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In this paper the natural frequencies and the associated mode shapes of in-plane free
vibration of a single-crystal silicon ring are analyzed. It is found that the Si(111) ring is
two-dimensionally isotropic in the (111) plane for elastic constants but three-dimension-
ally anisotropic, while the Si(100) ring is fully anisotropic. Hamilton’s principle is used to
derive the equations of vibration, which is a set of partial differential equations with coef-
ficients being periodic in polar variable. Expressing the radial and tangential displacements
in sinusoidal form with non-predetermined amplitudes, and through the integration with
respect to the circumferential variable, the original governing equations in partial differen-
tial form can be converted into the amplitude equations in ordinary differential form. The
exact expressions for frequencies and mode shapes are obtained. It is found that for Si(100)
rings the frequencies of a pair of modes, which are equal for an isotropic ring, split due to
the anisotropic effect only for the second in-plane vibration mode. The phenomena of fre-
quency splitting and degenerate modes can be proved either based on the conservation of
averaged mechanical energy or by the concept of crystallographic symmetry groups. When
the single-crystal silicon is replaced by the polycrystalline silicon, which is isotropic in
elastic constants, the derived equations for frequencies correctly predict the vanishing of
the phenomenon of frequency splitting.

� 2008 Elsevier Ltd. All rights reserved.
1. Introduction

The rapid development of micro-engineering techniques makes the miniaturization of actuators and sensors more and
more feasible. Gyroscopes are used to measure the rotation rate or the angles of turn. Micro-gyroscopes are needed, for
the purposes of cost and space reduction in many applications, for instance, inertial mousses in computers, man–machine
interaction in the field of virtual reality, and other applications where the orientations need to be measured, such as
unmanned vehicle or robots. There are several different kinds of micro-gyroscopes reported in the literatures. The ring-like
components (Hopkins, 1997; Putty and Najafi, 1994) is of great interest, because its center of mass remains unchanged
during operation so that the rigid-body effect is removed.

Although polycrystalline silicon is isotropic in mechanical property, but due to its inherent nature of having higher inter-
nal damping than single-crystal silicon, most ring gyroscopes are made of the latter. He and Najafi (2002) reported that rings
made of single-crystal silicon wafer have higher quality factor (Q) than those made of poly-crystalline silicon wafer (Putty
and Najafi, 1994; Ayazi and Najafi, 2001). The above-mentioned references focused on the system design and performance
testing of the ring gyroscope, rather than the frequency analysis of vibrating rings. Perfect circular rings made from isotropic
material, such as metals or Si(111) (single-crystal silicon wafer cut in the (111) plane), have degenerated pairs of vibration
modes. This means that the two modes for any pair have equal natural frequencies. If one of the two degenerate modes is
used as the driving mode and the other as the sensing mode, the sensitivity of measurement is greatly increased, because the
vibration amplitudes of these two modes are almost of the same order.
. All rights reserved.
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In order to avoid the loss of signal from the mechanical element (that is, the vibrating ring) to the pick-off electric-circuit
element due to the distance transmission, it is a trade off to combine the ring and the electric-circuit in a single silicon chip.
Moreover, single-crystal silicon wafers are usually chosen to be of the (100) orientation rather the (111) one, because
Si(100) has much faster etching rate than Si(111) and is commonly used in the semiconductor industry. However, rings
made from silicon in the (100) plane are anisotropic in elastic moduli; this anisotropy causes the two frequencies of a pair
of similar modes, which are equal for isotropic rings (Love, 1944), to split.

Although the free vibration of a circular ring had been widely studied, most of them focused on isotropic rings rather than
anisotropic ones. For example, Kirkhope (1976) studied the vibration of non-rotating circular ring including the effects of
shear deformation and rotatory inertia; Carrier (1945) derived the governing equations of free vibration for rotating rings;
Bickford and Reddy (1985) numerically analyzed the similar problem including the effects of inextensional, shear deforma-
tion, and rotatory inertia; Tang and Bert (1987) studied the out-of-plane vibration of thick isotropic rings; Hwang et al.
(1999) investigated the effect of the variation of in-plane geometric profile of an isotropic ring on the frequency splitting.
Some researchers investigated anisotropic rings. For example, Eley et al. (1999) studied the directional variations of elastic
moduli for single-crystal silicon in the (100) plane, and the additional variations in the elastic moduli for the planes misa-
ligned from the (111) and (100) planes.

The aim of this paper is to analyze the effect of anisotropic elastic constants on the natural frequencies of a ring made
from a single-crystal silicon wafer. The effect of anisotropy can be accounted for in the expression of strain energy; therefore,
the accuracy of the solution of the frequencies depends on the amount of deviation of the approximate formulation of strain
energy to the exact one. Eley et al. (1999) borrowed the strain energy expression of anisotropic materials from isotropic ones
as used by Kirkhope (1976, 1977) and replaced the constant Young’s modulus by the one which is function of the circum-
ferential variable of the ring. In so doing, they considered each differential volume of the ring in cylindrical coordinates as an
isotropic body; therefore, his expression for strain energy is just an approximate one. In addition, they assumed that the
mode shapes of pairs of similar modes of an anisotropic ring are the same as those of an isotropic ring to facilitate the cal-
culation of the natural frequencies. In fact, it is still unknown whether the amplitude ratio of radial to tangential displace-
ments of anisotropic rings remains the same as that of isotropic rings. To account for the anisotropic effect, we determine the
strain energy of anisotropic rings in a theoretically correct form, in which each differential volume of the ring is actually con-
sidered as anisotropic elastic body. We use Hamilton’s principle to derive the equations of motion of the ring, which is a set
of partial differential equations with coefficients varying in polar variable. These equations are then converted to a set of
ordinary differential equations in terms of modal amplitudes by the assumed-mode method. By solving the amplitude equa-
tions, the explicit forms of natural frequencies and the amplitude ratio of radial to tangential displacements are found. The
result indicates that the natural frequencies of pairs of similar modes of the anisotropic Si(100) ring split only for the second
in-plane vibration mode. The theoretically-rigorous explanations of the phenomena of frequency splitting and degenerated
modes are given based on the conservation of averaged mechanical energy. In some cases, the degenerated modes can also
be easily interpreted from the crystallographic symmetry elements. In addition, we find that the mode shapes of vibration
are dependent on the geometrical size of the ring regardless of the material properties of the ring.

2. Anisotropic property of single-crystal silicon

Single-crystal silicon belongs to the face-centered cubic diamond structure and its point symmetry group is of m3m class
(Ashcroft and Mermin, 1975; Shuvalov, 1981). The silicon wafers nominally cut parallel to the (111) and (100) orientations
are usually manufactured as the substrates or the main bodies of the micro-devices. Single-crystal silicon of (111) orienta-
tion has isotropic mechanical properties. On the other hand, silicon of (100) orientation has anisotropic mechanical prop-
erties but it has chemical etching rates about four hundred times faster than Si(111) (Elwenspoek and Jansen, 1998).
This is the main reason that Si(100) wafers are commonly used in the CMOS industries rather than Si(111) ones because
of the advantage of easy-manufacture.

The anisotropic effect is embodied in the strain energy of the elastic ring. In order to obtain the exact expression for strain
energy of each differential volume of the ring in cylindrical coordinates, we first have to find the proper stiffness matrices
that relate stress to strain through the linear constitutive equation, for Si(100) and Si(111).

