)) ⊕ max{GS(αk); k < 5, αk = α4 � a5k}
= 8 ⊕ GS(6.5) ⊕ max ∅ = 8 ⊕ 7 ⊕ 0 = 8.

Thus, for e = 4, the 4-overdiagonal delimiter is α(A, 4) = (4, 4, 7, 8, 8). The de-
limiter α(A, 4) is strict in A and d(A) = (7, 6, 8, 8, 8) � (4, 4, 7, 8, 8) = α(A, 4),
therefore A is 4-generally trapezoidal (4-GT). It can easily be verified in a similar
way, that A is e-GT for every e ∈ B, e < 5, but A is not e-GT for e � 5.

M. Gavalec / Linear Algebra and its Applications 369 (2003) 319–338 325

The following notation was introduced in [4]. Let A ∈ B(n, n), n � 2. For i ∈ N ,
we denote

Mi(A) :=
n∑

j=1

⊕
aij and mi(A) :=

∑
k /=j

⊕
aik,

where j is one of the indices satisfying aij = Mi(A). Further, we denote

U(A) := {i ∈ N; mi(A) < Mi(A)},
and we put

µ(A) := min{mi(A); i ∈ U(A)}.

Remark 3.1. Mi(A) is the greatest and mi(A) is the second greatest value in row
i. Value µ(A) is the minimum of all second greatest values in the rows containing
unique maximum entry. Clearly, µ(A) = I if and only if U(A) = ∅, by definition of
the minimum of an empty set.

Remark 3.2. It is clear that, for a given A ∈ B(n, n) with n � 2 and e � µ(A), A

is generally trapezoidal if and only if A is e-GT. Similarly, for n � 2 and e � µ(A),
the matrix A is e-GT if and only if A is µ(A)-GT. For n = 1, the value µ(A) is not
defined, and A is e-GT if and only if a11 > e or a11 = I .

For e ∈ B, A ∈ B(n, n), n � 2, we define

R(A, e) := {i ∈ U(A); mi(A) � e},
C(A, e) := {j ∈ N; (∃i ∈ R(A, e))aij = Mi(A)}.

Remark 3.3. R(A, e) is the set of all the rows containing unique maximum entry,
for which the second greatest entry does not exceed the value e. C(A, e) is the set of
all the columns containing the maximum entries in rows of R(A, e).

Remark 3.4. It is easy to see that |C(A, e)| � |R(A, e)|. Moreover, if µ(A) � e <

I , then R(A, e) /= ∅.

Let e ∈ B, A ∈ B(n, n), n � 2 and µ(A) � e < I . We say that A is e-reducible,
if

(i) |C(A, e)| = |R(A, e)|
(ii) Mi(A) > GS(e) for every i ∈ R(A, e).

We say that A is in an e-reduced diagonal form, if A is e-reducible and all entries
Mi(A) with i ∈ R(A, e) are placed in the first |R(A, e)| diagonal positions.

326 M. Gavalec / Linear Algebra and its Applications 369 (2003) 319–338

If A is e-reducible and if |R(A, e)| < n, then the matrix A′ which remains after
deleting all the rows with indices in R(A, e) and all the columns with indices in
C(A, e), is called the e-reduction of A.

Example 4. Let us consider the same max–min algebra B and the matrix A ∈
B(n, n) with n = 5, as in Example 2. We compute the vectors M(A), m(A), the set
U(A), and the value µ(A). The vector M(A) contains the greatest row values, and
m(A) contains the second greatest row values, i.e. M(A) = (7, 8, 8, 8, 8), m(A) =
(0, 6, 6.5, 7, 8). The set of indices with unique row maximum is U(A) = {1, 2, 3, 4},
and the minimum of the second greatest row values, which are not the greatest ones,
is µ(A) = min{0, 6, 6.5, 7} = 0.

We shall demonstrate the e-reducibility of the matrix A on the values e = 5
and e = 7. For e = 5, we get R(A, 5) = {1} and C(A, 5) = {1}. Thus, |R(A, 5)| =
|C(A, 5)|, and M1(A) = 7 > GS(5) = 6, which means that the matrix A is 5-reduc-
ible. Moreover, A is in an 5-reduced diagonal form. The corresponding e-reduction
of A is the matrix

A′ =

6 0 0 0
5 8 5 6.5
6 7 8 1
4 4 2 8

obtained from A by deleting the first row and the first column.
For e = 7, we get R(A, 7) = {1, 2, 3, 4} and C(A, 7) = {1, 3, 4} with |R(A, 7)| /=

|C(A, 7)|. Therefore, the matrix A is not 7-reducible.

The following three lemmas form a theoretical background for our trapezoidal
algorithm.

Lemma 3.1. Let e ∈ B, GS(e) < I . Let A ∈ B(n, n) be e-GT, let n � 2 and let
i ∈ R(A, e). If the matrix A is transformed to C by shifting row i and column i to
the first positions, then the matrix C is e-GT, as well.

