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Hypothesis
Doxorubicin treatment inhibits PPARc and may induce lipotoxicity by
mimicking a type 2 diabetes-like condition in rodent models
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Doxorubicin-treated animals show elevated serum triglyceride and blood glucose levels. Adipocytes
play an important role in buffering blood glucose and lipids. A raise in serum lipid level triggers adi-
pogenesis in order to increase the lipid absorption capacity of adipose tissue. Doxorubicin inhibits
adipogenesis through the down-regulation of PPARc, a crucial component of the lipid metabolic
pathway which controls the expression of glucose and fatty acid transporters. Doxorubicin-
mediated down-regulation of PPARc inhibits blood glucose and lipid clearance thereby causing
hyperglycemia and hyperlipidemia resulting in lipotoxicity, glucotoxicity, inflammation and insulin
resistance. Therefore we hypothesize that doxorubicin treatment could mimic a type 2 diabetic
condition.
� 2012 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.
1. Introduction

Doxorubicin is an anthracyclin antibiotic, commercially pre-
pared from Strepotmyces peucetius var. caesius [1]. It is effective
against a wide spectrum of cancers ranging from solid tumors to
leukemia and lymphoma. Cancers treated with doxorubicin in-
clude: bladder, breast, head and neck, leukemia, liver, lung, lym-
phomas, mesothelioma, multiple myeloma, neuroblastoma,
ovary, pancreas, prostate, sarcomas, stomach, testis, thyroid and
uterus cancer.

Side effects of doxorubicin include vomiting, male infertility,
cardiotoxicity, mouth sores, nausea, vomiting, diarrhea, fast or
irregular heartbeats, unusual bleeding or bruising black or tarry
stools, or blood in stools or urine, extreme fatigue, swelling of
the feet or ankles. The congestive cardiomyopathy is the most se-
vere side effect of doxorubicin limiting its therapeutic utility.

The mechanism of action of doxorubicin is yet not clear and still
under investigation. However, Fornari et al. [2] explained that
doxorubicin interact with DNA by intercalation. This interaction
results in interruption of macromolecular biosynthesis [3], leading
to modulation in the expression of a number of genes and thereby
inhibiting tumor progression. Previously, we explained the possi-
ble mechanism that may be involved in doxorubicin induced sper-
matogenesis defect [4]. In this report, we explain how doxorubicin
causes disturbance in glucose and lipid buffering abilities of adipo-
cyte which may mimic type 2 diabetes like condition.

2. Doxorubicin affects body weight, blood glucose and serum
lipid profile mimicking type 2 diabetic condition

Along with other side effects, many studies reported that doxo-
rubicin treatment affects body weight; 2.5 mg/kg body weight of
doxorubicin by intravenous injection once a week for consecutive
6 weeks significantly reduced the body weight of animals com-
pared to control [5]. Earlier studies reported that 1.25 mg/kg body
weight of doxorubicin interaperitoneal injection prevented the
gain of body weight compared to controls [6,7]. Apart from other
possible factors, the weight loss could be due to the loss of adipose
tissue induced by doxorubicin [8,9].

Also, studies on rodent models demonstrated that doxorubicin
treatment increases serum total cholesterol, triglyceride and LDL
cholesterol levels when compared with the control group [10–
12]. It was also observed that the total fatty acids, especially
C16–C18 fatty acids, were significantly elevated after injection of
ADR [13]. Doxorubicin treatment also showed an increase in blood
glucose and glycogen levels [14].

Accumulating evidences from both animal and human studies
shown hyperlipidemia [15,16] raised TG/HDL ratio along with high
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level of fasting blood glucose [17,18] as a condition of type 2 dia-
betes. Elevated TG/HDL and hyperlipidemia might be due to non-
absorption of lipids and glucose by adipocytes and muscle cells
which might be due to the down-regulation of PPARc.

