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1. Introduction

The purpose of the paper is to study continuously irreducible continua. The paper consists of six sections. After the
Introduction and Definitions, Section 3 is devoted to obtaining general properties of this class of continua, in particular we
characterize them as those continua of type λ for which the set function T is continuous (Theorem 3.2) and we show
that such continua cannot be homogeneous (Theorem 3.5). In Section 4, using results by Mohler and Oversteegen [15], we
present a new family of one-dimensional continua for which the set function T is continuous and no element of the family
contains a pseudo-arc (Theorem 4.4). In Section 5 we study maps of a continuously irreducible continuum into itself, we
prove that if f is such a map and its image is not contained in a layer, then the image of f is a subcontinuum which is
also continuously irreducible (Theorem 5.1) and we prove that if f is a map of a continuously irreducible continuum into
itself with connected fibres, then f has a fixed point (Theorem 5.4). In Section 6 we study the hyperspace of subcontinua
of a continuously irreducible continuum, we show that if X is such a continuum, then its hyperspace of subcontinua is
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locally a 2-cell at the top (Theorem 6.1) and Fn(X) is a Z -set in the hyperspaces 2X and Cn(X) for any positive integer n
(Theorem 6.4). We also show that if X is a continuously irreducible continuum with nondegenerate layers, then its hyper-
space of subcontinua admits a Whitney map whose levels admit a continuous decomposition into subcontinua such that
the quotient space is [0,1] (Theorem 6.2).

2. Definitions

If (Z ,d) is a metric space, then given A ⊂ Z and ε > 0, the open ball about A of radius ε is denoted by V d
ε (A), the

interior of A is denoted by IntZ (A), and the closure of A is denoted by ClZ (A). The power set of Z is denoted by P (Z).
A map means a continuous function. A surjective map f : X → Y between metric spaces is said to be:

• monotone if f −1(B) is connected for each connected subset B of Y ;
• open provided that f (U ) is open in Y for every open subset U of X ;
• closed if f (C) is closed in Y for every closed subset C of X ;
• atomic provided that for each subcontinuum L of X such that f (L) is nondegenerate, we have that L = f −1( f (L)).

Given a metric space Z , a decomposition of Z is a family G of nonempty and mutually disjoint subsets of Z such that⋃
G = Z . A decomposition G of a metric space Z is said to be upper semicontinuous if the quotient map q : Z � Z/G is

closed. The decomposition is continuous provided that the quotient map is both closed and open.
Let Y be a metric space. A closed subset A of Y is a Z -set of Y provided that for each ε > 0, there exists a map

f : Y → Y \ A such that d(x, f (x)) < ε, where d is the metric of Y .
A continuum is a nonempty compact, connected metric space. A subcontinuum is a continuum contained in a space Z .

A continuum X is decomposable if there exist two proper subcontinua A and B of X such that X = A ∪ B . A continuum
is indecomposable if it is not decomposable. The continuum X is unicoherent provided that every time X = A ∪ B , where
A and B are subcontinua of X , A ∩ B is connected. A subcontinuum Y of a continuum X is terminal provided that if K is
a subcontinuum of X and K ∩ Y �= ∅, then either K ⊂ Y or Y ⊂ K .

An arc is any space homeomorphic to [0,1].
A continuum X is irreducible if there are two points p and q of X such that no proper subcontinuum of X contains

both p and q. A continuum X is of type λ provided that X is irreducible and each indecomposable subcontinuum of X
has empty interior. By [18, Theorem 10, p. 15], a continuum X is of type λ if and only if admits a finest monotone upper
semicontinuous decomposition G such that each element of G is nowhere dense and X/G is an arc. Each element of G
is called a layer of X . Following [15], we say that a continuum X of type λ for which G is continuous, is a continuously
irreducible continuum.

Given a continuum X , we define its hyperspaces as the following sets:

2X = {A ⊂ X | A is closed and nonempty};
C(X) = {

A ∈ 2X
∣∣ A is connected

};
and given a positive integer n:

Cn(X) = {
A ∈ 2X

∣∣ A has at most n components
};

Fn(X) = {
A ∈ 2X

∣∣ A has at most n points
}
.