Proof. The proof is presented in Section 4. �

Lemma 3.2. Let e ∈ B, GS(e) < I, n � 2 and A ∈ B(n, n) be such that µ(A) �
e. Then A is equivalent to an e-GT matrix if and only if A is e-reducible and the
e-reduction A′ is equivalent to an e′-GT matrix with e′ = GS(e), or if |R(A, e)| = n.

Proof. The proof is presented in Section 4. �

Lemma 3.3. Let A ∈ B(n, n), n � 2 and GS(e) = I . Then A is equivalent to an
e-GT matrix if and only if every row and every column of A contains exactly one
value I .

M. Gavalec / Linear Algebra and its Applications 369 (2003) 319–338 327

Proof. As a direct consequence of the definition of e-general trapezoidality, a matrix
D is e-GT with GS(e) = I if and only if all diagonal elements in D are equal to I

and all other elements are less than I . �

The general trapezoidal algorithm will be first described in a simpler version,
which works in O(n3) time. Later we show that the computational complexity of the
algorithm can be reduced to O(n2 log n).
GENERAL TRAPEZOIDAL ALGORITHM—GenTrap

Input: A matrix A ∈ B(n, n).
Outputs: A Boolean variable SR with SR = true, if A is strongly regular, and

SR = false otherwise. A permuted matrix A ∈ B(n, n) which is generally trapezoi-
dal if and only if SR = true.

Step 1 (initialization). Set SR := true, e′ := O, k := n, A′ := A (the reduced ma-
trix).

Step 2 (case k = 1). If k = 1, then check whether a′
11 � e′ and a′

11 < I . If yes,
then set SR := false. Go to Step 7.

Step 3 (case k > 1). Set e′ := e′ ⊕ µ(A′).
Step 4 (subcase GS(e′) = I). If GS(e′) = I , then check whether every row and

every column of A′ contains exactly one entry I . If yes, then permute the last k rows
of the matrix A, so that the I entries of A′ will be on the diagonal. If not, then set
SR := false. Go to Step 7.

Step 5 (subcase GS(e′) < I). If GS(e′) < I , then set r := |R(A′, e′)| and check
from the definition whether A′ is e′-reducible. If yes, then permute the last k rows and
columns of the matrix A, so that A′ will be transformed to an e′-reduced diagonal
form, and set k := k − r . If not, then set SR := false and go to Step 7.

Step 6 (main loop condition). If k > 0, then set A′ to the e′-reduction of A′, set
e′ := GS(e′) and go to Step 2.

Step 7. Stop.
The correctness of the algorithm GenTrap will be first proved in a more general

formulation. For e ∈ B, we denote by e-GenTrap such a modification of the algo-
rithm GenTrap, in which the Step 1 sets the initial value e′ := e, instead of e′ := O.
Further, the properties of the outputs of e-GenTrap are modified, as described in
detail in the following theorem. Clearly, GenTrap is the same as O-GenTrap.

Theorem 3.4. For any e ∈ B, the algorithm e-GenTrap is correct in the sense that,
for any input matrix A ∈ B(n, n), e-GenTrap stops and gives the output SR = true
if and only if the input matrix A is equivalent to some e-GT matrix. In the positive
case, the output matrix A is e-GT and it is equivalent to the input matrix.

Proof. The assertion of the theorem will be proved by induction on n.
Induction step n = 1.
By the definition of α(A, e), we have α1(A, e) = e. Therefore, the matrix A is

e-GT if and only if a11 > e, or if a11 = I . As, for n = 1, the only permutation of the

328 M. Gavalec / Linear Algebra and its Applications 369 (2003) 319–338

index set N = {1} is the identical one, the algorithm has to give the answer false if
and only if a11 � e and a11 < I . This is done in Step 2 of e-GenTrap.

Induction step n − 1 → n.
We assume that n � 2 and the assertion of the theorem holds true for all input

matrices of order � n − 1. Let A ∈ B(n, n) be fixed. Then the algorithm e-GenTrap
sets e′ := e, k := n and A′ := A. By assumption n � 2, Step 2 is skipped, and in
Step 3 we get e′ := e′ ⊕ µ(A′), i.e. e′ := max(e, µ(A)). In Remark 3.2, we have
mentioned that, for e � µ(A), the matrix A is e-GT if and only if A is µ(A)-GT.
Therefore, A is e-GT if and only if it is e′-GT.

If GS(e′) = I then, by Lemma 3.3, A is equivalent to an e′-GT matrix if and
only if every row and every column of A contains exactly one entry equal to I .
The equivalent e′-GT matrix contains the entries I in the diagonal positions. The
corresponding row and column permutations are performed in Step 4, and if this
is not possible, then the variable SR is set to false. Then the algorithm stops in
Step 7.

