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SUMMARY

Theories of associative memory suggest that suc-
cessful memory storage and recall depend on a
balance between two complementary processes:
pattern separation (to minimize interference) and
pattern completion (to retrieve a memory when pre-
sented with partial or degraded input cues). Putative
attractor circuitry in the hippocampal CA3 region is
thought to be the final arbiter between these two pro-
cesses.Herewepresent direct, quantitative evidence
that CA3 produces an output pattern closer to the
originally stored representation than its degraded
input patterns from the dentate gyrus (DG).We simul-
taneously recorded activity from CA3 and DG of
behaving ratswhen local and global reference frames
were placed in conflict. CA3 showed a coherent pop-
ulation response to the conflict (pattern completion),
even though its DG inputs were severely disrupted
(pattern separation). The results thus confirm the hall-
mark predictions of a longstanding computational
model of hippocampal memory processing.

INTRODUCTION

The hippocampus is crucial for spatial, contextual, and episodic

memory (Eichenbaum, 2004; O’Keefe and Nadel, 1978; Squire

et al., 2004), but the precise computations performed by the

hippocampus in support of these functions are unknown. It is

thought that the hippocampus integrates external sensory infor-

mation from the lateral entorhinal cortex (LEC) with self-motion-

based spatial information from the medial entorhinal cortex

(MEC) to create context-specific representations necessary for

the recall of individual events (Knierim et al., 2006; Manns and

Eichenbaum, 2006; Suzuki et al., 1997). A longstanding compu-

tational theory suggests that, to maximize the storage of infor-

mation with minimal interference, associative networks such as

the hippocampus perform two competing, yet complementary,

processes (Guzowski et al., 2004; Hasselmo and Wyble, 1997;
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McClelland and Goddard, 1996; McNaughton and Morris,

1987; McNaughton and Nadel, 1990; O’Reilly and McClelland,

1994; Rolls and Treves, 1998). Pattern separation refers to the

ability of the network to reduce the overlap between similar input

patterns before they are stored in order to reduce the probability

of interference in memory recall. Pattern completion refers to the

ability of the network to retrieve stored output patterns when pre-

sented with partial or degraded input patterns. In many models

of the hippocampus, the dentate gyrus (DG) region is regarded

as a preprocessing stage that performs pattern separation on

entorhinal cortex inputs. In contrast, the extensive network of

recurrent collaterals in CA3 may produce attractor dynamics

that result in pattern completion (or generalization) when input

representations are similar to stored memories (attractor basins)

or pattern separation when input representations are more

distinct (Guzowski et al., 2004; Rolls and Treves, 1998).

Previous studies have provided evidence consistent with the

hypothesized roles of the DG and CA3 in pattern separation

and pattern completion (for reviews, see Santoro, 2013; Yassa

and Stark, 2011). However, a rigorous test of these functions

requires measuring both the input and output representations

of the brain structures, to test explicitly whether the outputs

are more similar (pattern completion) or less similar (pattern sep-

aration) than the inputs. Previous investigations of CA3 and DG

lacked critical information about the inputs, making it uncertain

whether the putative pattern separation or completion was

inherent to the region under investigation or merely a reflection

of processing that already occurred upstream (e.g., Gold and

Kesner, 2005; Gilbert et al., 2001; Rolls and Kesner, 2006; Kes-

ner et al., 2000; McHugh et al., 2007; Nakazawa et al., 2002; Lee

et al., 2004). This uncertainty is magnified by the paucity of pub-

lished studies on the nature of DGneural representations in freely

moving animals. Other studies that investigated both input and

output patterns worked under experimental conditions in which

CA3 reflected pattern separation, precluding a test of its hypoth-

esized pattern completion functions (Bakker et al., 2008; Leut-

geb et al., 2007).

An experimental protocol utilizing local-global reference frame

conflicts has been shown to result in CA3 neural responses that

resemble pattern completion. Lee et al. (2004) showed that the

population of CA3 cells responded to the local-global conflict

more coherently than did the population of CA1 cells. In the
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Figure 1. Basic Properties of CA3 and DG

Neural Firing and Experimental Procedures

(A and B) Recording location examples show

tetrodes targeting CA3 (A) and DG (B). Because

the transverse axis of the hippocampus is angled

relative to the midline, the DG tetrodes targeted

sites medial and posterior to the regions sampled

by CA3 tetrodes. Scale bar equals 500 mm, and

arrows indicate the end of the tetrode tracks. Other

tracks are visible that ended in adjacent sections.

(C) One day of the experimental protocol consisted

of three Std sessions interleaved with two

cue-mismatch sessions. The mismatch angles

depicted are 180� and 45�.
(D and E) Putative cell types from CA3 (D) and

DG (E) were differentiated by the mean firing rates

(Hz; abscissa) and spike widths (ms; ordinate) of all

well-isolated cells recorded in the first Std session

of the day. For CA3 cells, two distinct groups were

observed (putative principal cells with a mean

firing rate <10 Hz and putative interneurons with a

mean firing rate R10 Hz). Three groups of cells

were apparent in DG: (a) <2 Hz, (b) 2–10 Hz, and

(c) >10 Hz.

(F and G) The distribution of spatial information scores (Skaggs et al., 1996) from CA3 (F) was significantly higher than for DG (G) (Mann-Whitney

U test, Z = 3.1, p < 0.03). See Figure S6 for the information score distribution of the DG neurons that fired <2 Hz.
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present study, we recorded single-unit activity simultaneously

from CA3 and DG in the same protocol to directly test whether

the DG input patterns to CA3 were degraded in the cue-conflict

environment (as predicted from pattern separation hypotheses)

and whether the CA3 representation of the altered environment

was more similar to the familiar environment, compared to its

DG inputs. The results show that CA3 produced an output

pattern closer to the originally stored representation than the

degraded input patterns from the DG, providing direct, quantita-

tive, neurophysiological evidence for pattern completion of

severely degraded inputs in the DG-CA3 circuit.