2.1. The stiffness matrix of Si(100)

Consider a ring, as shown in Fig. 1, of diameter a, width h, and thickness b respectively. Let Z axis be the direction per-
pendicular to the ring surface and h the angle measured form the X axis. The stress tensor rij, strain tensor ekl, and the con-
stitutive equation rij = Cijklekl can be expressed in the matrix-vector form as r6�1 = C6�6 e6�1, if we rewrite the matrix and
vector subscripts in terms of the tensor subscripts as
1! 11; 2! 22; 3! 33; 4! 23; 5! 31; and 6! 12 ð1Þ
such that r12 ? r6, e5 ? e31, and C14 ? C1123. Because the unit cell of a single-crystal silicon is a face-centered cubic lattice, it
is well known that the stiffness matrix C(1 0 0) of Si(100) with respect to a fixed Cartesian coordinate system is (Nye, 1957;
Royer and Dieulesaint, 2000)



Fig. 1. The dimensions of the ring.
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Cð1 0 0Þ ¼

C11 C12 C12 0 0 0
C12 C11 C12 0 0 0
C12 C12 C11 0 0 0
0 0 0 C44 0 0
0 0 0 0 C44 0
0 0 0 0 0 C44

2
666666664

3
777777775

ð2aÞ
where the values of elastic constants are given as follows (Shuvalov, 1981; Wortman and Evans, 1965; Brantley, 1973):
C11 ¼ 165:7 GPa; C12 ¼ 63:9 GPa; C44 ¼ 79:6 GPa: ð2bÞ
In order to express strain energy of differential volumes in cylindrical coordinates, the stiffness matrix referred to a Carte-
sian coordinate system should be transformed by using the tensor transformation equation:
C0ijkl ¼ aimajnakoalpCmnop ð3Þ
into one referred to the cylindrical coordinate system as
C0ð1 0 0;hÞ ¼

C011 C 012 C 013 0 0 C016

C012 C 011 C 013 0 0 C026

C013 C 013 C 033 0 0 0
0 0 0 C 044 0 0
0 0 0 0 C 044 0

C016 C 026 0 0 0 C066

2
666666664

3
777777775

ð4aÞ
where the non-zero elements of matrix C01 0 0;hð Þ are given in Appendix A. The compliance matrix S relates the strain vector e to
the stress vector r as e = Sr. It is obvious that S = C�1. The compliance matrix of Si(100) referred to the cylindrical coordinate
system r,h,z (with the unit radial vector er being an angle h from the positive X axis in the counterclockwise sense, as shown
in Fig. 1) appears in constitutive equation as
e1

e2

e3

e4

e5

e6

8>>>>>>>><
>>>>>>>>:

9>>>>>>>>=
>>>>>>>>;
¼

S011 S012 S013 0 0 S016

S012 S011 S013 0 0 S026

S013 S013 S033 0 0 0
0 0 0 S044 0 0
0 0 0 0 S044 0

S016 S026 0 0 0 S066

2
666666664

3
777777775

r1

r2

r3

r4

r5

r6

8>>>>>>>><
>>>>>>>>:

9>>>>>>>>=
>>>>>>>>;

or e ¼ S0ð1 0 0;hÞr ð4bÞ
where the non-zero entries elements are also given in Appendix A. Consider a strip of rectangular cross-section with its lon-
gitudinal axis parallel to the r axis and the other two transverse axes parallel to the h and z axes. The two in-plane elastic
moduli can be obtained from the tensile deformed state: one is subjected to the axial load r = (r1,0,0,0,0,0)T, and the other
is subjected to the load r = (0,r2,0,0,0,0)T. From Eq. (4b), the two in-plane Young’s moduli are found to be equal and are de-
noted by Ein(h), which depends on the h variable, as
1
EinðhÞ

¼ S011 ¼ S11 �
1
4
ð1� cos 4hÞ S11 � S12 �

S44

2

� �
¼ S11 � 2 S11 � S12 �

1
2

S44

� �
FðhÞ ð5aÞ
where FðhÞ ¼ 1
8 ð1� cos 4hÞ. The out-of-plane Young’s modulus is obtained by letting the strip that is subjected to the load

r = (0,0,r3,0,0,0)T equal to

1

Eout
¼ S033 ¼ S11 ð5bÞ
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which is independent of the h variable. Applying an in-plane shear loading r = (0,0,0,0,0,r6)T to the strip, we get from Eq. (4b)
that e6 ¼ S066r6, then the in-plane shear modulus is
1
GinðhÞ

¼ S066 ¼ S44 þ ð1� cos 4hÞ S11 � S12 �
S44

2

� �
¼ S44 þ 8 S11 � S12 �

1
2

S44

� �
FðhÞ: ð5cÞ
If we apply the out-of-plane shear forces r = (0,0,0,r4,0,0)T and r = (0,0,0,0,r5,0)T to the strip, the out-of-plane shear
moduli for these two loading states obtained from Eq. (4b) are the same as
1
Gout
¼ S044 ¼ S44 ð5dÞ
Eley et al. (1999) got the in-plane shear modulus for Si(100) in the form
1
GinðhÞ

¼ S44 þ 4 S11 � S12 �
S44

2

� �
FðhÞ: ð5eÞ
The slight difference between Eqs. (5c) and (5e) is that there is a factor of eight in the second term of the rightmost side of
our Eq. (5c) and this factor is changed to four in Eq. (5e). This difference is visualized by graphs plotted in Fig. 2.

However, Eq. (5c) agrees with Wortman and Evans’ results (1965) which are expressed as a function of directional co-
sines, as shown in Appendix B. The graphic representation of elastic and shear moduli of Si(100) as a function of polar coor-
dinate h, as shown in Fig. 3 (Each dashed circle in Fig. 3 represents a contour line and all the points on this line have the same
value of shear or Young’s modulus) indicates that both elastic and shear moduli are direction-dependent in the (100) plane,
but are constant in the direction normal to the (100) plane. Namely, Si(100) is fully anisotropic. In addition, if the circular
ring is made from polycrystalline silicon (i.e. fully isotropic material), it must satisfy the condition C44 = (C11 � C12)/2, and the
factor (S11 � S12 � S44/2) in Eqs. (5a) and (5c) becomes zero according to Eq. (A3). Then the in-plane and out-of-pane elastic
and shear moduli of Si(100) will reduce to
Ein ¼ Eout ¼ ðC11�C12ÞðC11þ2C12Þ
C11þC12

Gin ¼ Gout ¼ ðC11�C12Þ
2

(
ð6Þ
which shows that the polycrystalline silicon is fully isotropic as expected.

2.2. The stiffness matrix of Si(111)

The stiffness matrix of Si(111) can be obtained by performing tensor transformation on the Si(100) stiffness matrix. Let
�X�Y�Z be the rectangular coordinate system with �Z axis being perpendicular to the (111) plane, �X axis in the ½�1 �12� direction, �Y
axis in the ½1 �10� direction, and both �X and �Y axes are lying on the (111) plane as shown in Fig. 4. The components of any
vector expressed in the �X�Y�Z coordinate system are related to those expressed in the XYZ coordinate system by
�X
�Y
�Z

8><
>:

9>=
>; ¼ A

X

Y
Z

8><
>:

9>=
>;; where A ¼

� 1ffiffi
6
p � 1ffiffi

6
p 2ffiffi

6
p

1ffiffi
2
p 1ffiffi

2
p 0

1ffiffi
3
p 1ffiffi

3
p 1ffiffi

3
p

2
664

3
775 ð7Þ
Performing tensor transformation according to Eq. (3) and using Eqs. (2) and (7), the stiffness matrix of Si(111) can be
obtained as
Fig. 2. The shear modulus of Eq. (5c) (the solid line) and Eq. (5e) (the dashed line).