If GS(e′) < I , then Step 4 is skipped, and Lemma 3.2 can be used, because after
Step 3 we have e′ � µ(A). By Lemma 3.2, the matrix A is equivalent to an e′-GT
matrix if and only if A is e′-reducible and its e′-reduction is equivalent to an e′′-
GT matrix with e′′ = GS(e′), or if |R(A, e′)| = n. The corresponding procedure is
described in Step 5. If A is not e′-reducible, then the variable SR is set to false
and the algorithm stops. If A is e′-reducible, then the rows and columns of A are
permuted, so that the permuted matrix will be in an e′-reduced diagonal form, i.e. all
entries Mi(A) with the row indices i ∈ R(A, e′) are placed in the first r = |R(A, e′)|
diagonal positions. Such permutations always exist, because the condition (i) from
the definition of e′-reducibility gives |C(A, e′)| = |R(A, e′)|, i.e. all the uniquely
maximal entries Mi(A) with the row indices i ∈ R(A, e′) are placed in different
columns. Moreover, by Remark 3.4 and by the assumptions µ(A) � e′, GS(e′) < I ,
we have R(A, e′) /= ∅, i.e. r � 1. After setting k := k − r , the previous value k = n

is replaced by a lower value k � n − 1.
In Step 6 we either have k = 0, r = n, or k > 0, r < n. In the case k = 0, Step 6

is skipped and the algorithm stops in Step 7 with the answer SR = true, and with the
matrix A permuted to an e′-GT form. In the case k > 0, the last k rows and the last k

columns form the e′- reduction of A, which is denoted by A′, and the algorithm goes
back to Step 2 with the variable e′ set to the new value e′′ = GS(e′).

In the rest of the proof, e′ will denote the old value e′ = max(e, µ(A)) used in
the first run of the main loop. In the second run of Step 2, the algorithm e-GenTrap
with the input value A starts the computation of the algorithm e′′-GenTrap with the
e′-reduction A′ as the input matrix of order k � n − 1. The permutations in this
computation, which should be performed on the e′-reduction A′, are performed on
the last k rows and the last k columns of the original input matrix A. Therefore, the
first n − k rows and columns of the original matrix A are not mutually permuted
(they can be changed, however, by permutations of their last k entries, but these
changes have no influence on the results of the previous computation).

M. Gavalec / Linear Algebra and its Applications 369 (2003) 319–338 329

Thus, from the beginning of the second run of the main loop, the algorithm e-Gen-
Trap with the input matrix A gives an output SR = true if and only if the algorithm
e′′-GenTrap with the input matrix A′, equal to the e′-reduction of A, gives the output
SR = true. By the induction assumption, this is equivalent to the statement that A′
is equivalent to an e′′-GT matrix with e′′ = GS(e′) and, by Lemma 3.2, it is further
equivalent to the statement that the matrix A is equivalent to an e′-GT matrix, i.e. A

is e′-GT. This holds if and only if A is e-GT, as we have mentioned at the beginning
of the proof. Thus, we have verified that the algorithm e-GenTrap gives a correct
result in all cases.

Finally, it can easily be observed, that in every return to Step 2, the value of the
variable k is lowered by at least 1. As k takes only non-negative integer values, the
algorithms e-GenTrap always stops with one of the output values k = 0, k = 1, or
with SR = false. �

Theorem 3.5. The algorithm GenTrap with an input matrix A ∈ B(n, n) stops after
at most n loops, and gives the output SR = true if and only if A is strongly regular.
In the positive case, the output matrix A is generally trapezoidal and equivalent to
the input matrix.

Proof. The assertion is a direct consequence of Theorem 2.1 and Theorem 3.4. �

The work of the algorithm GenTrap will be demonstrated by the following
example.

Example 5. Let B denote the max–min algebra B described in Example 1 and let
us take the matrix A ∈ B(n, n), with n = 5, as an input matrix

A =

4 8 8 4 2
0 8 0 6 0
8 4 6.5 5 5
0 7 0 0 0
7 5 1 6 8

 .

Step 1. The algorithm GenTrap with the input A sets SR := true, e′ := O = 0,
k := n = 5, A′ := A.

Step 2. The step is skipped, because k /= 1.
Step 3. It is set e′ := e′ ⊕ µ(A′) = 0 ⊕ 0 = 0.
Step 4. The step is skipped, because GS(e′) = GS(0) = 1 /= I = 8.
Step 5. The algorithm has to verify, whether A′ is e′-reducible. First, the sets

R(A′, e′) = {4} and C(A′, e′) = {2} are computed, and r := |R(A′, e′)| = 1 is found.
As |R(A′, e′)| = |C(A′, e′)| and M4(A

′) = 7 > GS(e′) holds true, the matrix A′ is
e′-reducible. By shifting the row 4 and the column 2 to the first positions in A, the
matrix A = A′ is transformed to the form

330 M. Gavalec / Linear Algebra and its Applications 369 (2003) 319–338

A :=

7 0 0 0 0
8 4 8 4 2
8 0 0 6 0
4 8 6.5 5 5
5 7 1 6 8

and a new value k := k − r = 5 − 1 = 4 is assigned.
Step 6. As k > 0, the variable A′ is set to the e′-reduction of A′ and e′ := GS(e′) =

GS(0) = 1. Thus, we get

A′ :=

4 8 4 2
0 0 6 0
8 6.5 5 5
7 1 6 8

 .

Then the algorithm begins the second run of the main loop by returning back to
Step 2, with variables e′, k and A′ set to new values.