All these sets are topologized with the Vietoris topology [16, (0.11)] or the Hausdorff metric [16, (0.1)].
If X is a continuum, then C(X) is locally a 2-cell at the top provided that there exists a 2-cell E in C(X) such that

X ∈ IntC(X)(E ).
Given a continuum X , a Whitney map for 2X is a map μ : 2X → [0,1] such that μ(X) = 1, μ({x}) = 0 for each x ∈ X , and

if A, B ∈ 2X and A � B , then μ(A) < μ(B).
If f : X → Y is a map, then 2 f : 2X → 2Y and C( f ) : C(X) → C(Y ), given by 2 f (A) = f (A) and C( f )(A) = f (A), respec-

tively, are maps [16, (1.168)].
Given a continuum X , we define the set function T : P (X) → P (X) as follows: if A ∈ P (X) then

T (A) = X \ {
x ∈ X

∣∣ there exists a subcontinuum W of X such that x ∈ IntX (W ) ⊂ W ⊂ X \ A
}
.

We write T X if there is a possibility of confusion. Let us observe that for any subset A of X , T (A) is a closed subset of X
and A ⊂ T (A). A continuum X is aposyndetic provided that T ({p}) = {p} for every p ∈ X .

A continuum X is T -additive provided that T (A ∪ B) = T (A) ∪ T (B) for each pair of nonempty closed subsets A and B
of X . We say that X is point T -symmetric if for any two points p and q of X , p ∈ T ({q}) if and only if q ∈ T ({p}). The set
function T is idempotent on X provided that T 2(A) = T (A) for each subset A of X , where T 2 = T ◦ T .

We say that T is continuous for a continuum X provided that T : 2X → 2X is continuous.
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3. General properties

Our first property is due to G.R. Gordh Jr. [6, Theorem 3.2].

3.1. Theorem. If X is a continuously irreducible continuum, then X is unicoherent.

3.2. Theorem. Let X be a type λ continuum. Then X is a continuously irreducible continuum if and only if the set function T X is
continuous for X. Moreover, G = {T X ({x}) | x ∈ X} is the finest continuous monotone decomposition of X such that X/G is an arc.

Proof. Suppose X is a continuously irreducible continuum. Let G be the finest continuous monotone decomposition of X
such that X/G is an arc, and let q : X → [0,1] be the quotient map. Then q is monotone and open. Since X is irreducible,
if Z is a proper subcontinuum of X , then q(Z) is a proper subcontinuum of [0,1]. Hence, by [2, Theorem 5, p. 9], T X is
continuous. In fact, T X (A) = q−1(q(A)) for every subset A of X . In particular, T X ({x}) = q−1(q(x)) for each x ∈ X , and
G = {T X ({x}) | x ∈ X}.

Now suppose X is a continuum of type λ for which T X is continuous. Let q : X → [0,1] be the quotient map given
by the finest upper semicontinuous monotone decomposition of X . Let x, z ∈ X such that q(x) �= q(z). Then there exists
a subinterval A of [0,1] such that q(z) ∈ Int[0,1](A) and q(x) /∈ A. Hence, z ∈ IntX (q−1(A)) and x /∈ q−1(A). Thus, z /∈ T X ({x}).
Therefore, T X ({x}) ⊂ q−1(q(x)). Let z ∈ q−1(q(x)), and suppose W is a subcontinuum of X such that z ∈ IntX (W ). Then
q−1(q(x)) ⊂ W [18, Theorem 5, p. 10]. Hence, z ∈ T X ({x}) and T X ({x}) = q−1(q(x)). Thus, G = {T X ({x}) | x ∈ X} is the finest
upper semicontinuous monotone decomposition of X such that X/G is an arc. Since T X is continuous, G = {T X ({x}) | x ∈ X}
is continuous. Therefore, X is a continuously irreducible continuum. �
3.3. Lemma. Let X be a continuously irreducible continuum, and let G be the finest continuous monotone decomposition of X such that
X/G is an arc. If q : X → [0,1] is the quotient map, then q is atomic and q−1(t) is a terminal subcontinuum of X for every t ∈ [0,1].