Fig. 3. (a) In-plane and out-of-plane shear moduli, Gin and Gout, of Si(100) as function of polar coordinate h. (b) In-plane and out-of-plane elastic moduli, Ein

and Eout, of Si(100) as function of h. (Each dashed circle represents a contour line).

Fig. 4. Configurations of coordinate systems for Si(111).
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Cð1 1 1Þ ¼

C11 C12 C13 0 C15 0
C12 C11 C13 0 �C15 0
C13 C13 C33 0 0 0
0 0 0 C44 0 �C15

C15 �C15 0 0 C44 0
0 0 0 �C15 0 C66

2
6666666664

3
7777777775

ð8Þ
where the non-zero entries of C(1 1 1) are given in Appendix C. Let rhZ0 be the cylindrical coordinates obtained by rotating the
rectangular coordinate system �X�Y�Z about the �Z axis by an angle h. Then the stiffness matrix referring to this cylindrical coor-
dinates is
Cð1 1 1;hÞ ¼

C 011 C012 C013 �C 024 C 015 0

C 012 C011 C013 C 024 �C015 0

C 013 C013 C033 0 0 0

�C 024 C024 0 C 044 0 �C 015

C 015 �C 015 0 0 C 044 �C 024

0 0 0 �C 015 �C024 C 066

2
6666666664

3
7777777775

ð9aÞ
Inversing this stiffness matrix gives the compliance matrix as



C.-O. Chang et al. / International Journal of Solids and Structures 45 (2008) 6114–6132 6119
Sð1 1 1;hÞ ¼

S011 S012 S013 �S024 S015 0

S012 S011 S013 S024 �S015 0

S013 S013 S033 0 0 0

�S024 S024 0 S044 0 �S015

S015 �S015 0 0 S044 �S024

0 0 0 �S015 �S024 S066

2
6666666664

3
7777777775

ð9bÞ
where the non-zero entries of matrices C(1 1 1,h) and S(1 1 1,h) are given in Appendix C. From Eq. (9b) the in-plane and out-of-
plane elastic and shear moduli of Si(111) are found to be
Ein ¼
1

S011

¼ ½2C2
13 � C33ðC11 þ C12Þ�½C44ðC11 � C12Þ � 2C2

15�
C2

15C33 þ C44ðC2
13 � C11C33Þ

ð10aÞ

Eout ¼
1

S033

¼ C33ðC11 þ C12Þ � 2C2
13

C11 þ C12
ð10bÞ

Gin ¼
1

S066

¼ C44C66 � C2
15

C44
ð10cÞ

Gout ¼
1

S044

¼ C44ðC11 � C12Þ � 2C2
15

C11 � C12
ð10dÞ
These moduli can be calculated from the known values of C11,C12, andC44 given in Eq. (2b). They are Ein = 169.10 GPa,
Eout = 187.85 GPa, Gin = 67.00 GPa, and Gout = 57.85 GPa. The results from Eq. (10) indicate that Ein – Eout and Gin – Gout, they
also show that both the elastic and shear moduli of Si(111) are not functions of h, which means that Si(111) is mechanically
isotropic in-plane, but anisotropic out-of-plane.

3. Equations of vibration

We adopt the hypothesis (that is, the plane of the cross-section remains plane which is perpendicular to the longitudinal
axis during deformation, and there is no Poisson’s effect) made in the theory of the Euler beam to analyze the silicon ring as
shown in Fig. 1. The cross section of the ring is shown in Fig. 5, where u, v, and w are the radial, tangential, and out-of-plane
displacements of the central line of the ring, respectively; a is the radius of the central line; /i is the rotation angle about the
z-axis due to in-plane bending; �r is the radial distance of any point P in the ring to the rectangular coordinate system x, y, z
with the origin located at the central line; and x is the axis parallel to the unit vector er as shown in Fig. 1 so we have
r ¼ aþ �r. If only the in-plane flexural vibration is considered, then the displacement field of the ring can be written as
(Kim and Chung, 2002)
Urðh; tÞ ¼ uðh; tÞ; Uhðh; tÞ ¼ vðh; tÞ þ �r/iðh; tÞ;

Uz ¼ 0; /i ¼
1
a
ðv� ou=ohÞ

ð11Þ
Fig. 5. Coordinate systems and displacements of the ring.
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If the amplitude of vibration is considered to be small, we need only the linear strain fields (Lee and Chao, 2000) which can be
obtained, by using the displacement fields given in Eq. (11), as
err ¼
oUr

or
¼ 0

ehh ¼
Ur

r
þ 1

r
oUh

oh
¼ u

a
þ 1

a
ov
oh
þ

�r
a

ov
oh
� o2u

oh2

 !" #

crh ¼
1
r

oUr

oh
þ oUh

or
� Uh

r
¼ 0

ezz ¼ chz ¼ crz ¼ 0

ð12Þ
Under the assumptions of small deformation and linear stress–strain relationship the elastic stain energy density (Mal and
Singh, 1991; Reismann and Pawlik, 1980) of a Si(100) ring is
Vr ¼
1
2
eTCe ¼ 1

2
0 ehh 0 0 0 0½ �

C 011 C012 C 013 0 0 C016

C 012 C011 C 013 0 0 C026

C 013 C013 C 033 0 0 0
0 0 0 C 044 0 0
0 0 0 0 C 044 0

C 016 C026 0 0 0 C066

2
666666664

3
777777775

0
ehh

0
0
0
0

2
666666664

3
777777775
¼ 1

2
C 011e

2
hh ð13Þ
where C011 ¼ 1
4 ½3C11 þ C12 þ 2C44 þ ðC11 � C12 � 2C44Þ cos 4h�.

Eq. (13) is the strain energy density for any differential volume rdrdhdzð¼ ad�rdhdzÞ which is considered as an anisotropic
body. If, for the purpose of reducing the complexity of analysis, we may adopt an approximation in which the differential
volume of the ring is considered as an isotropic body and the Young’s modulus E in that differential volume is constant
and given by Eq. (5a); then the widely used equation expressing the strain energy density for isotropic body is (Kirkhope,
1977)
Vr ¼
1
2

EðhÞe2
hh ¼

1
2

1
S11 � 2 S11 � S12 � S44=2ð ÞFðhÞ½ �

� �
e2

hh ð14Þ
where F(h) = (1 � cos 4h)/8. Notice that although the Young’s modulus is constant in each differential volume, each differen-
tial volume has its own Young’s modulus, because E(h) is function of h, that is, it depends on the orientation of the differential
volume. The graphs of these two different strain energy densities described by Eqs. (13) and (14) versus the circumferential
variable h are plotted in Fig. 6. This remarkable difference in magnitude of these two energy densities reveals that the strain
energy density, Eq. (14), of an isotropic differential volume adopted by Eley et al. (1999) is not close to the exact one, Eq. (13),
of an anisotropic differential volume. Furthermore, the h dependency appearing in the denominator of Eq. (14) increases the
extent of difficulty in the subsequent analysis. Therefore, Eq. (13), which correctly accounts for the anisotropic property of
differential volume of the ring, is used for frequency and amplitude analysis of the silicon ring later.