In the second run, Step 2 is skipped again, because k = 4 /= 1. In Step 3, the
algorithm sets e′ := e′ ⊕ µ(A′) = 1 ⊕ 0 = 1. Step 4 is skipped, because GS(e′) =
GS(1) = 2 /= I = 8.

Step 5 (second run). The algorithm verifies, whether A′ is 1-reducible. The sets
R(A′, e′) = {2}andC(A′, e′) = {3}are found, and the variable r is set to |R(A′, e′)| =
1. As |R(A′, e′)| = |C(A′, e′)| and M2(A

′) = 6 > GS(1) = 2, the matrix A′ is
1-reducible. By permuting the rows and the columns of the matrix A in such a way
that the row 2 and the column 3 in A′ are shifted to the first positions in A′, we get

A :=

7 0 0 0 0
8 6 0 0 0
8 4 4 8 2
4 5 8 6.5 5
5 6 7 1 8

 , A′ :=

6 0 0 0
4 4 8 2
5 8 6.5 5
6 7 1 8

 .

Then a new value k := k − r = 4 − 1 = 3 is assigned.
Step 6 (second run). As k > 0, the variable A′ is set to the 1-reduction of A′.

Therefore, the third run of the main loop begins with values k = 3, e′ := GS(1) = 2
and

A′ :=
[4 8 2

8 6.5 5
7 1 8

]
.

In the third run, similarly as above, Step 2 is skipped, then the algorithm sets
e′ := e′ ⊕ µ(A′) = 2 ⊕ 4 = 4 in Step 3 and it skips Step 4.

Step 5 (third run). Verifying, whether A′ is 4-reducible, the algorithm finds R(A′,
e′) = {1} and C(A′, e′) = {2}, and assigns the value |R(A′, e′)| = 1 to the variable r .

M. Gavalec / Linear Algebra and its Applications 369 (2003) 319–338 331

The formulas |R(A′, e′)| = |C(A′, e′)| and M1(A
′) = 8 > GS(4) = 4 imply that the

matrix A′ is 4-reducible. The corresponding permutation of the last three columns of
the matrix A shifts the column 2 in A′ to the first position in A′, with the result

A :=

7 0 0 0 0
8 6 0 0 0
8 4 8 4 2
4 5 6.5 8 5
5 6 1 7 8

 , A′ :=

[8 4 2
6.5 8 5
1 7 8

]

and k := k − r = 3 − 1 = 2 is set.
Step 6 (third run). The variable k is still positive, therefore A′ is set to the 4-

reduction of A′. The fourth run of the main loop begins with values k = 2, e′ :=
GS(4) = 4 and

A′ :=
[

8 5
7 8

]
.

In the fourth run, the algorithm skips Step 2, sets e′ := e′ ⊕ µ(A′) = 4 ⊕ 5 = 5
in Step 3 and skips Step 4.

Step 5 (fourth run). The algorithm finds R(A′, e′) = {1} and C(A′, e′) = {1}, and
sets r = |R(A′, e′)| = 1. By |R(A′, e′)| = |C(A′, e′)| and M1(A

′) = 8 > GS(5) =
6, we see that the matrix A′ is 5-reducible. Moreover, A′ is in an 5-reduced form,
therefore, no permutations of rows and columns of A are necessary, and the algorithm
only sets k := k − r = 2 − 1 = 1.

Step 6 (fourth run). The variable A′ is set to the 5-reduction of A′. Thus, for the
fifth run of the main loop we have the values k = 1, e′ := GS(5) = 6 and A′ := [8].

In the fifth run, Step 2 is used, because k = 1. As a′
11 = 8 = I , the value SR =

true remains unchanged and the algorithm goes to Step 7, where it stops.
The result of the computation shows that the input matrix is strongly regular and

the permuted output matrix A is generally trapezoidal.

Remark 3.5. We may notice that, besides the output matrix computed in Example
5, there exist further matrices which are generally trapezoidal and are equivalent to
the input matrix. One of them is, e.g., the matrix considered in Example 2. Clearly,
all such matrices must be mutually equivalent.

Theorem 3.6. There is an O(n2 log n) algorithm which, for every matrix A ∈
B(n, n), recognizes whether A is strongly regular, or not. Moreover, if the input
matrix A is strongly regular, the algorithm finds a matrix which is generally trape-
zoidal and is equivalent to the matrix A.

Proof. We shall use the method described in [2] and used also in [4,7]. Taking
Theorem 3.5 as a base, we modify the work of the algorithm GenTrap so that it
avoids the repeated searches for the maximum entry and the second greatest entry

332 M. Gavalec / Linear Algebra and its Applications 369 (2003) 319–338

in every row of the reduced matrix. This can be simply done by arranging first the
elements in each row of the input matrix in a non-increasing order, so that the first
two greatest elements are always situated at the beginning of the row. The arranging
of n rows takes O(n2 log n) time. The orderings of all rows are stored separately
using pointers, and the input matrix A will not be changed. The permuted matrix is
stored in the form of the actual row and column permutation.

