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1. Introduction

The purpose of the paper is to study continuously irreducible continua. The paper consists of six sections. After the
Introduction and Definitions, Section 3 is devoted to obtaining general properties of this class of continua, in particular we
characterize them as those continua of type A for which the set function 7 is continuous (Theorem 3.2) and we show
that such continua cannot be homogeneous (Theorem 3.5). In Section 4, using results by Mohler and Oversteegen [15], we
present a new family of one-dimensional continua for which the set function 7 is continuous and no element of the family
contains a pseudo-arc (Theorem 4.4). In Section 5 we study maps of a continuously irreducible continuum into itself, we
prove that if f is such a map and its image is not contained in a layer, then the image of f is a subcontinuum which is
also continuously irreducible (Theorem 5.1) and we prove that if f is a map of a continuously irreducible continuum into
itself with connected fibres, then f has a fixed point (Theorem 5.4). In Section 6 we study the hyperspace of subcontinua
of a continuously irreducible continuum, we show that if X is such a continuum, then its hyperspace of subcontinua is
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locally a 2-cell at the top (Theorem 6.1) and F,(X) is a Z-set in the hyperspaces 2% and C,(X) for any positive integer n
(Theorem 6.4). We also show that if X is a continuously irreducible continuum with nondegenerate layers, then its hyper-
space of subcontinua admits a Whitney map whose levels admit a continuous decomposition into subcontinua such that
the quotient space is [0, 1] (Theorem 6.2).

2. Definitions

If (Z,d) is a metric space, then given A C Z and ¢ > 0, the open ball about A of radius ¢ is denoted by Vg(A), the
interior of A is denoted by Intz(A), and the closure of A is denoted by Clz(A). The power set of Z is denoted by P(Z).
A map means a continuous function. A surjective map f:X — Y between metric spaces is said to be:

monotone if f~1(B) is connected for each connected subset B of Y;

open provided that f(U) is open in Y for every open subset U of X;

closed if f(C) is closed in Y for every closed subset C of X;

atomic provided that for each subcontinuum L of X such that f(L) is nondegenerate, we have that L = f*1 (f(L)).

Given a metric space Z, a decomposition of Z is a family G of nonempty and mutually disjoint subsets of Z such that
(UG = Z. A decomposition G of a metric space Z is said to be upper semicontinuous if the quotient map q:Z — Z/G is
closed. The decomposition is continuous provided that the quotient map is both closed and open.

Let Y be a metric space. A closed subset A of Y is a Z-set of Y provided that for each ¢ > 0, there exists a map
f:Y — Y\ A such that d(x, f(x)) < &, where d is the metric of Y.

A continuum is a nonempty compact, connected metric space. A subcontinuum is a continuum contained in a space Z.
A continuum X is decomposable if there exist two proper subcontinua A and B of X such that X = A U B. A continuum
is indecomposable if it is not decomposable. The continuum X is unicoherent provided that every time X = A U B, where
A and B are subcontinua of X, AN B is connected. A subcontinuum Y of a continuum X is terminal provided that if K is
a subcontinuum of X and K NY # ¢, then either K CY or Y C K.

An arc is any space homeomorphic to [0, 1].

A continuum X is irreducible if there are two points p and q of X such that no proper subcontinuum of X contains
both p and q. A continuum X is of type A provided that X is irreducible and each indecomposable subcontinuum of X
has empty interior. By [18, Theorem 10, p. 15], a continuum X is of type A if and only if admits a finest monotone upper
semicontinuous decomposition G such that each element of G is nowhere dense and X/G is an arc. Each element of G
is called a layer of X. Following [15], we say that a continuum X of type A for which G is continuous, is a continuously
irreducible continuum.

Given a continuum X, we define its hyperspaces as the following sets:

2X ={A c X | Ais closed and nonempty};
C(X) = {A 2" | Ais connected};

and given a positive integer n:

Cn(X) = {A € 2% | A has at most n components};
Fa(X) = {A €2% | A has at most n points}.

All these sets are topologized with the Vietoris topology [16, (0.11)] or the Hausdorff metric [16, (0.1)].

If X is a continuum, then C(X) is locally a 2-cell at the top provided that there exists a 2-cell £ in C(X) such that
Xe ]TlfC(x)(g).