Proof. Let X be a continuously irreducible continuum, and let q : X → [0,1] be the quotient map obtained from the finest
continuous monotone decomposition of X . Let K be a subcontinuum of X such that q(K ) is nondegenerate. It is always
true that K ⊂ q−1(q(K )). Let x ∈ q−1(q(K )). Then there exists y ∈ K such that q(y) = q(x). Hence, by [18, Theorem 5, p. 10],
q−1(q(x)) ⊂ K . Therefore, K = q−1(q(K )), and q is atomic.

Let t ∈ [0,1]. Since q is an atomic map, by [14, (1.2)], q−1(t) is a terminal subcontinuum of X . �
As a consequence of Theorem 3.2 and Lemma 3.3, we obtain:

3.4. Corollary. Let X be a continuously irreducible continuum. If G = {T X ({x}) | x ∈ X}, then G is the finest continuous decomposition
of X such that X/G is an arc, and T X ({x}) is a terminal subcontinuum of X for every x ∈ X.

With what we have done, we provide a different proof of the following result:

3.5. Theorem. If X is a continuously irreducible continuum, then X is not homogeneous.

Proof. Suppose X is a continuously irreducible homogeneous continuum. Then T X is continuous for X , by Theorem 3.2.
Hence, by [10, 3.6], we have three possibilities, namely:

(1) X is indecomposable;
(2) X is not aposyndetic and X/G is homeomorphic to the unit circle S 1, or to the Menger universal curve M, where

G = {T X ({x}) | x ∈ X};
(3) X is locally connected.

Note that if X is as in (1) or (2), then X is not a continuum of type λ. Since the only locally connected irreducible con-
tinuum is an arc, X is not homogeneous. Thus, in any case, we obtain a contradiction. Therefore, X is not homogeneous. �

The following result is used in the proof of Theorems 6.1 and 6.2.

3.6. Lemma. Let X be a continuously irreducible continuum. If D is a subcontinuum of X such that either D = T X ({x}) for some x ∈ X
or D �⊂ T X ({x}) for any x ∈ X, then T X (D) = D.

Proof. Let X be a continuously irreducible continuum and let D be a subcontinuum of X . If D = T X ({x}) for some x ∈ X ,
then since T X is continuous (Theorem 3.2), T X is idempotent [1, Lemma 3]. Hence, T X (D) = T X (T X ({x})) = T X ({x}) = D .



2360 S. Macías / Topology and its Applications 156 (2009) 2357–2363
Next, suppose that D �⊂ T X ({x}) for any x ∈ X . Then, by Corollary 3.4, T X ({x}) ⊂ D for each x ∈ D . Since {T X ({x}) | x ∈ X}
is a decomposition, Theorem 3.2, X is point T X -symmetric. Hence, by [1, Lemma 9], X is T X -additive (T X is continuous, by
Theorem 3.2). Thus, T X (D) = ⋃{T X ({x}) | x ∈ D} [3, Theorem B]. Therefore, T X (D) = D . �
4. New examples of continua for which T is continuous

All the known examples of decomposable non-locally connected continua X for which the set function T is continuous
have the property that there exist many points x ∈ X such that T ({x}) is a pseudo-arc [9] and [10]. In Theorem 4.4 we
present a new family of one-dimensional continua for which the set function T is continuous which do not contain pseudo-
arcs.

As a consequence of Theorem 3.2, we have:

4.1. Theorem. The class of continuously irreducible continua is a class of continua for which the set function T is continuous.

The following theorem is due to Mohler and Oversteegen [15, Corollary 1.1 and Theorem 2.1].

4.2. Theorem. Let X be any continuously irreducible one-dimensional continuum. Then there exist a continuously irreducible one-
dimensional continuum X̂ such that every nondegenerate subcontinuum of X̂ contains an arc, and an atomic map g : X̂ → X.

As a consequence of Theorems 4.2 and 3.2, we have:

4.3. Theorem. For each one-dimensional continuously irreducible continuum X, there exist a one-dimensional continuously irre-
ducible continuum X̂ such that T X̂ ({x̂}) does not contain a pseudo-arc for any x̂ ∈ X̂ , and an atomic map g : X̂ → X.