RESULTS

Single-unit activity was recorded from the DG and CA3 of freely

moving rats using multitetrode arrays (Figures 1A and 1B). The

CA3 tetrodes were localized to the pyramidal cell layer, primarily

in the CA3a and CA3b regions. The DG tetrodes were localized in

(or just external to) the granule cell layer (n = 33) or in the hilus (n =

23); none of the tetrode tips encroached upon the CA3c layer. As

discussed at length in a paper that presented data from the same

animals as those reported here (Neunuebel and Knierim, 2012), it

is impossible to distinguish from histology alone whether any in-

dividual, extracellularly recorded unit is a mature granule cell; an

adult-born, immature granule cell; or a cell in the hilus. The cells

recorded here had properties that are consistent with previous

publications of DG neural activity (Gothard et al., 2001; Jung

and McNaughton, 1993; Leutgeb et al., 2007; Neunuebel and

Knierim, 2012). Approximately half of the cells in our sample fired

inmultiple, irregularly spacedsubfields as rats ran in a large, open

field after themain experiment each day (Figures S1 andS2 avail-

able online). This pattern of activity was ascribed to granule cells

by Leutgeb et al. (2007). (Subsequent work has suggested that

such patterns may be preferentially associated with newborn
granule cells or hilar cells [Alme et al., 2010; Neunuebel and

Knierim, 2012].) Other cells that were included in the analysis

either fired at a low rate (<1 Hz) with little spatial specificity or

had a single place field in the open field. These cells were consid-

ered by Neunuebel and Knierim (2012) as likely candidates for

mature granule cells. Because it is unknownwhether the different

firing profiles corresponded to different morphological cell types,

we did not segregate different subtypes of DG cells in the pri-

mary analyses (but we confirmed the main results by analyzing

different subclasses in the Supplemental Information).

Rats ran clockwise (CW) around a track centered in a black-

curtained, circular environment (Figure 1C). Four local cues tiled

the surface of the track, and six global cues were placed on

or near the curtains (Knierim, 2002). The rats experienced a

standard configuration of these cue sets for an average of

16 days before the experiments started. Recording sessions

consisted of three standard (Std) sessions separated by two

mismatch (Mis) sessions, in which graded changes in sensory

input were produced by rotating the global cues CW and the

local cues counterclockwise (CCW) by the same amount, for

net cue mismatches of 45�, 90�, 135�, and 180�. Over the course

of 4 days, the rats experienced each mismatch amount twice.

During the experiment, 399 CA3 units and 341 DG units were

recorded during baseline (BL) sessions in which the rat sat

quietly or slept in a towel-lined dish. These BL sessions were

used to judge stability of the recordings within a day. Subsets

of these cells were active during any given behavioral session

and were analyzed quantitatively.

During behavior on the track, the CA3 cells could be classified

into putative principal cells and putative interneurons on the ba-

sis of firing rates and spike widths (Figure 1D), with putative prin-

cipal cells having lower firing rates and wider spikes and putative

interneurons having higher firing rates and narrower spikes. The

DG units, on the other hand, segregated into three clusters of
Neuron 81, 416–427, January 22, 2014 ª2014 Elsevier Inc. 417
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points (Figure 1E). Preliminary analysis of the data showed that

some DG units fired at very low rates on the track, but the loca-

tions of these spikes were consistent across individual laps. The

DGmossy fiber synapse onto CA3 is very large, and it is conceiv-

able that even these low-rate cells might exert a significant influ-

ence on the CA3 network response. Therefore, to include these

very low-rate cells and to exclude the high-firing-rate putative

interneurons, we restricted our analyses to cells withR20 spikes

in a given session and amean firing rate <10Hz, respectively.We

applied these criteria to both CA3 and DG to remain consistent

between regions and to remain consistent with the criteria of

our previous report on the entorhinal inputs to the DG and CA3

(Neunuebel et al., 2013), thus allowing direct comparison to

those results. Approximately 37% of CA3 (146) and 28% of DG

(96) units met these inclusion criteria during the first Std session

of the day (although many additional cells met the inclusion

criteria in later sessions of the day; Figures S1–S3). Figures 1F

and 1G show that both CA3 and DG had a similar range of spatial

information scores, although the median score of the CA3 neu-

rons was greater than the DG neurons (CA3: median 0.9, IQR

0.4–1.4; DG: median 0.6, IQR 0.1–1.2; Mann-Whitney U test,

z = 3.1, p < 0.03).

Similar to previously published reports of hippocampal subre-

gions CA3 and CA1 (Lee et al., 2004) and their entorhinal inputs

(Neunuebel et al., 2013), individual cells responded differently

to the double rotation manipulation. Classification of cells into

different response types leads to arbitrary distinctions in many

cases, and, therefore, we did not perform statistical or quantita-

tive analyses on these categories. We present them here to pro-

vide a useful description of the types of single-unit responses

that underlie the quantitative population analyses presented

below. The firing fields of some cells rotated CCW with the local

cues or CW with the global cues. This rotation was determined

by correlating the Mis rate map with the Std 1 rate map at

each of 72 rotational increments (each increment was 5�) and us-

ing the location of the peak correlation as an indicator of cue con-

trol. The peak correlation was required to exceed a threshold set

at 0.6, which was a level that most reliably captured experienced

observers’ evaluations of the similarity between two rate maps.

Figure 2 shows examples of CA3 cells that were classified as

CCW (cells 1–5) and CW (cells 6b and 7). Cell 1 had a firing field

near the 4 o’clock position on the track in both Std sessions (Std

1 and Std 2). In the 180� cue-Mis session, the firing field rotated

CCW, which indicated local cue control. The maximum correla-

tion occurred when the rate map was rotated 275� degrees CW

(i.e., 85� CCW) and surpassed the 0.6 threshold (green line). Cells

2–5 are other examples of local-cue-controlled cells. A smaller

number of CA3 place fields were controlled by the global cues,

rotating their firing fields CW (cells 6b and 7). In agreement

with Lee et al. (2004), the local-cue-dominated firing fields (n =

101) far outnumbered the global-cue-dominated fields (n = 40).