Given a continuum X, a Whitney map for 2X is a map p:2X — [0, 1] such that u(X) =1, u({x}) =0 for each x € X, and
if A,Be2X and A C B, then u(A) < iu(B).

If f:X— Y is a map, then 2/ :2X — 2Y and C(f):C(X) — C(Y), given by 2/ (A) = f(A) and C(f)(A) = f(A), respec-
tively, are maps [16, (1.168)].

Given a continuum X, we define the set function 7 : P(X) — P(X) as follows: if A € P(X) then

T(A) = X\ {x € X | there exists a subcontinuum W of X such that x € Intx(W) C W C X \ A}.

We write 7y if there is a possibility of confusion. Let us observe that for any subset A of X, 7 (A) is a closed subset of X
and A C 7 (A). A continuum X is aposyndetic provided that 7 ({p}) = {p} for every p € X.

A continuum X is 7 -additive provided that 7 (AU B) =7 (A) U7 (B) for each pair of nonempty closed subsets A and B
of X. We say that X is point 7 -symmetric if for any two points p and q of X, p € 7({q}) if and only if q € 7 ({p}). The set
function 7 is idempotent on X provided that 72(A) =7 (A) for each subset A of X, where 72=T7 o 7.

We say that 7 is continuous for a continuum X provided that 7 :2X — 2X is continuous.
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3. General properties

Our first property is due to G.R. Gordh Jr. [6, Theorem 3.2].
3.1. Theorem. If X is a continuously irreducible continuum, then X is unicoherent.

3.2. Theorem. Let X be a type A continuum. Then X is a continuously irreducible continuum if and only if the set function Ty is
continuous for X. Moreover, G = {Tx ({x}) | x € X} is the finest continuous monotone decomposition of X such that X /G is an arc.

Proof. Suppose X is a continuously irreducible continuum. Let G be the finest continuous monotone decomposition of X
such that X/G is an arc, and let g: X — [0, 1] be the quotient map. Then ¢ is monotone and open. Since X is irreducible,
if Z is a proper subcontinuum of X, then q(Z) is a proper subcontinuum of [0, 1]. Hence, by [2, Theorem 5, p. 9], 7x is
continuous. In fact, Tx(A) = q~1(q(A)) for every subset A of X. In particular, 7x({x}) = q~'(q(x)) for each x € X, and
G={Tx({x}) Ix e X}.

Now suppose X is a continuum of type A for which 7x is continuous. Let q: X — [0, 1] be the quotient map given
by the finest upper semicontinuous monotone decomposition of X. Let x,z € X such that q(x) # q(z). Then there exists
a subinterval A of [0, 1] such that q(z) € Intjo,17(A) and q(x) ¢ A. Hence, z € Intx(q~1(A)) and x ¢ g~ (A). Thus, z ¢ Tx ({x}).
Therefore, 7x({x}) C g~ 1(q(x)). Let z € g~ 1(q(x)), and suppose W is a subcontinuum of X such that z € Intx(W). Then
g '(q(x)) c W [18, Theorem 5, p. 10]. Hence, z € Tx({x}) and Tx({x}) = q~1(q(x)). Thus, G = {Tx({x}) | x € X} is the finest
upper semicontinuous monotone decomposition of X such that X/G is an arc. Since 7y is continuous, G = {7x({x}) | x € X}
is continuous. Therefore, X is a continuously irreducible continuum. 0O

3.3.Lemma. Let X be a continuously irreducible continuum, and let G be the finest continuous monotone decomposition of X such that
X/Gisanarc. Ifq: X — [0, 1] is the quotient map, then q is atomic and g~ (t) is a terminal subcontinuum of X for every t € [0, 11.

Proof. Let X be a continuously irreducible continuum, and let q: X — [0, 1] be the quotient map obtained from the finest
continuous monotone decomposition of X. Let K be a subcontinuum of X such that q(K) is nondegenerate. It is always
true that K c g~ 1(q(K)). Let x € g~ (q(K)). Then there exists y € K such that q(y) = q(x). Hence, by [18, Theorem 5, p. 10],
g '(q(x)) c K. Therefore, K =q~!(q(K)), and q is atomic.