3. PPARc is essential for glucose and lipid clearance

Peroxisome proliferator activated receptor gamma (PPARc)
plays a crucial role in the clearance of serum triglyceride as well
as blood glucose. Studies in rodent models showed that PPARc ago-
nists robustly reduce circulating triglycerides (TG) [19–22]. The
PPARc agonists reduce the serum triglyceride level by supporting
the intravascular hydrolysis of triglyceride rich lipoproteins via in-
creased lipoprotein lipase expression or activity and subsequently
by promoting the fatty acid uptake in white adipose tissue (WAT)
[23,24]. Blood glucose clearance on the other hand is also managed
by PPARc, via regulating the glucose transporters [25]. PPARc stim-
ulation improves glucose tolerance and insulin sensitivity in type 2
diabetic patients and in animal models of insulin resistance [26]. In
vitro studies on 3T3-L1 adipocytes showed that suppression of
PPARc reduces insulin stimulated glucose uptake without affecting
the early insulin signaling steps in the adipocytes [27] due to insuf-
ficient activity of GLUT4 [28].

PPARc is normally expressed prominently in white adipose tis-
sue, with much lower levels in liver and skeletal muscle [29–31].
Fatless mice showed higher expression of PPARc in liver with high
level of hepatic triglyceride resembling a steatosis condition. In
this fatless condition it was unclear that the PPARc higher expres-
sion is correlated with increased lipid uptake or increased lipogen-
esis. However, in animal models of steatosis fed with methionine
choline deficient diet, it was observed that the animals had a re-
duced gonadal as well as subcutaneous fat, and higher hepatic lipid
accumulation. The author suggested a higher uptake of lipids and
reduced lipogenesis. It could be possible that, in the absence of adi-
pose tissue, the liver overtakes the trade of adipose tissue. This
could be the reason due to which the expression of PPARc is high
in the liver of animals with absence of adipose tissue either genet-
ically or pathologically [32–34]. Taking all this together, it can be
concluded that PPARc is essential for the uptake of blood glucose
as well as serum lipid clearance.

On the other hand, some studies also show that, partially reduc-
ing the PPARc expression either genetically [35] or using an antag-
onist [36] increased the insulin sensitivity. The same follows for
PPARa also [37]. PPARc along with other nuclear transcription fac-
tors including PPARa shares a common binding partner known as
retinoid X receptor [RXR] required for the transition of these nucle-
ar receptors from cytoplasm to nucleus [38]. The existence of
either PPARc or PPARa at lower concentration increases the
chances of the other one to bind with RXR and upregulate the gene
expression controlled by the one which is at a higher concentra-
tion. The PPARa null animals develop increased adiposity in re-
sponse to a high-fat diet but were protected from the
development of insulin resistance; due to the absence of PPARa
it could be possible that PPARc–RXR union was high resulting in
the higher transition of PPARc from the cytoplasm to the nucleus
leading to increased imports of glucose and lipids to the adipocytes
and liver. Another study [39] indicates that adipose tissue specific
PPARc knock out animals were protected against high fat diet-in-
duced obesity and insulin resistance. But these animals showed a
marked reduction in glucose uptake in skeletal muscle, similar to
that of the insulin resistant controls, however, this was compen-
sated by increased glucose and lipid uptake by liver showing a
higher expression of hepatic PPARc. The liver weight and triglycer-
ide content of adipose tissue specific PPARc knock-out animals
were higher than the control counterpart. We did not find any
study indicating inhibition of PPARc and a together either chemi-
cally or genetically, suggesting that, suppression of both of these
PPARs together could be deleterious. However, upregulation of
both the PPARs together using dual agonist was found to be bene-
ficial in improving both lipid and glucose homeostasis [40].

In this current paper all the reports we discussed, in which ani-
mals were treated with doxorubicin did neither shown a reduction
in serum triglyceride nor an increase in adipose or non-adipose tis-
sue weight, which indicates that the lipid and glucose import reg-
ulated by PPARc was severely disturbed due to PPARc inhibition,
although there is no existing evidence on the expression pattern
of PPARa on liver or adipocyte of doxorubicin treated animal, how-
ever, studies [41] on cultured podocytes indicated that doxorubicin
treatment reduces the expression of PPARa. Collectively, it can be
concluded that doxorubicin disturbs the lipid metabolic process by
inhibition of PPARc and a, though there is no strong evidence for
PPARa, but it can be postulated based on the observational
parameters.