The strain energy of the Si(100) ring obtained by the using Eq. (12) is
Vr ¼
Z 2p

0

Z b
2

�b
2

Z h
2

�h
2

a
2
eTCed�rdzdh ¼

Z 2p

0

bh
96a3

½3C11 þ C12 þ 2C44 þ ðC11 � C12 � 2C44Þ cos 4h�
�½12a2u2 þ 24a2uv0 þ ð12a2 þ h2Þv02 � 2h2v0u00 þ h2u002�

( )
dh ð15Þ
Fig. 6. The graphs of strain energy densities vs. h. Solid line: Eq. (13). Dashed line: Eq. (14).
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The position vector of any point P of the ring in the deformed state found by using Eq. (11) is
rp
*
¼ ðaþ �r þ UrÞ er

*
þUh eh

*
¼ ðaþ �r þ uÞ er

*
þ vþ

�r
a

v� ou
oh

� �� �
eh
*

ð16Þ
Then the velocity at this point is
vp
*
¼ o rp

*

ot
¼ _u er

*
þðaþ

�rÞ _v� �r _u0

a
eh
*

ð17Þ
where the dot and prime denote the derivative with respect to time and h, respectively.
The kinetic energy of the ring with mass density q is
Kr ¼
Z 2p

0

Z b
2

�b
2

Z h
2

�h
2

q
2

aðvp
*
� vp
*
Þd�rdzdh ¼

Z 2p

0

bhq½12a2 _u2 þ ð12a2 þ h2Þ _v2 � 2h2 _v _u0 þ h2 _u02�
24a

dh ð18Þ
The equations of motion are derived by using Hamilton’s principle
Z t1

t0

ðdVr � dKrÞdt ¼ 0 ð19Þ
Substituting Eqs. (15) and (18) into Eq. (19) yields
Z t1

t0

ðdV � dKÞdt ¼
Z t1

t0

Z 2p

0
ðY1Þdudhdt þ

Z t1

t0

Z 2p

0
ðY2Þdvdhdt ¼ 0 ð20Þ
Since the variation of displacements, du and dv, can be chosen arbitrarily, the existence of Eq. (20) requires the coefficients of
du and dv to be zero, that is
Y1 ¼
bh

96a3 f96a4q€uþ 24a2½3C11 þ C12 þ 2C44 þ ðC11 � C12 � 2C44Þ cosð4hÞðuþ v0Þ�

þ 32h2ðC11 � C12 � 2C44Þ cosð4hÞðv0 � u00Þ þ 8a2h2qð€v0 � €u00Þ þ 16ðC11 � C12 � 2C44Þh2 sinð4hÞðv00 � u000Þ ð21aÞ
þ 2h2½3C11 þ C12 þ 2C44 þ ðC11 � C12 � 2C44Þ cosð4hÞ�ðu00 � v000Þg ¼ 0

Y2 ¼
bh

96a3 f4a2q½2ð12a2 þ h2Þ€v� 2h2 €u0�

þ 4ðC11 � C12 � 2C44Þ sinð4hÞ½24a2uþ 2ð12a2 þ h2Þv0 � 2h2u00� ð21bÞ
� ½3C11 þ C12 þ 2C44 þ ðC11 � C12 � 2C44Þ cosð4hÞ� � ½24a2u0 þ 2ð12a2 þ h2Þv00 � 2h2u000�g ¼ 0
Obviously, Eqs. (21a) and (21b) are a set of partial differential equations with coefficients being functions of the circumfer-
ential variable h. If the ring is made of polycrystalline silicon instead of single crystalline silicon, then the two governing
equations above will become a set of partial differential equations with constant coefficients by using the condition
C44 = (C11 � C12)/2.

4. The solution of equations of vibration

It is an extremely difficult task to get exact solutions of Eqs. (21) by solving them using the method of separation vari-
ables. Some authors (Eley et al., 1999; Fox et al., 1999; Hwang et al., 1999) solved their own particular problems by assuming
that pairs of mode shapes of an anisotropic ring are the same as those of an isotropic ring as
u

v

� �
�

n sin nh

cos nh

� �
and

u

v

� �
�

n cos nh

� sin nh

� �
ð22Þ
The mode shapes of an anisotropic ring are assumed in the form of sin nh and cos nh as those of the isotropic ring is a good
approach because they guarantee not only the single-value functions at h = 0 and h = 2p, but also the derivatives of any order
of the displacement functions with respect to h are continuous at these two points. Another concern is that there is no proof
about the issue that the proportional ratio of radial to tangential displacements of an anisotropic ring remains the same as n/
1 shown in Eq. (22) of an isotropic ring. We will assume that the pair of mode shapes of the anisotropic ring are the same as
those of the isotropic ring but with the amplitude (or proportional) ratio kept unknown. Thus the displacements of one of the
pair of the nth flexural modes (which is also called the nth cosine mode) are of the form
uðh; tÞ
vðh; tÞ

� �
¼

X1ðtÞ cos nh

X2ðtÞ sin nh

� �
ð23Þ
Since the partial differential Eqs. (21) are linear and smooth, the solution is unique. If the solution of the equations obtained
by plugging the assumed form of displacements (23) into those governing equations indeed exists, according to the unique-
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ness of solution, then this solution for displacements is the only solution of what we want. (Precisely speaking, displacement
functions (23) and (36) which are given later on, form a basis for the space of solution of the partial differential Eqs. (21)).

The independent variables h and t are kept fixed when taking variation on the dependent variables (such as the general-
ized coordinates X1 and X2), thus we have
du ¼ cos nhdX1

dv ¼ sin nhdX2

�
ð24Þ
Now substituting Eqs. (24), (21a) and (21b) into Eq. (20) and integrating h from 0 to 2p gives
Z t1

t0

Z 2p

0
F1ðh; X1;X2Þdh

� �
dX1dt þ

Z t1

t0

Z 2p

0
F2ðh; X1;X2Þdh

� �
dX2dt ¼ 0: ð25Þ
Since these two variations, dX1 and dX2, of generalized coordinates are arbitrary, their coefficients
R 2p

0 F1ðh; X1;X2Þdh andR 2p
0 F2ðh; X1;X2Þdh must be zero. After integration with respect to h, we obtain the governing equations of generalized coor-

dinates X1(t) and X2(t) as
bh sinð4npÞ
48a3nðn2 � 4Þ f�½C12 þ 2C44 � ðn2 � 3ÞC11�½ð12a2 þ n4h2ÞX1 þ nð12a2 þ n2h2ÞX2�g

þ bh
48a3n

fnpð3C11 þ C12 þ 2C44Þð12a2 þ h2n4ÞX1 þ n2pð3C11 þ C12 þ 2C44Þð12a2 þ h2n2ÞX2

þ a2q½sinð4npÞ þ 4np�½ð12a2 þ h2n2Þ€X1 þ nh2 €X2�g ¼ 0 ð26aÞ
bh sinð4npÞ

48a3nðn2 � 4Þ fn½C12 þ 2C44 þ ðn2 � 5ÞC11�½ð12a2 þ h2n2ÞX1 þ nð12a2 þ h2ÞX2�g

þ bh
48a3n

f�n2pð3C11 þ C12 þ 2C44Þð12a2 þ h2n2ÞX1 � n3pð3C11 þ C12 þ 2C44Þð12a2 þ h2ÞX2

þ a2q½sinð4npÞ � 4np�½nh2 €X1 þ ð12a2 þ h2Þ€X2�g ¼ 0 ð26bÞ
Therefore, the original set of partial differential equations, Eqs. (21), with variable coefficients are converted to the set of or-
dinary differential equations, Eqs. (26), with constant coefficients.