Let Z be the class of one-dimensional continuously irreducible continua and let Ẑ = { X̂ | X ∈ Z}, where X̂ is given in
Theorem 4.3. Hence, we have the following:

4.4. Theorem. The class Ẑ , defined above, is a class of one-dimensional continua X̂ for which the set function T X̂ is continuous such
that T X̂ ({x̂}) does not contain a pseudo-arc for any x̂ ∈ X̂ . In particular, no element of Ẑ contains a pseudo-arc.

5. Maps

We prove that if f is a map of a continuously irreducible continuum into itself and its image is not contained in a layer,
then the image of f is a subcontinuum which is also continuously irreducible (Theorem 5.1). We also prove that if f is
a map of a continuously irreducible continuum into itself with connected fibres, then f has a fixed point (Theorem 5.4).

5.1. Theorem. Let X be a continuously irreducible continuum. If f : X → X is a map and x ∈ f (X), then either f (X) ⊂ T X ({x}) or
T X ({x}) ⊂ f (X). Moreover, in the second case, f (X) = ⋃{T X ({x}) | x ∈ f (X)}.

Proof. Let X be a continuously irreducible continuum, let f : X → X be a map, and let x ∈ f (X). Note that f (X) ∩
T X ({x}) �= ∅. Since f (X) is a continuum and T X ({x}) is a terminal subcontinuum of X (Corollary 3.4), either f (X) ⊂ T X ({x})
or T X ({x}) ⊂ f (X).

Suppose T X ({x}) ⊂ f (X). If T X ({x}) = f (X), then since T X is continuous (Theorem 3.2), T X is idempotent [1, Lemma 3].
Hence, f (X) = ⋃{T X ({x}) | x ∈ f (X)} [8, 3.1.53]. Next assume that T X ({x}) �= f (X). Then for every z ∈ f (X) \ T X ({x}), we
also have that T X ({z}) ⊂ f (X). Therefore,

f (X) =
⋃{

T X
({x}) ∣∣ x ∈ f (X)

}
. �

As a consequence of Theorem 5.1, we have:

5.2. Corollary. Let X be a continuously irreducible continuum. If f : X → X is a map such that either f (X) �⊂ T X ({x}) or
f (X) �= T X ({x}) for any x ∈ X, then T X ({x}) = T f (X)({x}) for each x ∈ f (X).

5.3. Theorem. Let X be a continuously irreducible continuum. If f : X → X is a map, then there exists x ∈ X such that f (x) ∈ T X ({x}).

Proof. Let X be a continuously irreducible continuum, and let q : X → [0,1] be the quotient map given by the finest con-
tinuous monotone decomposition of X . Let f : X → X be a map and consider the following sets:
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A = {
x ∈ X

∣∣ q(x) < q
(

f (x)
)};

B = {
x ∈ X

∣∣ q(x) = q
(

f (x)
)};

C = {
x ∈ X

∣∣ q(x) > q
(

f (x)
)}

.

We show that B �= ∅. To this end, suppose B = ∅. Note that if x0 ∈ q−1(0) and x1 ∈ q−1(1), then x0 ∈ A and x1 ∈ C . Also
observe that A ∩ C = ∅ and X = A ∪ C .

Let x ∈ ClX (A). Then there exists a sequence {an}∞n=1 of points of A converging to x. Since q and f are both continuous,
{q(an)}∞n=1 converges to q(x) and {q( f (an))}∞n=1 converges to q( f (x)). Since {an}∞n=1 ⊂ A, q(an) < q( f (an)) for every positive
integer n. Hence, q(x) � q( f (x)). Since B = ∅, q(x) < q( f (x)). Thus, x ∈ A. Therefore, A is closed in X . Similarly, C is closed
in X too. Thus, X is not connected, a contradiction. Therefore, B �= ∅.

Let x ∈ B . Then, by Theorem 3.2, q−1(q(x)) = T X ({x}). Therefore, f (x) ∈ T X ({x}). �
G.R. Gordh Jr. proved that if X is a continuum of type λ and each layer of X has the fixed point property, then any

monotone map from X onto itself has a fixed point [5, Theorem 3B.1]. In the following theorem we prove a similar result
for continuously irreducible continua, but we do not assume that the map is surjective.