Let t € [0, 1]. Since q is an atomic map, by [14, (1.2)], g~ (t) is a terminal subcontinuum of X. O

As a consequence of Theorem 3.2 and Lemma 3.3, we obtain:

3.4. Corollary. Let X be a continuously irreducible continuum. If G = {Tx ({x}) | x € X}, then G is the finest continuous decomposition
of X such that X/G is an arc, and Tx ({x}) is a terminal subcontinuum of X for every x € X.

With what we have done, we provide a different proof of the following result:
3.5. Theorem. If X is a continuously irreducible continuum, then X is not homogeneous.

Proof. Suppose X is a continuously irreducible homogeneous continuum. Then 7x is continuous for X, by Theorem 3.2.
Hence, by [10, 3.6], we have three possibilities, namely:

(1) X is indecomposable;

(2) X is not aposyndetic and X/G is homeomorphic to the unit circle S, or to the Menger universal curve M, where
G={Tx(x}) | xe X};

(3) X is locally connected.

Note that if X is as in (1) or (2), then X is not a continuum of type A. Since the only locally connected irreducible con-
tinuum is an arc, X is not homogeneous. Thus, in any case, we obtain a contradiction. Therefore, X is not homogeneous. O

The following result is used in the proof of Theorems 6.1 and 6.2.

3.6. Lemma. Let X be a continuously irreducible continuum. If D is a subcontinuum of X such that either D = Tx ({x}) for some x € X
or D ¢ Tx({x}) for any x € X, then 7x(D) = D.

Proof. Let X be a continuously irreducible continuum and let D be a subcontinuum of X. If D = 7x({x}) for some x € X,
then since 7x is continuous (Theorem 3.2), 7x is idempotent [1, Lemma 3]. Hence, 7x(D) = Tx(7x({x})) = 7x({x}) = D.



2360 S. Macias / Topology and its Applications 156 (2009) 2357-2363

Next, suppose that D ¢ 7x({x}) for any x € X. Then, by Corollary 3.4, 7x({x}) C D for each x € D. Since {7x({x}) | x € X}
is a decomposition, Theorem 3.2, X is point 7x-symmetric. Hence, by [1, Lemma 9], X is 7x-additive (7x is continuous, by
Theorem 3.2). Thus, 7x(D) = | J{Zx({x}) | x € D} [3, Theorem B]. Therefore, 7x(D) =D. O

4. New examples of continua for which 7 is continuous

All the known examples of decomposable non-locally connected continua X for which the set function 7 is continuous
have the property that there exist many points x € X such that 7 ({x}) is a pseudo-arc [9] and [10]. In Theorem 4.4 we
present a new family of one-dimensional continua for which the set function 7 is continuous which do not contain pseudo-
arcs.

As a consequence of Theorem 3.2, we have:

4.1. Theorem. The class of continuously irreducible continua is a class of continua for which the set function 7 is continuous.
The following theorem is due to Mohler and Oversteegen [15, Corollary 1.1 and Theorem 2.1].

4.2. Theorem. Let X be any continuously irreducible one-dimensional continuum. Then there exist a continuously irreducible one-
dimensional continuum X such that every nondegenerate subcontinuum of X contains an arc, and an atomic map g: X — X.

As a consequence of Theorems 4.2 and 3.2, we have:

4.3. Theorem. For each one-dimensional continuously irreducible continuum X, there exist a one- dlmenswnal continuously irre-
ducible continuum X such that T ({X}) does not contain a pseudo-arc for any X € X, and an atomic map g: X - X.

Let Z be the class of one-dimensional continuously irreducible continua and let Z= {52 | X € Z}, where X is given in
Theorem 4.3. Hence, we have the following:

4.4. Theorem. The class Z, defined above, is a class of one-dimensional continua Xfor which the set function T3 is continuous such
that T3 ({X}) does not contain a pseudo-arc for any X € X.In particular, no element on contains a pseudo-arc.

5. Maps

We prove that if f is a map of a continuously irreducible continuum into itself and its image is not contained in a layer,
then the image of f is a subcontinuum which is also continuously irreducible (Theorem 5.1). We also prove that if f is
a map of a continuously irreducible continuum into itself with connected fibres, then f has a fixed point (Theorem 5.4).