There is a factor, sin 4np/(n2 � 4), appearing in the first term of the LHS of Eqs. (26a) and (26b). It comes from one of the
several alike integrations contained in

R 2p
0 Fiðh; X1;X2Þdh; i ¼ 1;2, such as
Z 2p

0
AðX1;X2Þ � cos nh� cos nh� cos 4hdh ¼ nA

4
sin 4np
ðn2 � 4Þ : ð27aÞ
The value of this integration is zero when n – 2. However, it is finite when n = 2 and can be obtained by using L’Hospital’s
rule as
lim
n!2
½sin 4np=ðn2 � 4Þ� ¼ p ð27bÞ
The solution of Eq. (26) is of the form
X1ðtÞ ¼ Aeixnct and X2ðtÞ ¼ Beixnct ð28Þ
where xnc is the natural frequency of the nth cosine mode of the ring. Substituting this into Eqs. (26a) and (26b) results in a
set of algebraic amplitude equations
M11 M12

M21 M22

� �
A
B

� �
¼

0
0

� �
ð29Þ
where the matrix elements Mij are functions of natural frequencies xnc, elastic moduli Cjk, and geometric parameters. The
non-trivial solutions of Eq. (29) require that
det
M11 M12

M21 M22

� �
¼ 0 ð30Þ
Expanding Eq. (30) gives the algebraic equation
H1 þ H2 þ H3 �
sinð4npÞ
ðn2 � 4Þ

� �� �
� sinð4npÞ
ðn2 � 4Þ ¼ 0 ð31Þ
where Hi, i = 1,2,3 are functions of natural frequencies xnc and are list in Appendix D. If n = 2, then by using L’Hospital’s rule
Eq. (31) becomes
H1ðxncÞ þ ½H2ðxncÞ þ H3ðxncÞ � p� � p ¼ 0 ð32Þ
Solving Eq. (32) gives the natural frequencies of the second cosine mode in the explicit form as
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xnc1ðn¼2Þ;xnc2ðn¼2Þ ¼
1
4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð7C11 þ C12 þ 2C44Þ

a2ð12a2 þ 5h2Þq
ð60a2 þ 29h2Þ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð12a2 þ h2Þð300a2 þ 121h2Þ

q� �s
ð33Þ
where the ‘‘�” sign in the square root corresponds to xnc1(n = 2) and the ‘‘+” sign is associated with xnc2(n = 2). If n – 2, equa-
tion. (32) reduces to
H1ðxncÞ ¼ 0 ð34Þ
Solving Eq. (34) gives the natural frequencies as
xnc1ðn–2Þ;xnc2ðn–2Þ ¼
1

2
ffiffiffi
2
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð3C11 þ C12 þ 2C44Þ

a2q½12a2 þ h2ð1þ n2Þ�

s(
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f½12a2ðn2 þ 1Þ þ h2ð2n4 � n2 þ 1Þ� � Cng

q
ð35a;bÞ
where
Cn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð12a2 þ h2Þ½h2ð1� 3n2Þ2 þ 12a2ð1þ n2Þ2�

q
ð35cÞ
Similarly, the ‘‘�” sign is associated with the frequency xnc1(n – 2) and the ‘‘+” sign associated with xnc2(n–2). xnc1 and xnc2 in
Eq. (35) are the natural frequencies of the nth cosine mode. Although they correspond to the same mode shape, they have
different physical meanings: xnc1 is the frequency of the mode with the central line of the ring being inextensible, while xnc2

is the frequency of the mode with the central line extensible. It is obvious from Eq. (35) that xnc1 is smaller than xnc2. Usu-
ally we excite the ring into vibration in frequency xnc1 rather than xnc2, because the smaller the frequency is, the larger the
vibration amplitude is, and the more tractable the vibration detection is.

The natural frequency of the second one of the pair of the nth flexural modes (which is also called the nth sine mode) can
also be calculated in a similar way. For the nth sine mode, the radial and tangent displacements are assumed to be of the
form
uðh; tÞ
vðh; tÞ

� �
¼

X3ðtÞ sin nh

X4ðtÞ cos nh

� �
ð36Þ
The natural frequency associated with this sine mode for the ring made of isotropic materials is equal to that of the cosine
mode given by Eq. (23). But the same frequency of these two modes will split when the ring is made of anisotropic materials.
We want to evaluate the difference in frequencies between these two modes. Substituting the variation of displacements,
du = sin nhdX3 and dv = cos nhdX4, into Eq. (20) results in a set of governing equations of the generalized coordinates X3(t)
and X4(t). The solutions of the generalized coordinates are of the form
X3ðtÞ ¼ Ceixnst ; and X4ðtÞ ¼ Deixnst ð37Þ
where xns is the natural frequency of the nth sine mode of the ring. Substituting Eq. (37) into the governing equations of X3(t)
and X4(t) gives the algebraic equation of frequency xns
K1 þ K2 þ K3 �
sinð4npÞ
ðn2 � 4Þ

� �� �
� sinð4npÞ
ðn2 � 4Þ ¼ 0 ð38Þ
Through symbolic calculation it is found that
K1ðxÞ ¼ H1ðxÞ; K2ðxÞ ¼ �H2ðxÞ; K3ðxÞ ¼ H3ðxÞ ð39Þ
For the case where n = 2, Eq. (38) becomes
K1 þ ðK2 þ K3 � pÞ � p ¼ 0 ð40Þ
The explicit form expressions of natural frequencies of the second sine mode can be obtained from solving Eq. (40)
xns1ðn¼2Þ;xns2ðn¼2Þ ¼
1
4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð5C11 þ 3C12 þ 6C44Þ

a2ð12a2 þ 5h2Þq

s
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð60a2 þ 29h2Þ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð12a2 þ h2Þð300a2 þ 121h2Þ

q� �s
ð41a;bÞ
By comparing Eq. (41) with Eq. (33), we find that, for n = 2, the natural frequencies of the sine mode described by Eq. (36) are
different to those of the cosine mode defined by Eq. (23). This is mainly due to the fact that K2 – H2 as can be seen from Eq.
(39).

Now for the case where n – 2, Eq. (38) reduces to K1 (xns) = 0. Solving this equation gives
xns1ðn–2Þ ¼ xnc1ðn–2Þ and xns2ðn–2Þ ¼ xnc2ðn–2Þ ð42Þ
This means that the natural frequencies of the sine mode are equal to those of the cosine mode for any value of n except
when n = 2, because K1(x) = H1(x).

Since for the ring made of isotropic material the cosine and sine modes have the same natural frequency and these two
modes are called a pair of degenerated modes, now we want to check whether xns equates xnc when the ring made of single
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silicon crystal is replaced by the one made of polycrystalline silicon. Using C44 ¼ ðC11 � C12Þ=2, the factor (7C11 + C12 + 2C44)
in Eq. (33) becomes 8C11 and the factor (5C11 + 3C12 + 6C44) in Eq. (41) also becomes 8C11. Thus the splitting frequencies xns

and xnc are reconciled. For the ring made of polycrystalline silicon, combining the expressions for natural frequencies of the
ring with the central line being inextensible for n = 2 and all other n – 2 cases yields
Table 1
The dim

Parame

Ring de
Ring ra
Ring th
Ring he

Table 2
Materia

Single-

Parame

C11

C12

C44
xnc1 ¼ xns1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

C11

2a2q½12a2 þ h2ð1þ n2Þ�

s(
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f½12a2ðn2 þ 1Þ þ h2ð2n4 � n2 þ 1Þ� � Cng

q
ð43Þ
Similarly, the natural frequencies of flexural vibration of the Si(111) ring can also be obtained in the explicit form as
xnc1ð¼ xns1Þ;xnc2ð¼ xns2Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

C11

2a2q½12a2 þ h2ð1þ n2Þ�

s
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f½12a2ðn2 þ 1Þ þ h2ð2n4 � n2 þ 1Þ� � Cng

q
ð44a;bÞ
where the value of C11 is given in Appendix C.
The difference between Eqs. (44) and (43) is that the elastic constant C11 in Eq. (43) is replaced by C11 in Eq. (44). The

reason is that polycrystalline silicon is fully isotropic, but Si(111) is not three-dimensionally isotropic but only in-plane
(two-dimensional) isotropic. Both polycrystalline silicon ring and Si(111) ring do not exhibit frequency splitting
phenomena.