A number of cells (n = 60) had place fields that met inclusion

criteria in both the Std and Mis sessions, but their responses

were considered ambiguous (i.e., the peak rotational correlation

was <0.6). Many of these cells had fields that became more

diffuse during the Mis session (cells 8 and 9). For other cells,

the activity criteria were reached in only one of the two sessions.

Cells 10 and 11 are examples of strong fields (n = 64) that devel-
418 Neuron 81, 416–427, January 22, 2014 ª2014 Elsevier Inc.
oped during theMis session despite firing only a few spikes in the

Std session. Cells 6a and 12 are examples of fields (n = 64) that

were present in the Std session but were silent in the Mis ses-

sion. Cell 6 is classified as disappear during the first Mis session

(labeled as 6a) and as CW for the second Mis session (labeled

6b), showing that, as in prior reports (Knierim, 2002; Lee et al.,

2004), the same cell could respond differently to the manipula-

tion in different sessions. The appearance or disappearance of

the fields was not an artifact of recording instability, since the

tetrode cluster patterns were similar during BL sessions re-

corded before and after the behavioral sessions, indicating that

the same cells were present throughout the experiment.

Examples of DG responses to the double rotation are shown

in Figure 3. Similar to CA3, DG cells could also be classified as

CCW, CW, ambiguous, appear, or disappear. Many of the DG

cells fired in single or multiple locations on the track (Jung

and McNaughton, 1993; Leutgeb et al., 2007; Neunuebel and

Knierim, 2012) and fired consistently across the Std sessions.

For example, cell 1 had two small fields (at 3 o’clock and 8

o’clock) in both Std sessions. During the 135� Mis session, one

field apparently rotated to the 10 o’clock position and stretched

in length while the other field rotated to 6 o’clock and the size

remained similar. Because the peak correlation was just below

the threshold, the cell’s response was considered ambiguous,

a classification consistent with the changes in field size that indi-

cated that the response was not simply a rotation of the firing

fields. Cells 2 and 3 are other examples of cells that met activity

criteria in both sessions and could not be described as simple

rotations (n = 49). Other cells had place fields that rotated either

CW or CCW (cells 4–7), according to the >0.6 rotational correla-

tion threshold. Unlike CA3, there was not a large difference

between the number of rate maps that rotated CCW (n = 36) or

CW (n = 23). Similar to CA3, some of the cells were classified

as appear (n = 49; e.g., cells 8–10) or disappear (n = 29; e.g., cells

11–12b).

To analyze differences at the neural population level between

CA3 and DG in response to the double rotation manipulation, we

created spatial correlation matrices from the population firing

rate vectors at each location on the track (Figure S4) (Gothard

et al., 2001; Lee et al., 2004; Neunuebel et al., 2013; Yoganara-

simha et al., 2006). The mean firing rate of every cell in the sam-

ple (normalized to its peak rate) was calculated for each 1� bin of

the circular track to create 360 firing rate vectors. The firing rate

vectors of a Std session (Std 1) were correlated with the firing

rate vectors from either the next Mis session (Mis) or the next

Std session (Std 2). The Std 1-versus-Std 2 correlation matrices

for CA3 produced a band of high correlation on the main diago-

nal, showing that most CA3 cells fired at a similar location in both

Std sessions (Figure 4, column 1). In every Mis session, CA3

maintained a band of highly correlated activity (Std 1 versus

Mis; Figure 4, column 2). This band shifted downward from the

main diagonal (dashed line), indicating that the CA3 representa-

tion was controlled coherently by the local cues (see below for

analyses demonstrating that the high-correlation bands match

precisely the angles of rotations of the local cues). However,

the correlation structure degraded with increasing mismatch

amounts, indicating that increasing cue mismatches caused

increasing changes to the CA3 representation (Lee et al., 2004).



Figure 2. CA3 Cellular Responses

Example spike (red points) and trajectory (gray line) plots of CA3 cells. Values in the center of Mis sessions indicate the total mismatch angle. The gray and black

lines show the amount of the local and global cue rotations, respectively. Boxes enclosing ratemaps fromStd1 andMis sessions indicate cells categorized as CW

(navy blue), CCW (cyan), appear (green), disappear (orange), or ambiguous (maroon). A plot of the rotation correlation analysis between the Std1 andMis sessions

(red line) is shown to the right of each set of ratemaps. Peak correlations above 0.6 (green line) located in the black or gray box indicated that the fields rotated CW

or CCW, respectively. Asterisks indicate that the Std sessions for cell were the same sessions.
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The critical question for the present study is (1) whether the

coherence in the CA3 response was a reflection of an active

pattern completion (or pattern generalization or error correction)

computation performed by CA3 circuitry on degraded or corrup-

ted input patterns or (2) whether the coherence was merely a

passive reflection of input patterns that were already coherent

prior to CA3. To answer this question, we analyzed the input

representations from the cells recorded from the DG in the

same animals. In the Std 1-versus-Std 2 correlation matrix (Fig-

ure 4, column 3), the DG showed a band of high correlation at

the main diagonal, consistent with a reproducible pattern be-

tween standard cue configuration sessions (although the corre-

lation matrices showed a noisier overall distribution compared to

CA3; see below). In the critical Std 1-versus-Mis matrices, the
DG showed only weak evidence of a high-correlation band (Fig-

ure 4, column 4), consistent with the computational models that

propose a pattern separation function for the DG. These results

demonstrate that the CA3 representation remains stable in the

presence of a severely degraded input from DG, implying that

CA3 can retrieve a previously stored pattern based on that

degraded input.

The Std 1-versus-Std 2 matrices for the DG (Figure 4, column

3) showed less coherence than their CA3 counterparts (Figure 4,

column 1) (i.e., in addition to the high correlations along the main

diagonal of the DGStd 1-versus-Std 2matrices, there were addi-

tional pixels with high correlations away from the main diagonal).

This finding raises the question of whether the DG supported

coherent spatial representations even in the Std sessions. The
Neuron 81, 416–427, January 22, 2014 ª2014 Elsevier Inc. 419



Figure 3. DG Cellular Responses

The figure format is identical to the CA3 cellular

responses seen in Figure 2. See also Figures S1

and S2.
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matrices used all of the putative principal cells with mean firing

rates <10 Hz. As shown in Figure 1D, the DG population shows

three clusters of cells in the spike-width-versus-firing-rate scat-

terplot: (a) a group of cells with very low rates (<2 Hz) and a wide

distribution of spike widths; (b) a group of cells with moderate

firing rates (2–10 Hz) and medium spike widths; and (c) a group

of cells with high firing rates (>10 Hz) and narrow spike widths.