The ordering of rows will be updated at the end of the main loop, according to the
shifting of the rows and columns of the reduced matrix. The updating in each loop is
made, in every row of the reduced matrix, by switching the pointer that corresponds
to the column containing the diagonal element, which is left out of the reduced ma-
trix. These are O(n) operations for each diagonal element, i.e. O(n2) operations in
total.

The initialization takes a constant time, and the remaining operations in each loop
can be performed in O(n) time, i.e. in O(n2) time, for all loops. Thus, the total
computational complexity of the modified GenTrap is O(n2 log n). �

Remark 3.6. When the max–min algebra B is discrete, i.e. when every element
x ∈ B, x < I has a successor S(x) > x, then we can use the algorithm STRTP de-
scribed in [4] (for unbounded B), or StrTrp in [7] (if B is bounded). However, correct
results require a slight modification of these algorithms to ensure proper processing
of the case when the reduced matrix has order 1.

4. Proofs of two lemmas

The rather technical proofs of two key lemmas are presented in this section.

Proof of Lemma 3.1. Let e ∈ B, GS(e) < I . Let A ∈ B(n, n) be e-GT, let n � 2
and let i ∈ R(A, e). We assume that the matrix A is transformed to C by shifting row
i and column i to the first positions. Our aim is to prove that the matrix C is e-GT,
too.

The case i = 1 is trivial. For the rest of the proof, let i ∈ N be fixed with 1 < i �
n, mi(A) < Mi(A) and mi(A) � e.

It is evident that values Mj(A) and mj(A) are not influenced by column permuta-
tions. For example, we have M1(C) = Mi(A) and m1(C) = mi(A). The proof will
be presented in five claims.

Claim 1. α1(C, e) = GS(e).

Proof. By assumption, A is e-GT, which implies that di(A) = I � Mi(A) > mi(A),
or di(A) > αi(A, e) � GS(e) � mi(A). In both cases we have di(A) > mi(A), i.e.
d1(C) > m1(C). Therefore, a�

1(C) = m1(C), which implies α1(C, e) = GS(e ⊕
a�

1(C)) = GS(e). �

M. Gavalec / Linear Algebra and its Applications 369 (2003) 319–338 333

Claim 2. αj (C, e) � αj−1(A, e) for all j, 1 < j � i.

Proof. We can easily see that inequalities

a�

j (C) � mi(A) ⊕ a�

j−1(A), (4.1)

GS(mi(A)) � GS(e) � αj−1(C, e) (4.2)

hold true for all j , 1 < j � i. Claim will be proved by induction on j .
Induction step j = 2.

We consider two cases:

(a) c21 < α1(C, e), i.e. a1i < GS(e), and
(b) c21 � α1(C, e), i.e. a1i � GS(e).

In case (a) we have α2(C, e) = α1(C, e) ⊕ GS(a�

2(C)) � GS(e) ⊕ GS(mi(A)) ⊕
GS(a�

1(A)) = α1(A, e) ⊕ GS(mi(A)) = α1(A, e), in view of (4.1) and (4.2).
In case (b), the inequality a1i � GS(e) implies a�

1(A) � a1i � GS(e) � e, i.e.
GS(a�

1(A)) � GS(2)(e) � GS(e). Thus, using Claim 1 and (4.1), we have α2(C,

e) = GS(α1(C, e)) ⊕ GS(a�

2(C)) � GS(2)(e) ⊕ GS(mi(A)) ⊕ GS(a�

1(A)) = GS(a�

1
(A)) = GS(e) ⊕ GS(a�

1(A)) = α1(A, e).
Induction step j − 1 → j .

Let 2 < j � i and let us assume that

αk(C, e) � αk−1(A, e) (4.3)

holds true for all k with 1 < k < j . We consider two cases:

(a) cjk < αk(C, e) for all k < j with αk(C, e) = αj−1(C, e), and
(b) cjk � αk(C, e) = αj−1(C, e) for some k with k < j .

By (4.1) and (4.2), the inequalities

GS(a�

j (C)) � GS(mi(A)) ⊕ GS(a�

j−1(A)) � αj−1(A, e) (4.4)

hold in both cases.
In case (a) we have αj (C, e) = αj−1(C, e) ⊕ GS(a�

j (C)) � αj−2(A, e) ⊕
αj−1(A, e) = αj−1(A, e), by (4.3) and (4.4).

In case (b) we have αj (C, e) = GS(αj−1(C, e)) ⊕ GS(a�

j (C)). In view of (4.4),
it remains to show that

GS(αj−1(C, e)) � αj−1(A, e). (4.5)

Due to the assumption (4.3), αj−1(C, e) � αj−2(A, e) � αj−1(A, e) holds true.
If at least one of the inequalities is strict, then (4.5) is fulfilled. Thus, we may assume
that αj−1(C, e) = αj−2(A, e) = αj−1(A, e). We shall consider two subcases: (b1)
k = 1, and (b2) 1 < k < j .