To find the ratio of tangential to radial displacements, we substitute Eq. (33) or (35) into Eq. (29) to obtain the amplitude
ratio of the nth cosine mode
B
A
¼ � 2n½12a2 þ ð2n2 � 1Þh2�
ð12a2 þ h2Þðn2 � 1Þ þ Cn

ð45aÞ
Similarly, the amplitude ratio of the nth sine mode can be obtained as
D
C
¼ � B

A
ð45bÞ
Eqs. (45a) and (45b) reveal that the ratio of tangential to radial displacements of an anisotropic ring depends on the ring size
and on the number n of the nth flexural mode. It should be noted that the ratio is the same regardless of the elastic moduli. If
the ring is of high aspect-ratio (i.e. a� h and a� b), the ratios of tangential to radial displacements of the nth cosine and sine
flexural modes of the anisotropic ring can be approximated as
B
A
� �1

n
and

D
C
� 1

n
ð46Þ
which are the same as those of the isotropic ring (Love, 1944).
Natural frequencies of pairs of similar modes of the ring made of single-crystal silicon wafers that are cut parallel to the

(100) and (111) planes, and made of polycrystalline silicon wafer are calculated by using the explicit equations obtained
here. The dimensions of the ring are given in Table 1. The elastic constants of Si(100), Si(111), and polycrystalline silicon,
are given in Table 2, where C011, C012, and C066 are the elements of the stiffness matrix C(1 1 1,h) and their values are given in
Appendix C. Substituting these elastic constants into Eqs. (34), (35), (41), (43) and (44) gives the values of natural frequencies
of the ring as shown in Table 3.

Now we make an attempt to give the physical explanation of why the natural frequencies, xnc and xns, of pairs of similar
modes are different for the n = 2 flexural mode but the same for all other pairs. In Fig. 7, the mode shapes and the Young’s
ensions of the ring

ter Value

nsity q = 2330 kg/m3

dius a = 5000 lm
ickness h = 50 lm
ight b = 150 lm

l parameters of silicon wafer

crystal (Si(100)) Ploy-crystal (silicon) Single-crystal (Si(111)) Unit

ters Value Parameters Value Parameters Value

165.7 C11 165.7 C011 194.4 GPa
63.9 C12 63.9 C012 54.333 GPa
79.6 C44 50.9 C066 70.0333 GPa



Table 3
The natural frequencies of a silicon ring

n Single-crystal (Si(100) ring) Ploy-crystal (Si(100) ring) Single-crystal (Si(111) ring) Unit

xnc xns xnc xns xnc xns

2 13,344 13,887 13,064 13,064 14,150 14,150 rad/s
3 38,517 38,517 36,950 36,950 40,022 40,022 rad/s
4 73,851 73,851 70,846 70,846 76,737 76,737 rad/s
5 119,428 119,428 114,570 114,570 124,096 124,096 rad/s
6 175,190 175,190 168,064 168,064 182,038 182,038 rad/s

Fig. 7. (a) The ring of cos 2h mode stretches in the vertical direction. (b) The ring shown in (a) rebounds to stretch in the horizontal direction. (c) The ring of
sin 2h mode stretches toward the ring’s points of most strong stiffness. (d) The rebound of the ring shown in (c).
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modulus of the Si(100) ring for the n = 2 case, which both are functions of h, are plotted on the same chart. It is clear that for
the cos 2h mode the maximum stretch and rebound of the ring is in the direction along the points of the ring with least stiff-
ness; while for the sin 2h mode the ring stretches and rebounds to its maximum extent in the direction along the points with
most stiffness. With recourse to the simple concept that, for a spring-mass-dashpot system of mass m and stiffness k, the
natural frequency is proportional to the square root of k such that x ¼

ffiffiffiffiffiffiffiffiffiffi
k=m

p
. Therefore, the natural frequency of the cos

2h mode must be less than that of the sin 2h mode; this is truly reflected in Table 3:xnc (=13,344 rad/s for n = 2) is less than
xns(=13,887 rad/s for n = 2).
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Now we turn to Fig. 8. The stretch and rebound of the ring for the cos 3h mode is shown on the left-hand side of Fig. 8 and
those for the sin 3 h mode on the right-hand side. It should be noted that, if we rotate the mode shapes of the cos 3h mode
clockwise by an angle of 90�, the orientations of the mode shapes relative to the Young’s modulus curve are found to be
exactly the same as those for the sin 3h mode. This is the reason why the natural frequencies of these two modes are equal.
But, how does this 90� rotation symmetry come? Since single-crystal silicon is a face-centered diamond structure (Kittel,
2005), according to the classification of point symmetry group, it belongs to the class of m3m. A symmetry operation will
take the crystal structure into itself, that is, the original pattern of atomic arrangement is indistinguishable from that of
the final pattern after symmetry operation. The symmetry elements of point group m3m contains six diad axes, three tetrad
axes, a centre and four triads axes. All of these can be produced by putting mirrors parallel to both {110} and {100} coupled
with the four triad axes (McKie and McKie, 1986; Kelly et al., 2000). One of these three tetrad axes is the [001] axis. Thus the
initial state of a silicon crystal is identical to its final state after a rotation about the [001] axis (or the z-axis of Fig. 5) by an
angle of 90�. This is also the reason why the Young’s modulus has a 90� rotation symmetry. Hence, if one rotates the ring
together with the cos 3h mode shape clockwise by an 90� angle about the z-axis, he will find the rotated mode shape is
exactly the same the sin 3h mode shape. Therefore, the frequency of cos 3h mode must be equal to that of sin 3h modes,
because they have the same atomic arrangement. This 90� rotation symmetry also happens to the fifth (n = 5) flexural mode.
If the mode shapes in Fig. 9(a) and (b) denote the stretch and rebound of cos 5h mode, and those in Fig. 9(c) and (d) represent
the stretch and rebound of sin 5h mode, it is clear that after a 90� rotation about the z-axis, the orientation of the cos 5h mode
shape (Fig. 9(a)) relative to the Young’s modulus become that of the sin 5h mode shape (Fig. 9(c)) relative to the Young’s
modulus. This phenomenon of a 90� rotation symmetry also happens to the mode shapes shown in Fig. 9(b) and (d). Thus
we conclude that both frequencies of cos 5h and sin 5h modes are equal.
Fig. 8. (a) and (b) show the stretch and rebound of the cos 3h mode. (c) and (d) show the stretch and rebound of the sin 3h mode.



Fig. 9. (a) and (b) show the stretch and rebound of cos 5h mode. (c) and (d) show the stretch and rebound of the sin 5h mode.

C.-O. Chang et al. / International Journal of Solids and Structures 45 (2008) 6114–6132 6127
The orientations of the mode shapes of cos 4h and sin 4h modes with respect to the Young’s modulus are shown in Fig. 10.
The in-plane crystallographic 90� rotation symmetry can not be applied to explain the equality of natural frequencies for
these two modes. Unlike the cos 2h mode where the maximum stretch of the ring always occurs at the zone which is the
least stiff as can be seen in Fig. 7(a) and (b), the maximum stretch in the first half period of oscillation occurs at the zone
which is the least stiff (Fig. 10(a)). However, in the other half period, the maximum stretch occurs in the place which is
the most stiff (Fig. 10(b)); therefore, in the average sense over a period the strain energy of the cos 4h may be equal to that
of the sin 4h mode where both the maximum stretch (Fig. 10(c)) and maximum rebound (Fig. 10(d)) occur at the region of
moderate stiffness. Similarly, the equality in frequency for other pairs of similar modes is due to the reason that they have the
same averaged strain energy over one period. This can be proved rigorously in the following.