The last group consisted of presumed interneurons that were

dropped from the analysis. It is possible that the middle class

of cells was not as spatially modulated as the low-rate cells,

and inspection of the rate maps confirmed this suspicion for

most (but not all) of these cells (Figures S1 and S2). We thus

generated the correlation matrices based only on the low-rate

cluster of cells (group a). These matrices showed a cleaner

coherence band in the Std 1-versus-Std 2 matrices compared

to the larger data set (Figure 4, column 5), demonstrating that

the low-rate cells had highly reproducible firing patterns in the

Std sessions. Moreover, the Std 1-versus-Mis matrices still

showed a strong lack of spatial coherence, especially in the

Mis sessions >45� (Figure 4, column 6). When we restricted anal-

ysis further to include only the cells that meet minimum spatial
420 Neuron 81, 416–427, January 22, 2014 ª2014 Elsevier Inc.
information criteria, the correlation matrix

patterns were preserved (Figure S5).

Because it is not known which of these

cell classes are the principal neurons

that project to CA3 (and therefore consti-

tute the input pattern to that region),

and to be conservative, we continued to

analyze the combined data from all cells

with firing rates <10 Hz (i.e., groups a

and b in Figure 1E; columns 3 and 4 of

Figure 4).

To statistically analyze the population

responses, the mean correlations of

pixels in each of the 360 diagonals of

the correlation matrix were calculated

andplotted in polar coordinates (Figure 5).

The stability of the CA3 representations

was evidenced by the peak correlation

that occurred near 0� for all Std 1-

versus-Std 2 correlation matrices (gray

polar plots). For all Mis sessions (red

plots), the peak correlations shifted

CCW by approximately the same amount

that the local cues were rotated. For

DG, the peak correlations for the Std 1-

versus-Std 2 comparison occurred near

0� (gray plots), indicating that the DG

spatial representations were stable (see

Figure S6 for the very low-rate [<2 Hz]

DG cells included in Figure 4, columns 5
and 6, and Figure S5 for the polar plots of the cells that met

the minimum spatial information criteria). The correlations be-

tween the Std and 45� Mis sessions maintained a peak centered

near 0� (blue plots), but the distributions became much more

circular with the larger mismatch angles, indicating a lack of

coherence. The maximum correlations for DG corresponded to

either CW (45� and 90� mismatch) or CCW (135� and 180�

mismatch) rotations, although a small peak was also evident at

the local-cue-predicted angle for the 90� mismatch.

The degree of coherence between the representations of the

Std session and the Mis session is reflected in the sharpness

and unimodality of the polar plots. To compare the different brain

regions, we calculated the mean vector for each Std-Mis polar

plot (i.e., the mean of all vectors originating at the origin of the

plot and ending at each data point on the plot) and used boot-

strapping statistical methods (Efron and Tibshirani, 1991) to

compare the length of the mean vector between the hippocam-

pal subregions (see Experimental Procedures). Collapsed

across the four mismatch angles, CA3mean vectors were signif-

icantly greater than DG mean vectors (p < 0.001) (Figure 5B).

When comparing individual mismatch angles, the CA3 mean



Figure 4. Population Responses to Cue-

Mismatch Manipulations

Spatial correlation matrices were produced by

correlating the normalized firing rate vectors for a

Std session with those of the following Mis or Std

session (Figure S4). CA3 representations main-

tained coherence in all Mis sessions (column 2),

indicated by the bands of high correlation (white)

shifting below the identity line (dashed line),

despite the decorrelated DG representations

found in the input (columns 4 and 6). See also

Figures S4, S5, and S6.

Neuron

Pattern Separation and Completion in DG and CA3
vectors were significantly greater than DG for the 45� (p < 0.002),

90� (p < 0.001), and 135� (p < 0.001) mismatch angles. The mean

vectors were not significantly different for the 180� mismatch (p =

0.166), although inspection of the polar plots shows a much nar-

rower tuning curve for CA3 than DG (see also Figures S5 and S6).

To determine if the patterns observed in the population were

mirrored in the firing properties of single cells, we examined

the coherence of control that the local and global cues had on

individual units (Figure 6). Cue control was determined by con-

ducting a rotational analysis (see Experimental Procedures) on

the subset of cells that met activity criteria in consecutive Std

and Mis sessions. The mean vector length for CA3 cells was sig-

nificant for all mismatch angles (Rayleigh test, p < 0.001), indi-

cating significant clustering of the cell responses. Furthermore,

the direction of themean vector in all Mis sessions corresponded

to a local cue rotation. DG responses were more variable, and

only the mean vectors of the smallest two mismatch angles

were significant (Rayleigh test; 45� and 90�; p < 0.04). The angle

of the mean vector corresponded to the direction of a local

cue rotation for three of the four mismatch angles (45�, 135�,
and 180�).
The preceding analyses pooled data that were recorded

across many sessions and rats. Because this pooling may

have combined heterogeneous patterns of responses across

data sets, it is important to know whether these results hold up

at the level of individual data sets with simultaneously recorded

neurons (Lee et al., 2004). Due to the sparse firing in DG, there

were limited data sets with large ensembles of active cells in

both CA3 and DG. Thus, we examined data sets with R2 simul-

taneously recorded cells from CA3 or R2 simultaneously re-

corded cells from DG, in which all cells met activity criteria in

both the Std and theMis sessions (examples of simultaneous re-

cordings for each area and mismatch angle are shown in Fig-
Neuron 81, 416–427
ure 7A). On average, there were more

cells recorded simultaneously in CA3

than in DG (Figure 7B). Because the size

of the mean vector is dependent on

the number of cells in the ensemble, we

were unable to perform a simple compar-

ison of the average lengths of the mean

vectors between the regions. To illustrate

the problem, Figure 7C shows the results

of a simulation in which the mean vectors

of ensembles of increasing size were
calculated for angles randomly distributed around a circle. As