334 M. Gavalec / Linear Algebra and its Applications 369 (2003) 319–338

In subcase (b1) we use inequalities a�

j−1(A) � aj−1i = cj1 � α1(C, e) =
αj−1(C, e), which imply GS(αj−1(C, e)) � GS(a�

j−1(A)) � αj−1(A, e).
In subcase (b2) we have aj−1k−1 = cjk � αk(C, e) = αj−1(C, e) = αj−2(A, e) �

αk−1(A, e) � αk(C, e), which implies aj−1k−1 � αk−1(A, e) = αj−2(A, e).
The definition of the diagonal delimiter α(A, e) gives αj−1(A, e) =

GS(αj−2(A, e)) ⊕ GS(a�

j−1(A)). Using (4.3) we get GS(αj−1(C, e)) = GS(αk(C,

e)) � GS(αk−1(A, e)) = GS(αj−2(A, e)) � αj−1(A, e). �

Claim 3. αj (C, e) � αj (A, e) for all j, i � j � n.

Proof. Similarly as in the proof of Claim 2, we can easily see that inequalities

a�

j (C) � mi(A) ⊕ a�

j (A), (4.6)

GS(mi(A)) � GS(e) � αj (A, e) (4.7)

hold true for all j , i � j � n. Claim will be proved by induction on j .
Induction step j = i.

At this initial step, the assertion is a consequence of Claim 2.
Induction step j − 1 → j .

Let i < j � n and let us assume that

αk(C, e) � αk(A, e) (4.8)

holds true for all k with i � k < j . We shall consider two cases:

(a) cjk < αk(C, e) for all k < j with αk(C, e) = αj−1(C, e), and
(b) cjk � αk(C, e) = αj−1(C, e) for some k < j .

By (4.6) and (4.7), the inequalities

GS(a�

j (C)) � GS(mi(A)) ⊕ GS(a�

j (A)) � αj (A, e) (4.9)

hold in both cases.
In case (a) we have αj (C, e) = αj−1(C, e) ⊕ GS(a�

j (C)) � αj−1(A, e) ⊕ αj

(A, e) = αj (A, e), by (4.8) and (4.9).
In case (b) we have αj (C, e) = GS(αj−1(C, e)) ⊕ GS(a�

j (C)). By (4.9), it is suf-
ficient to prove that

GS(αj−1(C, e)) � αj (A, e). (4.10)

In view of the assumption (4.8), αj−1(C, e) � αj−1(A, e) � αj (A, e) holds true.
If at least one of the inequalities is strict, then (4.10) is fulfilled. Thus, we may
assume that αj−1(C, e) = αj−1(A, e) = αj (A, e). We shall consider three subcases:
(b1) k = 1, (b2) 1 < k � i, and (b3) i < k < j .

In subcase (b1) we have aji = cj1 � α1(C, e) = αj−1(C, e) = αj−1(A, e) �
GS(e) = α1(C, e), which implies αj−1(A, e) = GS(e) and αj−1(A, e) � αi(A, e) �
GS(e) = αj−1(A, e). Therefore, aji � αi(A, e) = αj−1(A, e).

M. Gavalec / Linear Algebra and its Applications 369 (2003) 319–338 335

In subcase (b2) we have ajk−1 = cjk � αk(C, e) = αj−1(C, e) = αj−1(A, e) �
αk−1(A, e) � αk(C, e), which implies ajk−1 � αk−1(A, e) = αj−1(A, e).

Finally, in subcase (b3) we have ajk = cjk � αk(C, e) = αj−1(C, e) = αj−1(A,

e) � αk(A, e) � αk(C, e), which implies ajk � αk(A, e) = αj−1(A, e).
In all three subcases the definition of diagonal delimiter α(A, e) gives αj (A, e) =

GS(αj−1(A, e)) ⊕ GS(a�

j (A)). Using (4.8) we get GS(αj−1(C, e)) � GS(αj−1(A,

e)) � αj (A, e). �

Claim 4. d(C) � α(C, e).

Proof. If d1(C) < I , then we have d1(C) = di(A) > αi(A, e) � GS(e) = α1(C, e),
using Claim 1. Further, if dj (C) < I , for some j with 1 < j � i, then we have
dj (C) = dj−1(A) > αj−1(A, e) � αj (C, e), using Claim 2. Finally, if dj (C) < I ,
for some j with i < j � n, then dj (C) = dj (A) > αj (A, e) � αj (C, e) holds true,
by Claim 3. �

Claim 5. α(C, e) is strict in C.

Proof. We shall show that for any j, k ∈N , j <k, the equalities αj (C, e) = αk(C,

e) = I imply cjk <I and ckj < I . If j = 1, then we have GS(e) = α1(C, e) = I ,
which is in contradiction with the assumption GS(e) < I .

We shall consider three cases:

(a) 1 < j < k � i,
(b) 1 < j � i < k, and
(c) i < j < k.

In case (a) we have αj (C, e) = αj−1(A, e) = I and αk(C, e) = αk−1(A, e) =
I , by Claim 2. As α(A, e) is strict in A, we get cjk = aj−1k−1 < I and ckj =
ak−1j−1 < I .