4. The correlation between PPARc and adipose tissue mass

PPARs are group of nuclear receptor super family that acts as
transcription factors. PPARc is expressed 10- to 30-fold higher in
adipose tissue than any other tissues [29], apart from other roles,
PPARc plays a crucial role in adipogenesis [42] and increases
insulin sensitivity when it is activated by thiazolidinediones
(TZD) [43–45]. PPARc mutation fails to induce adipogenesis and
causes insulin resistance [46].

TZDs are a group of PPARc agonists used in the treatment of
type 2 diabetes. Treating diabetic animals with PPARc agonists in-
duces weight gain in most studies [34,47–49], while reducing the
expression of PPARc causes weight loss in animal models.
GW9662, an antagonist of PPARc, inhibits adipogenesis [50].
Examination of body weight and fat composition in animals fed
with high fat diet along with GW9662 showed that the animals
were protected from weight gain due to a reduction in visceral adi-
pose tissue mass [36].

FAT/CD36 has been shown to be transporting long chain fatty
acids across the plasma membrane during adipocyte differentia-
tion [51]. A number of evidences prove that expression of FAT/
CD36 is directly regulated by PPARc [52]. Similarly, other fatty acid
transporters like lipoprotein lipase (LPL) [53], fatty acid transport
protein (FATP) and adipocyte fatty acid binding protein (A-FABP)
are regulated by PPARc [54]. Therefore, suppressing the expression
of PPARc would cause reduction in adipose tissue mass along with
agitation in the functioning of fatty acid transporters leading to a
decline in the rate of clearance of circulating fatty acids and
glucose.

5. Role of PPARc in lipotoxicity and glucotoxicity

It has been reported that ablation of PPARc-2 in the ob/ob back-
ground, PPARc2�/� Lepob/Lepob (POKO mouse), resulted in de-
creased fat mass along with severe insulin resistance, b-cell
failure and dyslipidemia [55]. PPARc-2 isoform plays an important
role, mediating adipose tissue expansion in response to positive
energy balance. PPARc-2 isoform prevents lipotoxicity by promot-
ing adipose tissue expansion, increasing the lipid-buffering capac-
ity of peripheral organs, and facilitating the adaptive proliferative
response of b-cells to insulin resistance.

Both in vivo and in vitro studies revealed the importance of
PPARc in lowering the glucotoxicity [55,56]. Clonal pancreatic
BRIN-BD11 b-cells when maintained in standard, glucotoxic and
lipotoxic cultures caused a reduction in the cellular viability,
however, when these cells were exposed to the PPARc agonist
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rosiglitazone, a significant improvement of many of the adverse ef-
fects of gluco- and lipo-toxic conditions on insulin secretory
responsiveness were observed [56]. In another study on Zucker
diabetic fatty rat, it was observed that PPARc agonist TZD prevent
glucotoxic effects [57]. These studies indicate that PPARc is very
crucial in glucose and lipid metabolism and drastic down-regula-
tion of this gene may result in severe gluco- and lipo-toxicities.