the ensemble size increased, the magnitude of the mean vector

decreased, even though the data were randomly distributed in

all cases. Thus, a positive result may occur by chance due to

unequal average ensemble sizes. To circumvent this problem,

rather than comparing the magnitude of the mean vector itself,

we compared the proportion of data sets in each region that

were significantly clustered (Figure 7D). Significant clustering

of a data set was determined by comparing the mean vector

length of a sample with the randomized data produced for

a sample of identical size. If the vector length from the data

was >95% of the vectors from the randomized data (Figure 7C),

the vector length was considered significant. CA3 had a larger

proportion of significantly clustered data sets than its DG input

(CA3 [11/40], DG [1/29]; c2(1) = 6.77, p < 0.01). When we

restricted the analysis to the subset of data in which R2 cells

were recorded simultaneously from CA3 together with R2 cells

recorded simultaneously from DG, the proportions were almost

identical, although the smaller number of data sets reduced

the statistical significance to a trend (CA3[5/19], DG[1/23];

c2(1) = 3.05, p = 0.08). These results provide strong evidence

that simultaneously recorded CA3 cells respond more cohe-

sively than the input from DG.

DISCUSSION

One of the key goals of systems and cognitive neuroscience is to

understand the transformations of neural representations and

the rules governing these transformations, as information is pro-

cessed from one stage of a circuit to another stage. This goal

is aided by theoretical and computational studies that make

explicit predictions about the different processing stages. One

of the best known and oldest computational theories of neural
, January 22, 2014 ª2014 Elsevier Inc. 421



Figure 6. Analysis of Individual Cell Rotation Amounts

Each dot indicates the amount that the cell’s spatial firing pattern rotated

between the Std and Mis sessions (CA3, left; DG, right). The arrows at the

centers of the polar plots denote the mean vector. The mean vector length for

CA3 cells was significant for all mismatch angles, whereas the mean vector

length for the DG was variable (Rayleigh test; CA3, all angles, p < 0.001; DG,

45� and 90�, p < 0.04). CA3 followed the local cues for all mismatch angles and

DG followed the local cues for three out of the four mismatch angles (45�, 135�,
and 180�). ***p < 0.001; *p < 0.04.

A

B

Figure 5. Quantifying Input and Output Representations

(A) Polar plots were created from the spatial correlation matrices to represent

the population activity between Std 1-versus-Std 2 (gray) and Std-versus-Mis

(color) sessions. Each polar plot was created by calculating the average cor-

relation along each diagonal of the corresponding correlation matrix to convert

the 2D matrix into a 1D polar plot. The gray and black tick marks labeled ‘‘L’’

and ‘‘G’’ indicate the rotation angles of the local and global cue sets,

respectively. The black dots indicate the angle at which the population cor-

relations for the Std-Mis comparisons were maximum. For CA3, the maximum

correlations closely followed the rotation of the local cues.

(B) Mean vectors were calculated to quantify the coherence of the represen-

tations between sessions. Error bars represent the 95% confidence interval

calculated with a bootstrap analysis. Collapsed across mismatch angles, CA3

had significantly larger mean vectors than its DG input. With respect to indi-

vidual mismatch angles, the CA3 mean vectors were significantly larger than

theDGmean vectors for the 45�, 90�, and 135� angles. ***p < 0.001; **p < 0.002.
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information processing postulates that the DG region of the

hippocampus performs a pattern separation process on its input

from the EC, whereas attractor circuitry in the downstream CA3
422 Neuron 81, 416–427, January 22, 2014 ª2014 Elsevier Inc.
region can perform pattern separation or pattern completion

based on the relative strengths of the embedded attractors and

the exact nature of the external inputs from the EC and DG re-

gions (Marr, 1971; McNaughton and Morris, 1987; McNaughton

and Nadel, 1990; Rolls and Treves, 1998). Numerous studies

have shown evidence consistent with a pattern separation func-

tion in bothDGandCA3 and apattern completion function inCA3

(e.g., Gilbert et al., 2001; Rolls and Kesner, 2006; Kesner et al.,

2000; McHugh et al., 2007; Nakazawa et al., 2002; Lee et al.,

2004; for review, see Yassa and Stark, 2011). However, most of

the evidence in these studieswas indirect, as the studies typically

measured the output of the region without measuring the input

representations, or they used behavioral tasks to try to assess

the underlying neural representations. Because pattern separa-

tion and pattern completion, by definition, require knowledge of

the transformation of an input representation to an output repre-

sentation (Guzowski et al., 2004;McClelland andGoddard, 1996;

O’Reilly and McClelland, 1994; Santoro, 2013), it is impossible

to know whether the output reflects an operation intrinsic to a

particular brain region without knowledge of the properties of

the inputs to that region. In conjunction with previously published

data (Neunuebel et al., 2013) on the EC representations under the
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Figure 7. Ensemble Coherence

(A) Examples of simultaneous recordings from

each region. Data within a circular plot were re-

corded simultaneously, but different plots come

from different data sets.

(B) Histograms show the number of cells in each

simultaneously recorded data set for the four re-

gions. On average, CA3 had more cells per data

set than DG.

(C) Simulations showed that small sample sizes

could artificially increase the size of the mean

vector. Data points (i.e., rotation angles) were

randomly selected with replacement from a uni-

form distribution of orientations (1–360�) to

calculate the expected value of the mean vector

based on the samples coming from a random

distribution. Simulations were run 1,000 times for

each of 10 sample sizes (n = 2–11 samples), and

the average length of all 1,000 mean vectors

(average MV length) was plotted as a function of

sample size. The mean vector length was largest

for ensembles with two cells and decreased non-

linearly as the sample size increased. To account

for the effect of sample size on the real data, the

mean vector length of an ensemble was considered significant at a = 0.05 when it was greater than 950 of the 1,000 mean vector lengths from the simulated data

run with an equal number of cells in the sample. Error bars show SEM.