In case (b) we have αj (C, e) = αj−1(A, e) = I and αk(C, e) = αk(A, e) = I , by
Claims 2 and 3. Thus, we get cjk = aj−1k < I and ckj = akj−1 < I .

Finally, in case (c) we get αj (C, e) = αj (A, e) = I and αk(C, e) = αk(A, e) =
I , by Claim 3. Similarly as above, we get cjk = ajk < I and ckj = akj < I . �

Proof of Lemma 3.2. Let e ∈B, GS(e) < I , let n � 2. Let A ∈ B(n, n) with µ(A) �
e. We have to prove that the matrix A is equivalent to an e-GT matrix if and only
if A is e-reducible and the e-reduction A′ is equivalent to an e′-GT matrix with
e′ = GS(e), or if |R(A, e)| = n.

Let A be equivalent to an e-GT matrix. As row and column permutations pre-
serve properties (i), (ii) in the definition of e-reducibility, we may assume without
any loss of generality, that A itself is e-GT. By definition of the e-overdiagonal
delimiter α(A, e), we have αi(A, e) � GS(e) for every i, 1 � i � n. This implies

336 M. Gavalec / Linear Algebra and its Applications 369 (2003) 319–338

di(A) > αi(A, e) � GS(e), or di(A) = I > GS(e), i.e. di(A) > GS(e), for every
i, 1 � i � n. Then mi(A) � GS(e) < di(A) holds true for all i ∈ R(A, e). Due to
the strict inequality mi(A) < di(A) and the fact that mi(A) is the second greatest
value in row i, the diagonal element di(A) must be equal to Mi(A). Therefore, every
i ∈ R(A, e) belongs to C(A, e), which implies R(A, e) ⊆ C(A, e) and |R(A, e)| �
|C(A, e)|. On the other hand, the converse inequality |C(A, e)| � |R(A, e)| holds by
Remark 3.4. Thus, |C(A, e)| = |R(A, e)| holds true. We have shown that the matrix
A is e-reducible.

To complete the proof of the ‘only if’ implication, it remains to prove that ei-
ther |R(A, e)| = n, or the e-reduction A′ is equivalent to an e′-GT matrix with
e′ = GS(e). By assumption µ(A) � e < I , the set R(A, e) is non-empty, i.e. r :=
|R(A, e)| � 1. We have shown above that di(A) = Mi(A) holds for every i ∈ R(A,

e). By Lemma 3.1, the elements of R(A, e) can be shifted to first r positions, by
simultaneous permutations on rows and columns of the matrix A, while preserving
the property of being e-GT. In other words, there is a permutation ϕ in N such that
the matrix D := Aϕϕ is e-GT, R(D, e) = {1, 2, . . . , r} and ϕ preserves the ordering
of rows and columns with indices not belonging to R(A, e). Then the matrix D has
an e-reduced diagonal form. If r = n, then |R(A, e) = n|. If r < n, then the matrix
D can be written in a block form

D =
[

D11 D12
D21 D22

]
,

where D11 ∈ B(r, r), and the submatrix D22 is equal to the e-reduction A′ of the
matrix A. Now, it remains only to show that D22 is equivalent to an e′-GT matrix
with e′ = GS(e). In fact, we shall even show that the matrix D22 itself is e′-GT (it is
a consequence of our assumption that A itself is e-GT).

Case 1. If αr(D, e) > e′, then αr(D, e) � GS(e′), and αi(D, e) � GS(e′) holds
for every i, r + 1 � i � n. Thus, D22 is an e′-GT matrix.

Case 2. If αr(D, e) = e′, then α1(D, e) = α2(D, e) = · · · = αr(D, e) = e′. By
assumption on D, we have mr+1(D) > e, i.e. Mr+1(D) � mr+1(D) � e′. Let us
choose k, l ∈ N , k /= l, with dr+1k = Mr+1(D), dr+1l = mr+1(D). If max(k, l) >

r + 1, then a�

r+1(D) � e′, which implies αr+1(D, e) � GS(a�

r+1(D)) � GS(e′). On
the other hand, if h := min(k, l) < r + 1, then we have dr+1h � αh(D, e) = e′ and,
by definition of the e-overdiagonal delimiter α(D, e), we get αr+1(D, e) �
GS(αr(D, e)) = GS(e′). Thus, for any choice of k, l we have αr+1(D, e) � GS(e′),
which implies αi(D, e) � GS(e′) for every i, r + 1 � i � n. Therefore, D22 is an
e′-GT matrix.

For the proof of the converse implication, let us assume first that the matrix A is
e-reducible and its e-reduction A′ is equivalent to an e′-GT matrix of order n − r

with e′ = GS(e) and r := |R(A, e)| < n. Applying Lemma 3.1 at most r times,
we can show that A is equivalent to a matrix D in an e-reduced diagonal form,
containing A′ as a right-lower corner submatrix D22. From the definition of the e-
reducibility and from the definition of R(A, e) we have di(D) = Mi(D) > GS(e) �

M. Gavalec / Linear Algebra and its Applications 369 (2003) 319–338 337

maxj�i mj (A) � a�

i (D). Then the definition of the parametrized overdiagonal de-
limiter gives αi(D, e) = GS(e) = e′, for every i = 1, 2, . . . , r .