5.4. Theorem. Let X be a continuously irreducible continuum such that T X ({x}) has the fixed point property for each x ∈ X. If
f : X → X is a map such that f is monotone onto f (X), then f has a fixed point.

Proof. Let X be a continuously irreducible continuum. Suppose T X ({x}) has the fixed point property for every x ∈ X .
Let f : X → X be a map such that f is monotone onto f (X). If there exists x ∈ X such that either f (X) ⊂ T X ({x})
or f (X) = T X ({x}), then there is nothing to prove. Assume f (X) �⊂ T X ({x}) and f (X) �= T X ({x}) for any x ∈ X . By
Theorem 5.3, there exists x0 ∈ X such that f (x0) ∈ T X ({x0}). Hence, T X ({ f (x0)}) = T X ({x0}). Since f is monotone
onto f (X), f (T X ({x0})) ⊂ T f (X)({ f (x0)}) [2, Theorem 1(b), p. 5]. Since T f (X)({ f (x0)}) = T X ({ f (x0)}) (Corollary 5.2), we
have f (T X ({x0})) ⊂ T X ({ f (x0)}). Thus, f |T X ({x0}) : T X ({x0}) → T X ({x0}) is well defined. Since T X ({x0}) has the fixed point
property, there exists z ∈ T X ({x0}) such that f (z) = z. �
6. Hyperspaces

We study the hyperspace of subcontinua of a continuously irreducible continuum, we show that if X is such a continuum,
then its hyperspace of subcontinua is locally a 2-cell at the top (Theorem 6.1). We also prove that if X is a continuously
irreducible continuum with nondegenerate layers, then its hyperspace of subcontinua admits a Whitney map whose levels
admit a continuous decomposition into subcontinua such that the quotient space is [0,1] (Theorem 6.2). Finally we show
that if X is continuously irreducible continuum, then Fn(X) is a Z -set in the hyperspaces 2X and Cn(X) for any positive
integer n (Theorem 6.4).

6.1. Theorem. If X is a continuously irreducible continuum, then C(X) is locally a 2-cell at the top.

Proof. Let X be a continuously irreducible continuum. Then T X is continuous for X , Theorem 3.2. Let q : X → [0,1] be the
quotient map given by the finest continuous monotone decomposition of X . Let g : 2[0,1] → 2X be given by g(B) = q−1(B).
By [7, Theorem 2, p. 165], g is continuous. In fact, 2q ◦ g = 12[0,1] . In particular, g : 2[0,1] → g(2[0,1]) is a homeomorphism. By
the proof of [11, Theorem 3.3], we have that T X (2X ) = g(2[0,1]). It is easy to see that T X (C(X)) = g(C[0,1]), g([0,1]) = X
and g(F1([0,1])) = {T X ({x}) | x ∈ X}. It is well known that C([0,1]) is a 2-cell [16, (0.54)]. Therefore, T X (C(X)) is a 2-cell.

Let us consider a Whitney map μ : C(X) → [0,1] [16, (0.50)]. Let t0 = max{μ(T X ({x})) | x ∈ X}. Note that 0 < t0 < 1. Also
observe that if D ∈ μ−1([t0,1]), then T X (D) = D , Lemma 3.6. Thus, μ−1([t0,1]) ⊂ T X (C(X)). Hence, T X (C(X)) is a neigh-
borhood of X in C(X). Therefore, C(X) is locally a 2-cell at the top. �
6.2. Theorem. Let X be a continuously irreducible continuum such that T X ({x}) /∈ F1(X) for any x ∈ X. Then there exists a Whitney
map μ : C(X) → [0,1] such that μ−1(t) admits a continuous decomposition into continua such that the quotient space is [0,1].