(D) The proportion of significant mean vector lengths for each region. CA3 showed more significant clustering than its DG input (CA3 [11/40], DG [1/29]; c2 (1) =

6.77, p < 0.01).
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same manipulation, the present study provides direct evidence

that the DG performs a pattern separation operation on its EC

inputs and that CA3 performs a pattern completion operation

on its DG and EC inputs.

Neunuebel et al. (2013) demonstrated that cells from the su-

perficial layers of MEC (the layers that project to the hippocam-

pus) were predominantly controlled by the global cues. Cells

from the superficial layers of LEC, in contrast, showed a weak

spatial representation, as expected, but there was a detectable

signal at the population level that was controlled by the local

cues. The LEC and the MEC are the primary inputs to the DG;

therefore, the strong loss of coherence of the DG cells in the cur-

rent experiment, given the coherent response of the MEC input,

is a strong indication of a pattern separation function of the DG.

In contrast, the data from CA3 provide the strongest neurophys-

iological evidence to date of a pattern completion (error correc-

tion) function in this region. The CA3 response was controlled

more strongly by the local cues on the track, in agreement with

a prior study using the same protocol (Lee et al., 2004). Because

the MEC cells were controlled predominately by the global cues,

consistent with their relationship to the global-cue-dominated

head direction cell system (Hargreaves et al., 2007; Sargolini

et al., 2006; Yoganarasimha et al., 2006; Zugaro et al., 2001),

the MEC input could not have simply driven the local-cue-domi-

nated CA3 response (although a weak subset of MEC cells that

were local cue driven might have contributed). The LEC

response, although controlled by local cues, was spatially very

weak, and thus seemingly incapable of solely driving the strong

spatial response patterns of CA3. The DG response was incon-

sistent and clearly less correlated than the CA3 response.

Thus, these data provide conclusive evidence that the CA3 rep-

resentations of the standard and altered environments were
more correlated with each other than any of the input represen-

tations were correlated with each other, fulfilling the classic,

computational definition of pattern completion.

This work bears some resemblance to the study of Gothard

et al. (2001), who recorded DG andCA1 on a track that was para-

metrically changed in length by sliding a start box along the track

oneach trial. As the rat ranon the track, both theDGandCA1 rep-

resentations switched abruptly froma reference framedefinedby

the start box to a global reference frame defined by the room.

Therewas no evidence, however, of pattern separation occurring

in that experiment. The experiment that most closely resembles

the current work is a study by Leutgeb et al. (2007), who recorded

from the DG and CA3 regions during manipulations in which they

gradually morphed the geometry of a recording enclosure from a

square to a circle. Both the Leutgeb study and the present study

investigated howDGandCA3 representations recorded from the

same animals changed as the result of parametric changes to the

environment. Leutgeb et al. (2007) showed that DG neurons

gradually changed their firing fields in response to the increasing

changes in the geometry. Importantly, the authors also recorded

from three units in the molecular layer of the DG that were grid

cells; because the molecular layer is the site of synaptic connec-

tion between MEC and DG, the authors inferred that these units

were probably axons of MEC grid cells. The firing fields of these

grid cells did not change appreciably in response to themorphing

manipulation. Thus, these data showed clear evidence that the

DG representation changed more than its putative MEC input. It

is not known how this manipulation affected the LEC inputs.

Nonetheless, as it is unlikely that the LEC provides a strong

spatial signal to the DG, these data show pattern separation in

DG (although not of the classic ‘‘expansion recoding’’ type;

Marr, 1969; McNaughton and Nadel, 1990).
Neuron 81, 416–427, January 22, 2014 ª2014 Elsevier Inc. 423
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Interestingly, the pattern separation in the Leutgeb et al. (2007)

study appeared fairly linear, as the population vector changed

gradually with increasing amounts of change to the environment.

This result is in sharp contrast to the nonlinear effects in the pre-

sent data, in which the DG population remained coherent in the

45� Mis session and then abruptly became highly noncoherent in

the larger Mis sessions (especially evident in Figures S5 and S6).

In the Leutgeb study, the CA3 population responses also

changed gradually with the increasing morphing of the geome-

try, suggesting that this apparent pattern separation in CA3

was primarily driven by the upstream pattern separation per-

formed by the DG, and not a reflection of any active computa-

tional processing of CA3 itself. Although Leutgeb et al. (2007)

suggested tentatively that the slightly greater correlation be-

tween CA3 representations of small changes to the environment

geometry, compared to DG representations, may reflect a

pattern completion process, it is just as likely that these greater

correlations were the result of CA3 receiving highly correlated

patterns of activity directly from the MEC, rather than pattern

completing the slightly altered DG representations. The present

study, on the other hand, in conjunction with the EC data from

Neunuebel et al. (2013), provides clear and convincing evidence

that CA3 does indeed perform a pattern completion function (as

defined computationally) on degraded input from DG and EC.

Thus, the present study is a critical complement to the Leutgeb

study, as well as other studies from those investigators (Leutgeb

et al., 2004, 2005). Under certain conditions, CA3 representa-

tions are completely orthogonal in different environments, which

may reflect a pattern separation function imposed by the DG as

well as attractor dynamics in CA3. However, under other condi-

tions, CA3 performs the long-hypothesized pattern completion

and error correction functions long attributed to its recurrent

collateral circuitry, conclusively demonstrated in the present

study.