5.1. Theorem. Let X be a continuously irreducible continuum. If f : X — X is a map and x € f(X), then either f(X) C Tx({x}) or
Tx({x}) C f(X). Moreover, in the second case, f(X) = J{ZTx({x}) |x € f(X)}.

Proof. Let X be a continuously irreducible continuum, let f:X — X be a map, and let x € f(X). Note that f(X) N
Tx({x}) #@. Since f(X) is a continuum and 7y ({x}) is a terminal subcontinuum of X (Corollary 3.4), either f(X) C 7x({x})
or Tx({x}) C f(X).

Suppose Tx({x}) C f(X). If Tx({x}) = f(X), then since Tx is continuous (Theorem 3.2), 7x is idempotent [1, Lemma 3].
Hence, f(X) = U{Zx({x}) | x € f(X)} [8, 3.1.53]. Next assume that Tx({x}) # f(X). Then for every z € f(X) \ Zx({x}), we
also have that 7x({z}) C f(X). Therefore,

FOO=U{mx() [xe 0} o
As a consequence of Theorem 5.1, we have:

5.2. Corollary. Let X be a continuously irreducible continuum. If f:X — X is a map such that either f(X) ¢ Tx({x}) or
F(X) #Tx({x}) forany x € X, then Tx ({x}) = T¢(x)({x}) foreach x € f(X).

5.3. Theorem. Let X be a continuously irreducible continuum. If f : X — X is a map, then there exists x € X such that f(x) € Tx({x}).

Proof. Let X be a continuously irreducible continuum, and let q: X — [0, 1] be the quotient map given by the finest con-
tinuous monotone decomposition of X. Let f: X — X be a map and consider the following sets:
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A={xeX|qm <a(f®)};
B={xeX|qw) =q(f()};
C={xeX|q®>q(fw)}.

We show that B # @. To this end, suppose B = . Note that if xg € g~1(0) and x; € g~ (1), then xg € A and x; € C. Also
observe that ANC =@ and X=AUC.

Let x € Clx(A). Then there exists a sequence {a,}3>, of points of A converging to x. Since g and f are both continuous,
{q(an)};2, converges to q(x) and {q(f(an))};o; converges to q(f(x)). Since {an};2; C A, q(an) < q(f(an)) for every positive
integer n. Hence, q(x) < q(f(x)). Since B =0, q(x) < q(f(x)). Thus, x € A. Therefore, A is closed in X. Similarly, C is closed
in X too. Thus, X is not connected, a contradiction. Therefore, B # {.

Let x € B. Then, by Theorem 3.2, ¢~ (q(x)) = Tx({x}). Therefore, f(x) € Tx({x}). O

G.R. Gordh Jr. proved that if X is a continuum of type A and each layer of X has the fixed point property, then any
monotone map from X onto itself has a fixed point [5, Theorem 3B.1]. In the following theorem we prove a similar result
for continuously irreducible continua, but we do not assume that the map is surjective.

5.4. Theorem. Let X be a continuously irreducible continuum such that Tx({x}) has the fixed point property for each x € X. If
f:X — Xisamap such that f is monotone onto f(X), then f has a fixed point.

Proof. Let X be a continuously irreducible continuum. Suppose 7x({x}) has the fixed point property for every x € X.
Let f:X — X be a map such that f is monotone onto f(X). If there exists x € X such that either f(X) C 7x({x})
or f(X) = 7x({x}), then there is nothing to prove. Assume f(X) ¢ 7x({x}) and f(X) # 7x({x}) for any x € X. By
Theorem 5.3, there exists xg € X such that f(xg) € 7x({xo}). Hence, 7x({f(x0)}) = Z7x({xo}). Since f is monotone
onto f(X), f(Tx({xo}) € Tyx)({f(x0)}) [2, Theorem 1(b), p. 5]. Since Tyx)({f (x0)}) = Tx({f(x0)}) (Corollary 5.2), we
have f(7x({x0})) C Tx({f(x0)}). Thus, fl7yaxoh : Zx({X0}) = Tx({xo}) is well defined. Since Tx({xo}) has the fixed point
property, there exists z € 7x ({x0}) such that f(z)=z. O

6. Hyperspaces

We study the hyperspace of subcontinua of a continuously irreducible continuum, we show that if X is such a continuum,
then its hyperspace of subcontinua is locally a 2-cell at the top (Theorem 6.1). We also prove that if X is a continuously
irreducible continuum with nondegenerate layers, then its hyperspace of subcontinua admits a Whitney map whose levels
admit a continuous decomposition into subcontinua such that the quotient space is [0, 1] (Theorem 6.2). Finally we show
that if X is continuously irreducible continuum, then F,(X) is a Z-set in the hyperspaces 2% and C,(X) for any positive
integer n (Theorem 6.4).