6. Role of lipotoxicity in diabetes

Lipotoxicity refers to a condition where there is an accumula-
tion of excess lipids in non-adipose tissues leading to cell dysfunc-
tion or cell death. Lipotoxicity plays an important role in the
pathogenesis of diabetes and heart failure in humans [58]. In lipo-
toxic state the fatty acid spillover is excess of the oxidative needs,
resulting in enhanced metabolic flux leading to harmful pathways
of non-oxidative metabolism [59]. In normal physiological condi-
tion, cellular fatty acid homeostasis reflects a balance between pro-
cesses that generate or deliver fatty acids and processes that utilize
these molecules. In mammalian cells, free fatty acids (FFAs) are
generated through the de novo synthesis pathway and liberated
as a result of triglycerides and phospholipids hydrolysis by cellular
lipases. Raise in plasma FFA and triglyceride level triggers import
Fig. 1. The possible effect of Doxorubicin induced disturbance in adipocyte physiolog
activated receptor gamma) leading to suppression of adipogenesis. Therefore, no new m
will have low expression of PPARc resulting in the impaired import of glucose and free fa
acid transport protein/Cluster of Differentiation 36) respectively in the adipose tissue.
glucotoxicity. Elevated circulating free fatty acids would cause infiltration of macrophag
Necrosis Factor-alpha), IL-6 (Interleukin-6), IL-1b (Interleukin-1 beta), etc. Secretion of p
and T2D (Type 2 diabetes) like conditions. The black arrows represent mechanisms und
resulting from doxorubicin treatment (red dotted lines indicate the interrupted process
of FFAs into non-adipose tissues contributing to intracellular lipid
accumulation.

Accumulating evidence suggests a strong association between
altered fat topography and defects in adipocyte metabolism with
the pathogenesis of type 2 diabetes [60]. Extensive import of lipid
raises the lipid overload condition in pancreatic b-cells leading to
deregulated insulin secretion with shorter chronic reduction in
insulin levels [61–63]. In addition to FFA-induced b-cell dysfunc-
tion, accumulation of excess FFAs also causes b-cell apoptosis. In
animal model it was observed that triglyceride accumulation in is-
lets was associated with reductions in b-cell mass and declining
insulin production [64].

7. Inflammation as a precursor of insulin resistance

As we described, the rise in plasma FFA induces lipotoxicity.
This rise in plasma free fatty acids could be because of the inability
of adipocytes and muscle cells to absorb them due to the down-
regulation of PPARc which itself is an insulin resistance condition.
These circulating FFAs recruit macrophages into the adipose tissue
[65]. FFAs activate nuclear factor kB (NF-kB) in macrophages
through toll-like receptor 2 and 4 [66]. Translocation of NF-kB
to the nucleus, allows transcription of genes involved in the
y. Doxorubicin (DOX) inhibits the expression of PPARc (Peroxisome proliferator-
ature adipocyte will form from the pre-adipocytes. Secondly the existing adipocyte
tty acids mediated through GLUT4 (Glucose transporter type 4) and FAT/CD36 (Fatty

Increased level of circulating fatty acid and glucose will lead to lipotoxicity and
e into adipose tissue and release of pro-inflammatory cytokines like TNF-a (Tumor
ro-inflammatory cytokines recruit more macrophages leading to insulin resistance
er normal conditions whereas the red arrows represent the disturbed mechanism

, red bold lines indicate occurring/ongoing process).
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inflammatory response. Consequently, recruited macrophages
secrete a variety of pro-inflammatory cytokines like TNFa, IL-1b
and IL-6 [67]. Secretion of these pro-inflammatory cytokines fur-
ther worsens the condition by recruiting more macrophages. Neels
and Olefsky [68] suggested that during a variety of insulin-
resistant states inflammatory pathway is triggered in adipose
tissues. Inflammation of adipose tissue results in deleterious ef-
fects on insulin action in these tissues. Recently, it has been shown
that anti-inflammatory drugs prevent the fat mediated insulin
resistance, suggesting the involvement of inflammatory pathways
in the pathogenesis of fat-induced insulin resistance [69,70].
8. Adipose tissue and diabetes

Studies using fatless mice (A-ZIP/F) illustrated the importance
of adipose tissue in averting diabetes. Fatless mice are severely
prone to insulin resistance and show defective insulin signaling
in the liver and muscles. Kim et al. [71] reported that, the fatless
mice had defects in insulin mediated activation of insulin receptor
substrate-1 and -2-associated phosphatidylinositol 3-kinase activ-
ity and a 2-fold increase in the muscle and liver triglyceride con-
tent. Also, insulin-stimulated glucose transport activity in
skeletal muscles was significantly decreased in the fatless mice.
Reduction in insulin stimulated glucose transport activity in skele-
tal muscle has been shown to be a major contributing factor to the
insulin resistance in patients with type 2 diabetes [72].