Let Ec(xnc) denote the total energy of the ring which is in free vibration in cos nh mode with natural frequency xnc, and
then we have Enc(xnc) = Knc + Vnc, where Knc is the kinetic energy and Vnc the strain energy. Now if the ring is set into free
vibration in the other mode instead, says, the sin nh mode with frequency xns but with the same total energy as that of
the cos nh mode. We want to prove that xns = xnc for all the modes except for the n = 2 one.

We assume that the amplitudes of these two modes described by Eqs. (28) and (37) are the same because their assumed
total energies are the same, that is, A = C and B = D. Let the notation ‘‘hi” denote the operator averaging over one period. Then
hEncðxncÞi ¼ hKnci þ hVnci ð47Þ
where
hKnci ¼
1

Tnc

Z Tnc

0

Z 2p

0

Z b=2

�b=2

Z h=2

�h=2

q
2

að~vp �~vpÞd�rdzdh

" #
dt; ð48aÞ



Fig. 10. (a) and (b) show the stretch and rebound of the cos 4h mode and (c) and (d) show the stretch and rebound of the sin 4h mode.
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and Tnc = 2p/xnc. Similarly
hVnci ¼
1

Tnc

Z Tnc

0

Z 2p

0

Z b=2

�b=2

Z h=2

�h=2

a
2
ðeTCeÞd�rdzdh

" #
dt ð48bÞ
Through calculating Eqs. (15) and (18) and using Eq. (45), the averaged kinetic and strain energy of the cos nh and sin nh
modes for the nth in-plane flexural modes with n – 2 are obtained as
hKncðxncÞin–2 ¼
A2bhpqx2

nc

96an2 Dn1 ð49aÞ

hVncin–2 ¼ �
A2bhpð3C11 þ C12 þ 2C44Þ

384a3ð12a2 þ h2Þ
Dn2 ð49bÞ

hKnsðxnsÞin–2 ¼
C2bhpqx2

ns

96an2 Dn1 ð49cÞ

hVnsin–2 ¼ �
C2bhpð3C11 þ C12 þ 2C44Þ

384a3ð12a2 þ h2Þ
Dn2 ð49dÞ
where
Dn1 ¼ 12a2ð1þ n2Þ2 � h2ð3n2 � 1Þ
12a2 þ h2 � ðh

2 � 3n2h2 þ CnÞ þ 12a2½h2ð1� 3n2Þ2 � ðn2 � 1Þ � Cn�

Dn2 ¼ �144a4ðn2 þ aÞ2 þ h2ð3n2 � 1Þ � ðh2 � 3n2h2 þ CnÞ þ 12a2½�2h2ð1� 2n2 þ 5n4Þ þ ð1þ n2Þ � Cn�
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and Cn is defined by Eq. (35c).
By observing Eqs. (49b) and (49d) we know that, if the two different free vibrations, one is in cos nh mode and the other in

sin nh mode, have the same total mechanical energy, that is, A = C, the averaged strain energy over their own period of these
two modes is the same for all the (n – 2) cases and is independent of the frequency. Then from hEnc(xnc)i = hEns (xns)i, we
have hKnc (xnc)in–2 = hKns(xns)in–2. Also from Eqs. (49a) and (49c) we know xnc = xns for all the n except n = 2.

Now we consider the n = 2 case, the averaged kinetic and strain energy can be obtained in the similar way
hKncðxncÞin¼2 ¼
A2bhqpx2

c

384að12a2 þ h2Þ
� Dn3 ð50aÞ

hVncin¼2 ¼ 9A2bh3pð7C11 þ C12 þ 2C44Þ � Dn4 ð50bÞ

hKnsðxnsÞin¼2 ¼
A2bhqpx2

s

384að12a2 þ h2Þ
� Dn3 ð50cÞ

hVnsin¼2 ¼ 9C2bh3pð5C11 þ 3C12 þ 6C44Þ � Dn4 ð50dÞ
where
Dn3 ¼ 3600a4 þ a2ð1752h2 � 36KÞ þ 11h2ð11h2 �KÞ

Dn4 ¼
ð300a2 þ 121h2Þ

16a½3600a4 þ 11h2ð11h2 þ DÞ þ 12a2ð146h2 þ 5DÞ�
and K ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð12a2 þ h2Þð300a2 þ 121h2Þ

q
.

It is clear that, although the amplitudes of vibration of the pair of second flexural modes are equal, their strain energies
are not equal due to the anisotropic effect. Based on the assumed equal mechanical energy, we have that hKnc (xnc)in=2 – hKns

(xns)in = 2. This leads to the result that xnc – xns for the n = 2 case and therefore, the phenomenon of frequency splitting only
happens to the second flexural mode.
5. Conclusions

This work presents the analysis of in-plane free vibration of rings made of single-crystal silicon wafers cut parallel to
the (100) and (111) planes. It is the anisotropic elastic constants appearing in the strain energy that causes the equa-
tions of motion of the vibrating ring, derived using Hamilton’s principle, into a set of partial differential equations with
coefficients being periodic in polar variable. These partial differential equations with varying coefficients are then con-
verted into a set of ordinary differential equations by assuming that the mode shapes are the same as those of the iso-
tropic ring but with non-predetermined amplitude. The natural frequencies and amplitude of mode shapes are solved
exactly in the explicit form. If the ring is made of a Si(100) wafer, the elastic constants are fully anisotropic; any pair
of similar modes remain degenerate, which means that the two natural frequencies of that pair are equal, except for the
second (n = 2) flexural mode. The phenomena of frequency splitting and degeneration of pairs of similar modes are ex-
plained based on the crystallographic symmetry elements of single-crystal silicon and the conservation of the averaged
total energy. If the ring is made of a Si(111) wafer, the elastic constants are in-plane isotropic but out-of-plane aniso-
tropic. It is found that the mode shapes depend only on the size and modal number of the ring, and they are all the
same no matter what the ring is made of, Si(100), or Si(111), or poly-crystalline silicon. Finally, when the ring is of
high aspect ratio, i.e. the radius is much larger than the height and width, the ratio of radial to tangential displacements
equals to 1/n for the cos nh flexural mode and �1/n for the sin nh flexural mode.
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Appendix A. Stiffness and Compliance matrix elements of Si(100)

The rotation matrix A which rotates the rectangular coordinate system X, Y, Z about the Z axis by an angle h into the cylin-
drical coordinate system r, h, z is
A ¼ ½aij� ¼
cos h sin h 0
� sin h cos h 0

0 0 1

2
64

3
75
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The stiffness matrix with respect to this cylindrical coordinates can be obtained by using the tensor transformation Eq. (3).
For example, the matrix coefficient C011 is given by
C011 ¼ C01111 ¼ a1ma1na1oa1pCmnop

¼ a11a11a11a11C1111 þ a11a11a12a12C1122 þ a12a12a11a11C2211 þ a11a12a11a12C1212 þ a12a12a12a12C2222
Using Eq. (1) for subscript conversion, the symmetric property Cijkl = Cklij, and the equality C22 = C11 and C66 = C44 for Si(100),
the above equation becomes
C011 ¼ cos4 C11 þ 2 cos2 h sin2 hC12 þ sin4 hC11 þ sin2 h cos2 hC44

¼ 1
4
½3C11 þ C12 þ 2C44 þ ðC11 � C12 � 2C44Þ cos 4h�: ðA1Þ
The other coefficients of the stiffness matrix C0ð1 0 0;hÞ are
C 012 ¼
1
4
½C11 þ 3C12 � 2C44 � ðC11 � C12 � 2C44Þ cos 4h�

C 013 ¼ C12

C 016 ¼ �
1
4
ðC11 � C12 � 2C44Þsin4h

C 026 ¼
1
4
ðC11 � C12 � 2C44Þ sin 4h

C 033 ¼ C11

C 044 ¼ C44

C 066 ¼
1
4
½C11 � C12 þ 2C44 � ðC11 � C12 � 2C44Þ cos 4h�

ðA2Þ
The relationship between stiffness matrix and compliance matrix elements for cubic system is
S11 ¼
C11 þ C12

ðC11 � C12ÞðC11 þ 2C12Þ
; S12 ¼

�C12

ðC11 � C12ÞðC11 þ 2C12Þ
S44 ¼ 1=C44: ðA3Þ
Then the compliance matrix element of S0ð1 0 0;hÞ in term of Sij are
S011 ¼
1
8
½6S11 þ 2S12 þ S44 þ ð2S11 � 2S12 � S44Þ cos 4h�

S012 ¼
1
8
½2S11 þ 6S12 � S44 � ð2S11 � 2S12 � S44Þ cos 4h�

S013 ¼ S12

S016 ¼ �
1
4
ð2S11 � 2S12 � S44Þ sin 4h

S026 ¼
1
4
ð2S11 � 2S12 � S44Þ sin 4h

S033 ¼ S11

S044 ¼ S44

S066 ¼
1
2
½2S11 � 2S12 þ S44 � ð2S11 � 2S12 � S44Þ cos 4h�

ðA4Þ
Appendix B. The elastic and shear moduli of Si(100)

Here we rederive the Young’s and shear moduli from the compliance coefficients given by Wortman and Evans (1965) in
order to verify Eqs. (5a) and (5c). When we rotate the rectangular coordinate system XYZ about an arbitrary direction with
the origin fixed into the coordinate system �X�Y�Z, the components in coordinates �X�Y�Z are related to those in coordinates XYZ
by
�X
�Y
�Z

8><
>:

9>=
>; ¼

l1 m1 n1

l2 m2 n2

l3 m3 n3

2
64

3
75

X

Y

Z

8><
>:

9>=
>; ðB1Þ
where li, mi, and ni are the direction cosines of the transformation. Wortman and Evans (1965) derived the compliance and
stiffness coefficients for cubic system as functions of direction cosines as follows:
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S011 ¼ S11 þ S11 � S12 �
1
2

S44

� �
ðl42 þm4

2 þ n4
2 � 1Þ

S033 ¼ S11 þ S11 � S12 �
1
2

S44

� �
ðl43 þm4

3 þ n4
3 � 1Þ

S044 ¼ S44 þ 4 S11 � S12 �
1
2

S44

� �
ðl2

2l23 þm2
2m2

3 þ n2
2n2

3Þ

S066 ¼ S44 þ 4 S11 � S12 �
1
2

S44

� �
ðl2

2l21 þm2
2m2

1 þ n2
2n2

1Þ

ðB2Þ
If the coordinate system is rotated about the Z axis, then we have
cos sin h 0
� sin h cos h 0

0 0 0

2
64

3
75 ¼

l1 m1 n1

l2 m2 n2

l3 m3 n3

2
64

3
75; ðB3Þ
Substituting Eq. (B3) into Eq. (B2) gives the elements of compliance matrix for Si(100) as
S011 ¼ S11 �
1
4

S11 � S12 �
1
2

S44

� �
ð1� cos 4hÞ

S033 ¼ S11 � S11 � S12 �
1
2

S44

� �
S044 ¼ S44

S066 ¼ S44 þ S11 � S12 �
1
2

S44

� �
ð1� cos 4hÞ

ðB4Þ
These results are equal to those in Eqs. (5a) and (5c).

Appendix C. Elements of stiffness and compliance matrices of Si(111)

The non-zero entries of stiffness matrix C0ð1 1 1Þ are
C11 ¼
ðC11 þ C12 þ 2C44Þ

2
; C12 ¼

ðC11 þ 5C12 � 2C44Þ
6

;

C13 ¼
ðC11 þ 2C12 � 2C44Þ

3
; C15 ¼

ðC11 � C12 � 2C44Þ
3
ffiffiffi
2
p ;

C33 ¼
ðC11 þ 2C12 þ 4C44Þ

3
; C44 ¼

ðC11 � C12 þ C44Þ
3

;

C66 ¼
ðC11 � C12 þ 4C44Þ

6

ðC1Þ
The elements of the stiffness matrix C(1 1 1,h) are
C 011 ¼ C11; C 012 ¼ C12;

C 013 ¼ C13; C 015 ¼ C15 cos h½2 cos 2h� 1�;
C 024 ¼ C15 sin h½2 cos 2hþ 1�; C 033 ¼ C33;

C 044 ¼ C44; C 066 ¼ C66

ðC2Þ
The elements of compliance matrix S(1 1 1,h) are
S011 ¼
C2

15C33 þ C44ðC2
13 � C11C33Þ

½2C2
13 � C33ðC11 þ C12Þ�½C44ðC11 � C12Þ � 2C2

15�

S012 ¼
C2

13C44 � C33ðC2
15 þ C12C44Þ

½2C2
13 � C33ðC11 þ C12Þ�½C44ðC11 � C12Þ � 2C2

15�

S013 ¼
C13

2C2
13 � C33ðC11 þ C12Þ

; S015 ¼
C15 cos 3h

2C2
15 � C44ðC11 � C12Þ

;

S024 ¼
C15 sin 3h

2C2
15 � C44ðC11 � C12Þ

; S033 ¼
C11 þ C12

C33ðC11 þ C12Þ � 2C2
13

;

S044 ¼
C11 � C12

C44ðC11 � C12Þ � 2C2
15

; S066 ¼
C44

C44C66 � C2
15

:

ðC3Þ
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Appendix D. The coefficients Hi(xnc) in Eq. (31)

The coefficients Hi(xnc) given in Eq. (31) are
H1ðxncÞ ¼
p2b2h2e2ixnct

192a4 fð3C11 þ C12 þ 2C44Þ2h2ðn� n3Þ2

� 4a2ð3C11 þ C12 þ 2C44Þ½12a2ð1þ n2Þ þ h2ð1� n2 þ 2n4Þ�qx2
nc ðD1Þ

þ 16a4½12a2 þ h2ð1þ n2Þ�q2x4
ncg

H2ðxncÞ ¼
npb2h2e2ixnct

192a4 fðC11 � C12 � 2C44Þ � ½2ð3C11 þ C12 þ 2C44Þh2ð�1þ n2Þ2 ðD2Þ

� a2ð�12a2ð�9þ n2Þ þ h2ð1þ 7n2ÞÞqx2
nc�g

H3ðxncÞ ¼
b2h2e2ixnct

192a4 f�h2ð�1þ n2Þ2½C11ð�5þ n2Þ þ C12 þ 2C44�½C11ð�3þ n2Þ � C12 � 2C44�

þ 1
n2 ha

2h2ð�4þ n2Þqx2
nc½ðC12 þ 2C44Þð�1þ nÞð1þ nÞ þ C11ð�3þ 4n2 � 9n4 þ 2n6Þ�i ðD3Þ

� 12a6ð�4þ n2Þ2q2x4
nc

n2 þ 1
n2 ha

4ð�4þ n2Þqx2
nc � ½12ðC12 þ 2C44Þð�1þ n2Þ

þ 12C11ð�3þ 4n2 þ n4Þ � h2ð�4� 3n2 þ n4Þqx2
nc�ig
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