An important question arising from these results is why the

pattern-completed CA3 representation follows the weak local

cue signal providedby theLEC input, rather than thestrongglobal

cue signal provided by the MEC input. When grid cells were

discovered in MEC (Hafting et al., 2005) and poor spatial selec-

tivity was shown in LEC (Hargreaves et al., 2005), it was assumed

bymany investigators that grid cellswere theprimary spatial drive

onto place cells (e.g., Hafting et al., 2005; McNaughton et al.,

2006; Monaco and Abbott, 2011; Savelli and Knierim, 2010; Sol-

stad et al., 2006; but see Burgess et al., 2007; Kropff and Treves,

2008;O’Keefe andBurgess, 2005).More recent data have shown

that this simple model is at best incomplete, as (1) major disrup-

tion of grid cells can leave a significant amount of spatial tuning

intact in placecells (Brandonet al., 2011); (2) duringdevelopment,

adult-like place field firing patterns appear before well-formed

grid-cell firing patterns (Langston et al., 2010; Wills et al., 2010);

(3) cue-cardmanipulations in a cylindrical environment can cause

discordant responses of grid cells and place cells (Song et al.,

2012, Soc. Neurosci. conference); and (4) inactivation of hippo-

campal place cells can cause the loss of gridness in MEC cells

(Bonnevie et al., 2013). Neunuebel et al. (2013) proposed one

model of how the LEC inputs may cause the CA3 attractor to

form at the local-cue-predicted location based on a speculation

that the rats pay attention first to the local cues when they are
424 Neuron 81, 416–427, January 22, 2014 ª2014 Elsevier Inc.
placed on the track. Another possible explanation is related to

the different subtypes of cells in the DG. Immature, adult-born

granule cells are hyperexcitable and hyperplastic (Ge et al.,

2007), and these cells may dominate the responses of the DG

(Alme et al., 2010; Neunuebel and Knierim, 2012). A recent study

has shown that immature granule cells receive input preferentially

from the LEC than from the MEC (Vivar et al., 2012). If these cells

are the dominant drive onto theCA3population, at leastwhen the

rat initially enters an environment, then they may override the

input from the MEC cells. Simulations show that only a small

bias input is required to cause an attractor bump to form at a

particular location (Zhang, 1996), and it is possible that the bias

caused by LEC-driven, highly active immature neuronsmay drive

the CA3 response by seeding the recurrent collateral circuitry of

CA3 to form the CA3 activity bump at locations corresponding

to the local cues. Different physiologically defined DG cell types

have different spatial firing profiles (Neunuebel and Knierim,

2012), but it is not known how these profiles map onto specific,

morphologically defined cell types (e.g., developmentally born

granule cells, adult-born mature granule cells, adult-born imma-

ture granule cells, hilar cells, interneurons, etc.). Understanding

this mapping will be necessary to further understand the compu-

tations of the DG and how they influence the downstream, puta-

tive attractor circuitry in CA3.

EXPERIMENTAL PROCEDURES

Subjects and Surgery

Seven male, Long-Evans rats (Charles River Laboratories) were individually

housed with ad libitum access to food and water during a 12 hr light/dark

circadian cycle (lights off at noon). When rats were �5–6 months old and

had been habituated for �14 days, a custom-built recording drive that con-

tained 18 independently moveable tetrodes and 2 references was surgically

implanted over the right hemisphere. The drives were positioned such that

the most anterior-lateral tetrodes (n = 5) targeted CA3a and the most

posterior-medial tetrodes (n = 13) targeted the DG. To optimize drive place-

ment, recordings were performed during surgery to find the lateral edge of

CA3, which served as a landmark for the mediolateral placement of the

drives; the most lateral tetrode ranged from 3.2–4.9 mm lateral to bregma

and 3.2–4.4 mm posterior to bregma. The Institutional Animal Care and

Use Committees at John Hopkins University and the University of Texas

Health Science Center at Houston approved surgical protocols, which were

performed under aseptic conditions and complied with standards from the

National Institutes of Health.

Training and Recording

Prior to surgery, rats were familiarized daily to human contact and sleeping in a

small dish (�25.4 cm) located on a pedestal (each lasting 30 min/day over a

2 week period). Rats recovered from the surgical procedure for 5–7 days,

and then their body weight was reduced to 80%–90% of the free-feeding

weight. After a daily session of advancing tetrodes, rats were trained in a

cue-controlled environment to run laps around a circular track (outside and in-

side diameters of the track were 76 cm and 56 cm, respectively) for an average

of 16 days. The track, which was centered in a black-curtained enclosure with

six salient cues located at the periphery, was divided into four 90� segments

that were textured with different materials (Knierim, 2002). During the initial

training sessions, chocolate sprinkles were dispersed around the track and

rats gradually learned to continuously navigate CW for the reward. A card-

board panel was placed in front of any rats attempting to move CCW. As

behavior progressively improved, the reward was eventually reduced to one

to two random locations per lap.

The double rotation experiments were conducted for 4 days. Two BL ses-

sions (BL1 lasting 1 hr and BL2 lasting 30 min), which were separated by
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2 hr as the rat was returned to its home cage, were recorded prior to the start of

the experiment. The BL sessions consisted of periods when the rat slept or

was resting quietly in its holding dish. During behavior, rats ran five track ses-

sions. Track sessions consisted of three Std sessions (Std: local and global

cue relationship remained constant) interleaved with two Mis sessions (Mis:

local and global cues were rotated by equal increments, but in opposite direc-

tions, producing mismatch angles of 45�, 90�, 135�, or 180�). For example, a

180� mismatch represents a 90� CCW local cue rotation plus a 90� CW global

cue rotation. Mismatch angles were chosen in pseudorandom order such that

each angle was chosen once during the first 2 days of recording and once

again during the second 2 days. After the fifth session of the day, the cells

were recorded as the rats foraged in an open field (1353 135 cm) surrounded

by white wooden walls (30 cm high) in the room that housed the recording

equipment and where the BL sessions were recorded. All experiments

concluded with a 30 min BL session.

Electrophysiological Recordings

A Cheetah Data Acquisition System (Neuralynx, Bozeman) concurrently ob-

tained up to 72 channels (18 tetrodes) of single-unit data and 21 channels of

local field potential (LFP) activity. Neural signals were detected simultaneously

on four fine microwire electrodes (gold-plated nichrome [12 mm] or unplated

platinum-iridium [17 mm]) that were wound together to form a tetrode. The sig-

nals were amplified 1,000–5,000 times and filtered between 0.6 and6 KHz (for

units) or 1 and 300 Hz (for LFP). The spike waveforms above a threshold of 30–

70 mV were sampled for 1 ms at 32 kHz, whereas LFPs were continuously

sampled at 1 kHz. The rat’s position was tracked with an overhead camera

recording a circular array of light emitting diodes (red and blue) positioned

over the head of the rat and a 13 cm extension behind the head with additional

diodes (green) at 30 Hz.