Gavrilova et al. have shown that, transplantation of wild adi-
pose tissue improves insulin sensitivity in insulin resistant fatless
mice [73]. Adipose tissue can exert anti-diabetic action either via
endocrine mechanisms possibly by secretion of leptin [74] or
TNF-a [75], both of which affect insulin sensitivity; or via metabo-
lism which include the adipose tissue uptake of glucose, triglycer-
ide, and/or FFA. Animals with transplanted adipose tissue showed
low level of glucose, insulin, FFAs and triglyceride level compared
with the control indicating the importance of adipose tissue in
maintaining the glucose and lipid homeostasis.

9. Effect of doxorubicin on adipocyte physiology

We have recently reported that a brief exposure (3 h) of doxo-
rubicin to pre-adipocytes inhibited adipogenesis in a dose-depen-
dent manner [76]. While investigating the reason behind, we
found that doxorubicin down-regulates the expression of PPARc
in a dose dependent manner. Searching for changes in the up-
stream element of PPARc, one more gene, KLF4 was found to be
downregulated. KLF4 has been shown to be the earliest member
of adipogenic pathway which responds to adipogenic signal as
early as 30 min [77]. In an earlier report doxorubicin has been
shown to be antagonistic to KLF4 [78]. As a result of inhibition of
KLF4 its downstream elements like CEBPb and PPARc have also
been shown to be down-regulated by doxorubicin which ulti-
mately leads to the lack of fat accumulation. These two genes play
crucial role in inducing adipogenesis. Down-regulation of PPARc
affects the expandability and adipogenesis of adipocytes. Others’
study indicated loss of adipose tissue in doxorubicin treated ani-
mals [8,9].

10. Hypothesis

From the existing literature it can be realized that doxorubicin
affects the physiology of adipocytes via disturbing the expression
of PPARc. The down-regulation of PPARc would possibly affect
the lipid and glucose metabolism directly (Fig. 1).

Adipose tissue plays major role in lipid and glucose uptake. The
doxorubicin mediated downregulation of PPARc expression might
inhibit the expression of glucose and lipid transporters leading to
the inability of adipose tissue to absorb glucose and lipids. Nor-
mally, raise in serum lipid level triggers adipogenesis in order to
expand the lipid absorption capacity of adipose tissue to maintain
a normal blood lipid profile. But in doxorubicin treated case this
expandability of adipose tissue will be lost; therefore, raise in
blood glucose and triglyceride levels will lead to many disorders,
and will mimic a state of insulin resistance or type 2 diabetes. This
condition will further cause glucotoxicity and lipotoxicity.

11. Conclusion

It can be assumed that doxorubicin treatment might cause two
possible conditions; first the existing adipocytes will not be able to
absorb the serum glucose and lipids; second, the adipogenesis trig-
gered by circulating glucose and lipid will be inhibited. Thus, the
pre-adipocytes differentiation to adipocyte and expansion of ma-
ture adipocyte by the uptake of circulating serum lipid and glucose
would be interrupted. In the absence of adipose tissue, liver
absorbs most of the serum triglyceride via PPARc regulated path-
way. There is no existing evidence whether or not PPARc is
down-regulated in liver of doxorubicin treated animal. But it could
be possible that apart from adipose tissue hepatic PPARc may also
get inhibited, reducing the chances of serum lipid clearance even
by lipid disposing peripheral organs. This situation could result
in the rise of circulating serum triglyceride and glucose, because
of the reduced capacity of adipocytes and other peripheral organs
to uptake the circulating triglyceride as well as glucose, resulting in
glucotoxicity , lipotoxicity and insulin resistance status. This condi-
tion is further worsened by the recruitment of macrophages to the
adipose tissue which triggers inflammation of adipose tissue. In-
flamed adipose tissue responds poorly to the insulin signaling
which mimics the type 2 diabetic condition.
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