6.1. Theorem. If X is a continuously irreducible continuum, then C(X) is locally a 2-cell at the top.

Proof. Let X be a continuously irreducible continuum. Then 7x is continuous for X, Theorem 3.2. Let q: X — [0, 1] be the
quotient map given by the finest continuous monotone decomposition of X. Let g:2[%1 — 2X be given by g(B) =q~1(B).
By [7, Theorem 2, p. 165], g is continuous. In fact, 29 0 g = 150,11 In particular, g: 201 — g(2[%11) is a homeomorphism. By
the proof of [11, Theorem 3.3], we have that 7x(2X) = g(2[01]). It is easy to see that Tx(C(X)) = g(C[0, 1]), g([0,1]) = X
and g(F1([0,1])) = {Zx({x}) | x € X}. It is well known that C([0, 1]) is a 2-cell [16, (0.54)]. Therefore, 7x(C(X)) is a 2-cell.

Let us consider a Whitney map w:C(X) — [0, 1] [16, (0.50)]. Let to = max{u(Zx({x})) | x € X}. Note that 0 <ty < 1. Also
observe that if D € u~1([tg, 1]), then 7x(D) = D, Lemma 3.6. Thus, 1~ '([to, 11) C Tx(C(X)). Hence, Tx(C(X)) is a neigh-
borhood of X in C(X). Therefore, C(X) is locally a 2-cell at the top. O

6.2. Theorem. Let X be a continuously irreducible continuum such that Tx ({x}) ¢ F1(X) for any x € X. Then there exists a Whitney
map w:C(X) — [0, 1] such that =1 (t) admits a continuous decomposition into continua such that the quotient space is [0, 1].

Proof. Let X be a continuously irreducible continuum such that 7x({x}) ¢ F1(X) for any x € X, and let tg € (0, 1). Then,
by [19, Theorem 3.1], there exists a Whitney map w :C(X) — [0, 1] such that pu(7x({x})) = to for each x € X. We show that
Tx(C(X)) = u~"([to, 1]). Let A € C(X). Then for each a € A, Tx({a}) C Tx(A). Since  is a Whitney map, u(Tx(A)) > to.
Thus, Tx(A) € w1 ([to, 11), and Tx(C(X)) C w~'([to, 11). Next, let D € =" ([to, 1]). Then, by Lemma 3.6, D € Tx(C(X)), and
w=([to, 11) C Tx (C(X)). Thus, Tx(C(X)) = ™ ([to, 1]).

Let q: X — [0,1] be the quotient map given by the finest continuous monotone decomposition of X. As we saw in
the proof of Theorem 6.1, 7x(C(X)) = g(C[0, 1]), and g|¢(jo,1}) is a homeomorphism. Let w:C([0, 1]) — [0, 1] be given by

w(B) = %. Then w is a Whitney map for C([0, 1]). By [16, (14.6)], @~ '(s) is an arc for each s € [0, 1). Let t € [to, 1].
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We show that ;=1 (t) = g(@ ™! ({=2)). To this end, let A € u="(t). Then w(g™'(A)) = “(g(g”“”) fo — Ao _ Lol Ty,

1-to ~— 1-tp
-1
A€ g™ (=), and u7'(D) C g(w—1(§ 2)). Now, let D € g(@™"({=2)). Then {= —w(g—1<D>) = S Ot -

L=ty 0. This 1mp11es that (D) =t. Hence, D eu1(t), and /f1(t)cg(w—1(f ). Hence 10 = g™ (152)). There-
fore, for each t € [tg, 1], w1 (t) is an arc.