Proof. Let X be a continuously irreducible continuum such that T X ({x}) /∈ F1(X) for any x ∈ X , and let t0 ∈ (0,1). Then,
by [19, Theorem 3.1], there exists a Whitney map μ : C(X) → [0,1] such that μ(T X ({x})) = t0 for each x ∈ X . We show that
T X (C(X)) = μ−1([t0,1]). Let A ∈ C(X). Then for each a ∈ A, T X ({a}) ⊂ T X (A). Since μ is a Whitney map, μ(T X (A)) � t0.
Thus, T X (A) ∈ μ−1([t0,1]), and T X (C(X)) ⊂ μ−1([t0,1]). Next, let D ∈ μ−1([t0,1]). Then, by Lemma 3.6, D ∈ T X (C(X)), and
μ−1([t0,1]) ⊂ T X (C(X)). Thus, T X (C(X)) = μ−1([t0,1]).

Let q : X → [0,1] be the quotient map given by the finest continuous monotone decomposition of X . As we saw in
the proof of Theorem 6.1, T X (C(X)) = g(C[0,1]), and g|C([0,1]) is a homeomorphism. Let ω : C([0,1]) → [0,1] be given by

ω(B) = μ(g(B))−t0 . Then ω is a Whitney map for C([0,1]). By [16, (14.6)], ω−1(s) is an arc for each s ∈ [0,1). Let t ∈ [t0,1].
1−t0
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We show that μ−1(t) = g(ω−1(
t−t0
1−t0

)). To this end, let A ∈ μ−1(t). Then ω(g−1(A)) = μ(g(g−1(A)))−t0
1−t0

= μ(A)−t0
1−t0

= t−t0
1−t0

. Thus,

A ∈ g(ω−1(
t−t0
1−t0

)), and μ−1(t) ⊂ g(ω−1(
t−t0
1−t0

)). Now, let D ∈ g(ω−1(
t−t0
1−t0

)). Then t−t0
1−t0

= ω(g−1(D)) = μ(g(g−1(D)))−t0
1−t0

=
μ(D)−t0

1−t0
. This implies that μ(D) = t . Hence, D ∈ μ−1(t), and μ−1(t) ⊂ g(ω−1(

t−t0
1−t0

)). Hence, μ−1(t) = g(ω−1(
t−t0
1−t0

)). There-

fore, for each t ∈ [t0,1], μ−1(t) is an arc.
Next, suppose t ∈ (0, t0). For each x ∈ X , let Gx(t) = {A ∈ μ−1(t) | A ⊂ T X ({x})} = μ−1(t) ∩ C(T X ({x})). Then Gx(t) is

a continuum [4, (1.4)], and Gt = {Gx(t) | x ∈ X} is a monotone decomposition of μ−1(t).
Define ht :μ−1(t) → [0,1] by ht = r◦ C(q)|μ−1(t) , where r : F1([0,1]) → [0,1] is the natural isometry defined by r({s}) = s.

Hence, ht is continuous, monotone and surjective (C(q) is monotone by [17, Lemma 2.1]). In fact, for each s ∈ [0,1],
there exists x ∈ X such that h−1

t (s) = Gx(t). To see that ht is open it suffices to show that C(q)|μ−1(t) is open. To this
end, note that C(q) ◦ g = 1C([0,1]) . Since open maps have the composition factor property [13, (5.15)], C(q) is open.
Let 〈U1, . . . , Un〉 be an open set in C(X) such that 〈U1, . . . , Un〉 ⊂ μ−1([0, t0)) and 〈U1, . . . , Un〉 ∩ μ−1(t) �= ∅. We show
that C(q)(〈U1, . . . , Un〉) = C(q)(〈U1, . . . , Un〉 ∩ μ−1(t)). It is clear that C(q)(〈U1, . . . , Un〉 ∩ μ−1(t)) ⊂ C(q)(〈U1, . . . , Un〉). Let
A ∈ 〈U1, . . . , Un〉. Since A is a subcontinuum of X and μ(A) < t0, there exists x ∈ X such that A ⊂ T X ({x}). Let B ∈ Gx(t).
Then C(q)(A) = C(q)(B) = C(q)(T X ({x})). Hence, C(q)(〈U1, . . . , Un〉) ⊂ C(q)(〈U1, . . . , Un〉 ∩μ−1(t)), and C(q)(〈U1, . . . , Un〉) =
C(q)(〈U1, . . . , Un〉∩μ−1(t)). Therefore, C(q)|μ−1(t) is open, and ht is open too. Therefore, Gt = {Gx(t) | x ∈ X} is a continuous

decomposition of μ−1(t) such that μ−1(t)/Gt is [0,1]. �
The following result is easy to establish:

6.3. Lemma. Let X be a continuum, and let μ : 2X → [0,1] be a Whitney map. If ε > 0, then there exists t ∈ (0,1) such that
diam(A) < ε for every A ∈ μ−1(t).