Tetrodes were independently advanced by small increments every day for

approximately 3 weeks. After entering the CA1 layer, tetrodes were advanced

at �40–148 mm (the larger movements occurred after leaving CA1) each day

for an additional 300 mm. For tetrodes targeting DG, advancement was signif-

icantly reduced to 10–20 mm per day once gamma activity and dentate spikes

in the LFP were detected (Bragin et al., 1995a, 1995b). A tetrode was no longer

advanced after it detected well-isolated units that fired during behavior.

Tetrodes that did not show active cells during behavior (even though they

may have had active cells during the quiet BL sessions) were advanced by

10 mm. This procedure continued until at least five putative DG cells that fired

during behavior were present on any combination of tetrodes. For tetrodes tar-

geting CA3, tetrodes were advanced daily by�50 mm in an attempt to enter the

CA3 layer at the same time that DG units were detecting cells. No attempt was

made to track cells through the experiment; therefore, some of the same units

may have been recorded over multiple days. However, our primary analyses of

individual ensembles do not depend on the number of cells; moreover,

because the data are analyzed separately for different mismatch amounts,

any unit is counted at most twice.

Unit Isolation

Multiple waveform characteristics (i.e., spike amplitude peak, area under the

waveform, and valley depth) recorded simultaneously on the four wires of a

tetrode were used to isolate single units offline with a custom, interactive soft-

ware program. A cell’s isolation quality was rated on a subjective scale from 1

(very good) to 5 (poor), depending on the distance each cluster was separated

from other clusters and from background noise. Cluster isolation was judged

prior to examining any of the behavioral firing correlates of the cells. All cells

rated as fair or better (categories 1, 2, and 3) were potentially included in all

analyses.

Data Analysis

Analyses were performed on data restricted to times when the animal’s head

waswithin the boundaries of the track and traveling with a velocity greater than

1 cm/s. The circular, 2D data for each cell were transformed into a 1D linear

representation by converting the rat’s Cartesian position into units of degrees

on the track, and the mean firing rate for every degree of the track was calcu-

lated. AGaussian smoothing algorithm (s = 5.34�) was applied to the linearized

firing rate maps.
Population correlation matrices were created by forming normalized firing

rate vectors for the sample of cells at each 1� bin of the track and correlating

these vectors with the vectors for every location in a comparison session (Fig-

ure S4). A band of high correlation along one of the diagonals of this matrix

indicates a high degree of coherence of the representation between the two

sessions. The correlation matrix was reduced to 1D polar plots by averaging

the correlation values along each of the 360 diagonals of the matrix. Bootstrap

procedures were used to estimate the 95% confidence intervals of the mean

vectors of the polar correlation plots (Efron and Tibshirani, 1991). For each re-

gion and mismatch angle, the sample of cells was randomly resampled with

replacement to generate a new sample of the same number of data points

as the original. These data points were used to calculate 2D correlation

matrices and polar plots, and the mean vector was calculated. The procedure

was repeated 1,000 times, and the 2.5th and 97.5th percentile values were

taken as the limits of the 95% confidence interval. To test for statistical differ-

ences between CA3 and DG, we first looked at overall differences collapsed

across mismatch angles based on the mean vectors from the bootstrapped

samples as follows:

MVCA3-DG =
X

i

�
MVðiÞCA3 �MVðiÞDG

�
;

where MV is the mean vector, and i is a member of the set [45�,90�, 135�, and
180�]. The MVCA3-DG was calculated each time for 1,000 random resamplings

with replacement of the original sample, and a p value was assigned as the

number of times that the DMVCA3-DG was <0. For example, if MVCA3-DG >

0 in all 1,000 bootstraps, the p value associated with this was p % 0.001. To

look at differences between brain regions for individual mismatch angles, we

created bootstrapped distributions based on the difference in the MV for

each particular mismatch angle and pair of brain regions.

The rotation angle and direction that each cell’s rate map rotated between

consecutive Std and Mis sessions was determined for every cell that met

the inclusion criteria in both sessions. The linearized rate map in the Std

session was correlated with the linearized rate map for the Mis session. The

Mis session rate map was then shifted in increments of 5� and correlated

with the Std session rate map at each increment. A cell’s rotation angle was

assigned to the shift producing the maximum correlation.

Statistical test were calculated in Excel (Microsoft Corp.), Matlab (Math-

Works), or Statistica (StatSoft, Inc.). Functions from the Matlab circular

statistics toolbox were used to determine circular statistics. Every statistical

analysis was two-tailed and considered significant at p < 0.05, unless a

different significance level was indicated.

Histological Procedures

For a subset of tetrodes, 10 mA of positive current was passed for 10 s to

generate lesions used to aid in identifying the location of the tetrodes during

histological reconstruction. Lesions were made 0–10 days after finishing the

double rotation experiments. The day after lesioning, rats were euthanized

with formalin perfused through the heart. Two rats (227 and 232) were eutha-

nized immediately after making the lesions. Brains were sliced (40 mm) in the

coronal plane with a freezing microtome, mounted on microscope slides,

and stained with cresyl violet. A Moticam 2000 camera (Motic Instruments

Inc., Richmond) or IC Capture DFK 41BU02 camera (The Imaging Source,

Charlotte) attached to a Motic SMZ-168 stereoscope was used to image

the brain slices. All tetrode tracks were identified, and the lowest point of

the track was used to determine the recording location. Recording tips

that were located in or near the CA3a and CA3b pyramidal layers were as-

signed to CA3. Consistent with published examples from other groups

(Jung and McNaughton, 1993; Leutgeb et al., 2007), tetrode tracks that

terminated in the granule cells layer or at the interface between the granule

cell layer and the polymorphic layer were considered (for descriptive pur-

poses) to be located in the granule cell layer. Tetrode tracks that terminated

below the granule layer but above the CA3 pyramidal layer were considered

to be located in the hilus. As described in the Results, the final histological

location of the recording tips is not necessarily a valid indication of the iden-

tity of the recorded cells. However, all recordings assigned to the DG came

from tetrodes that showed no indication of having encroached upon the CA3

pyramidal layer.
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