Next, suppose t € (0,tp). For each x € X, let Gy(t) ={A e u=1(t) | A C Tx({x})} = w1 (t) N C(Tx({x})). Then Gy(t) is
a continuum [4, (1.4)], and &; = {Gx(t) | x € X} is a monotone decomposition of ;=1 (t).

Define hy: u=1(t) — [0, 1] by hy = roC(q)qu(t), where r: F1([0, 1]) — [0, 1] is the natural isometry defined by r({s}) =s.
Hence, h; is continuous, monotone and surjective (C(q) is monotone by [17, Lemma 2.1]). In fact, for each s € [0, 1],
there exists x € X such that ht_1 (s) = Gx(t). To see that h; is open it suffices to show that C(q)|lr](t) is open. To this
end, note that C(q) o g = 1¢(o,17)- Since open maps have the composition factor property [13, (5.15)], C(q) is open.
Let (U1,...,Uy) be an open set in C(X) such that (Uj,...,Up) C u~1([0,t0)) and (Uq,...,Uy) N =1 (t) # @. We show
that C(qQ)((Un, ..., Un)) = C(@({U1, ..., Un) N = 1(®)). It is clear that C(q)((Uq, ..., Un) N = 1(t)) C C(@ (U1, ..., Un)). Let
A € (Uq,...,Up). Since A is a subcontinuum of X and w(A) < tg, there exists x € X such that A C Tx({x}). Let B € Gx(t).
Then C(q)(A) = C(q)(B) = C(q)(Tx ({x})). Hence, C(q)((U1, ..., Un)) C C(Q (U1, ..., Up) N =1 ()), and C(Q)((U1, ..., Un)) =
C(@{U1,..., Uy N~ (t)). Therefore, C(q)llfl(t) is open, and h; is open too. Therefore, &; = {G«(t) | x € X} is a continuous

decomposition of p~1(t) such that u=1(t)/&; is [0,1]. O
The following result is easy to establish:

6.3. Lemma. Let X be a continuum, and let p:2%X — [0, 1] be a Whitney map. If &€ > 0, then there exists t € (0,1) such that
diam(A) < & forevery A € u=1(t).

As a consequence of Theorem 6.2 and Lemma 6.3, we have the following:

6.4. Theorem. Let X be a continuously irreducible continuum such that Tx ({x}) ¢ F1(X) for any x € X. Then Fn(X) is a Z-set in 2X
and in Cp(X) for any positive integer n.

Proof. Let X be a continuously irreducible continuum such that 7x({x}) ¢ F1(X) for any x € X. Let to € (0,1). Then,
by [19, Theorem 3.1], there exists a Whitney map u:C(X) — [0, 1] such that w(Zx({x})) =to for each x € X. For each
t € (0, tg), define g; : F1(X) — C(C(X)) by ge({x}) = Gx(t). Since &; = {G(t) | x € X} is a continuous decomposition of 1~ (t)
(Theorem 6.2), g; is continuous. Let o :22* — 2X be given by o (A) = |J.A. Then o is continuous [16, (1.48)].

Let ¢ > 0. By Lemma 6.3, there exists t € (0,tp) such that diam(A) < % for every A € w~1(t). Since for each x € X,
lim,_, o diam(Gx(t)) = 0 and w1 (t) is compact for every ¢ € [0, 1], we also assume that diam(Gx(t)) < % for every Gy (t) € &;.
Define f;:F1(X) = C(X)\ F1(X) by

fe((x)) =0 o gt ({x}) = (0.

Note that f. is well defined, i.e., f-({x}) € C(X) [16, (1.49)]. Let Ay € Gx(t) such that x € Ay. Let y € f.({x}). Then there exists
Ay € Gx(t) such that y € Ay. Let zy € Ay and zy € Ay such that d(Ay, Ay) = d(zx, zy). Observe that d(zx,zy) < H(Ax, Ay)
[16, (0.4)]. Thus, d(x, y) < d(x, zx) +d(zx, zy) +d(zy,y) < § + § + § = €. Hence, H({x}, f¢({x})) < &. Therefore, F1(X) is a
Z-set in C(X) [12, 2.1].

Since F;(X) is a Z-set in C(X), Fn(X) is a Z-set in 2% and in C,(X) for any positive integer n [12, 2.2]. O
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