Further, the submatrix D22 = A′ is equivalent to an e′-GT matrix of order n − r .
Therefore, the matrix D can be transformed, by suitable permutations on the last
n − r rows and columns, to a matrix C in an e-reduced diagonal form, in which the
right-lower corner submatrix C22 of order n − r is e′-GT. Then, for every
i = 1, 2, . . . , r , the inequality di(C) = di(D) > GS(e) = e′ = αi(D, e) = αi(C, e)

holds true, and, for i = r + 1, . . . , n, either the inequality di(C) = di−r (C22) >

αi−r (C22, e
′) = αi(C, e), or the equality di(C) = di−r (C22) = I is fulfilled. The

above equality αi−r (C22, e
′) = αi(C, e) follows directly from the definition of

the parametrized overdiagonal delimiter and from the equalities α1(C, e) = α2(C,

e) = · · · = αr(C, e) = e′ (in some cases, the inequality is a strict one, e.g. if α1(C22,

e′) = GS(e′) > e′ and αr+1(C, e) = αr(C, e) = e′). Thus, C is an e-GT matrix
equivalent to A.

On the other hand, let us assume that the matrix A is e-reducible and |R(A, e)| =
n. Similarly as above, A is equivalent to an e-reduced diagonal matrix D with
|R(D, e)| = n. Then we have di(D) = Mi(D) > GS(e) = αi(D, e) for every i ∈
N , i.e. D is an e-GT matrix equivalent to A. �

Acknowledgements

This work was supported by Slovak Scientific Grant Agency, # 1/6055/99. I
express my gratitude to the referee for his valuable comments which helped to
improve the presentation of this paper.

References

[1] P. Butkovič, Strong regularity of matrices––a survey of results, Discrete Appl. Math. 48 (1994)
45–68.

[2] P. Butkovič, K. Cechlárová, P. Szabó, Strong linear independence in bottleneck algebra, Linear Al-
gebra Appl. 94 (1987) 133–155.

[3] P. Butkovič, P. Szabó, An algorithm for checking strong regularity of matrices in the bottleneck alge-
bra, in: Proceedings of the International Symposium on Numerical Analysis, Polytechnic University
of Madrid, Spain, 1985.

[4] K. Cechlárová, Strong regularity of matrices in a discrete bottleneck algebra, Linear Algebra Appl.
128 (1990) 35–50.

[5] K. Cechlárová, Unique solvability of max–min fuzzy equations and strong regularity of matrices
over fuzzy algebra, Fuzzy Sets and Systems 75 (1995) 165–177.

[6] K. Cechlárová, Trapezoidal matrices and the bottleneck assignment problem, Discrete Appl. Math.
58 (1995) 111–116.

[7] K. Cechlárová, K. Kolesár, Strong regularity of matrices in a discrete bounded bottleneck algebra,
Linear Algebra Appl. 256 (1997) 141–152.

338 M. Gavalec / Linear Algebra and its Applications 369 (2003) 319–338

[8] K. Cechlárová, J. Plávka, Linear independence in bottleneck algebras, Fuzzy Sets and Systems 77
(1996) 337–348.

[9] R.A. Cuninghame-Green, Minimax algebra, Lecture Notes in Economics and Mathematical Sys-
tems, Springer-Verlag, Berlin, 1979.

[10] A. Di Nola, S. Sessa, W. Pedrycz, E. Sanchez, Fuzzy Relation Equations and Their Applications to
Knowledge Engineering, Kluwer, Dordrecht, 1989.

[11] M. Gavalec, Solvability and unique solvability of max–min fuzzy equations, Fuzzy Sets and Systems
124 (2001) 385–393.

[12] M. Gavalec, J. Plávka, Strong regularity of matrices in general max–min algebra, Linear Algebra
Appl., to appear.

[13] S. Gottwald, Fuzzy Sets and Fuzzy Logic, Vieweg Verlag, Braunschweig, 1993.
[14] B. Klinz, G.J. Woeginger, A new efficiently solvable special case of the three-dimensional axial bot-

tleneck assignment problem, in: Combinatorics and Computer Science, Lecture Notes in Computer
Science, Springer, Berlin, 1996 (Brest, 1995, pp. 150–162).

[15] I. Perfilieva, A. Tonis, Consistency of models for approximate reasoning based on fuzzy logic, in:
Proceedings of the 4th European Congress on IT & Soft Computing, Aachen, 1996, pp. 651–655.

[16] I. Perfilieva, A. Tonis, Compatibility of systems of fuzzy relation equations, Int. J. General Systems
29 (2000) 511–528.

[17] W. Pedrycz, Identification in fuzzy systems, IEEE Trans. Systems, Man Cybernetics 14 (1984) 361–
366.

[18] E. Sanchez, Resolution of composite fuzzy relation equations, Inform. Control 30 (1976) 38–48.