As a consequence of Theorem 6.2 and Lemma 6.3, we have the following:

6.4. Theorem. Let X be a continuously irreducible continuum such that T X ({x}) /∈ F1(X) for any x ∈ X. Then Fn(X) is a Z -set in 2X

and in Cn(X) for any positive integer n.

Proof. Let X be a continuously irreducible continuum such that T X ({x}) /∈ F1(X) for any x ∈ X . Let t0 ∈ (0,1). Then,
by [19, Theorem 3.1], there exists a Whitney map μ : C(X) → [0,1] such that μ(T X ({x})) = t0 for each x ∈ X . For each
t ∈ (0, t0), define gt : F1(X) → C(C(X)) by gt({x}) = Gx(t). Since Gt = {Gx(t) | x ∈ X} is a continuous decomposition of μ−1(t)

(Theorem 6.2), gt is continuous. Let σ : 22X → 2X be given by σ(A) = ⋃
A. Then σ is continuous [16, (1.48)].

Let ε > 0. By Lemma 6.3, there exists t ∈ (0, t0) such that diam(A) < ε
3 for every A ∈ μ−1(t). Since for each x ∈ X ,

limt→0 diam(Gx(t)) = 0 and μ−1(t) is compact for every t ∈ [0,1], we also assume that diam(Gx(t)) < ε
3 for every Gx(t) ∈ Gt .

Define fε : F1(X) → C(X) \ F1(X) by

fε
({x}) = σ ◦ gt

({x}) =
⋃

Gx(t).

Note that fε is well defined, i.e., fε({x}) ∈ C(X) [16, (1.49)]. Let Ax ∈ Gx(t) such that x ∈ Ax . Let y ∈ fε({x}). Then there exists
A y ∈ Gx(t) such that y ∈ A y . Let zx ∈ Ax and zy ∈ A y such that d(Ax, A y) = d(zx, zy). Observe that d(zx, zy) � H(Ax, A y)

[16, (0.4)]. Thus, d(x, y) � d(x, zx) + d(zx, zy) + d(zy, y) < ε
3 + ε

3 + ε
3 = ε. Hence, H({x}, fε({x})) < ε. Therefore, F1(X) is a

Z -set in C(X) [12, 2.1].
Since F1(X) is a Z -set in C(X), Fn(X) is a Z -set in 2X and in Cn(X) for any positive integer n [12, 2.2]. �
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[14] T. Maćkowiak, Singular arc-like continua, Dissertationes Math. (Rozprawy Mat.) 257 (1986) 1–35.
[15] L. Mohler, L.G. Oversteegen, On the structure of tranches in continuously irreducible continua, Colloq. Math. 54 (1987) 23–28.
[16] S.B. Nadler Jr., Hyperspaces of Sets: A Text with Research Questions, Monogr. Textbooks Pure Appl. Math., vol. 49, Marcel Dekker, New York, Basel,

1978.
[17] S.B. Nadler Jr., Induced universal maps and some hyperspaces with the fixed point property, Proc. Amer. Math. Soc. 100 (1987) 749–754.
[18] E.S. Thomas Jr., Monotone decompositions of irreducible continua, Dissertationes Math. (Rozprawy Mat.) 50 (1966) 1–74.
[19] L.E. Ward Jr., Extending Whitney maps, Pacific J. Math. 93 (1981) 465–469.


	On continuously irreducible continua
	Introduction
	Definitions
	General properties
	New examples of continua for which T is continuous
	Maps
	Hyperspaces
	Acknowledgement
	References


