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A Continuous Metric Scaling Solution
for a Random Variable*

C. M. Cuapras™ aAnND J. FOrRTIANAY

Universitat de Barcelona, Barcelona, Spain

As a generalization of the classical metric scaling solution for a finite set of
points, a countable set of uncorrelated random variables is obtained from an
arbitary continuous random variable X. The properties of these variables allow us
to regard them as principal axes for X with respect to the distance function d(u, v) =

\/]u—vl. Explicit results are obtained for uniform and negative exponential
random variables. @ 1995 Academic Press, Inc.

1. INTRODUCTION

Metric scaling or principal coordinate analysis, introduced by Torgerson
[14] and especially Gower [9], is a method of ordination aiming to
provide a graphical representation of a finite set of n elements. The method
obtains an nxm matrix X from an nxn Euclidean distance matrix
4=(5;). The set of n rows of X, considered as points in R™, has inter-
distances which reproduce those in 4 [11, p. 397]. Columns of X can be
regarded as “variables” (principal axes), and each row as the set of values
of these variables (principal coordinates) for the corresponding element of
the original set.

This principal coordinate representation can be singled out between all
possible Euclidean representations of the same set by duality with principal
components. This property can be stated as follows: For any »n x s matrix
X giving such a representation, the principal components for its “variables”
(i.e., columns) are the principal coordinate axes.

Cuadras and Arenas (see [4, S, 7]) take advantage of the good proper-
ties of these “variables” to define and study a distance-based model for
prediction with mixed variables.
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2 CUADRAS AND FORTIANA

Cuadras and Fortiana [8] proposed a continuous extension of this dis-
tance-based model, taking a uniform (0, 1) random variable U as predictor.
A countable set of random variables were interpreted as principal axes of
U with respect to a suitable distance. In this paper the construction of this
set of principal coordinates is generalized to any continuous random
variable.

2. ConTINUOUS EUCLIDEAN CONFIGURATION

Let X be a random variables on a probability space (£2, ./, P), with
values on a (possibly unbounded) interval I=(a,b)c R*=Ru | —ax }u
{oc}. Denote its c.df. by F, and let é: /x I — R be a distance function.

DEFINITION 1. A continuous Euclidean configuration representing X with
respect to 4, is a stochastic process X = { X, },., such that for all w,, w,eQ
the Euclidean distance between trajectories X (), X, (w,), defined as

y

|
Dylw, wy)= {J‘[ (X ()= X () d’}

equals 3(X(w,), X(®,)).

That is, X is defined as a process such that distances between its “rows”
reproduce the interdistances of the original (continuous, one-dimensional)
set of points. When o is the Euclidean distance, a trivial representation of
X is the degenerate process with X,=X for re[0,1] and X,=0 for
t¢[0,1].

Throughout the paper we take as distance & the function d defined by

dx, )=y Ix=yl.  xvelab) (1)

One reason for this choice is that it has manifested good properties in the
finite case (see [5, 7, 8]). In addition, a continuous Euclidean representa-
tion for this distance can easily be obtained, using the following.

Construction 1. Let X be a random variable as defined above. Consider
the function u: I'x I — [0, 17 defined by

1 if r<x,
MEX =% i imx

and let X={X,},., be defined as X,=u(s, X), for 1l That is, for each
tel, X, is the indicator of [X > ] e.o/, a Bernoulli random variable with
p=1—F).
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ProposiTION 1. The process X={X,},.,, obtained from X using con-
struction 1, is a continuous Euclidean representation of X with respect to
distance (1).

Proof. Given w,, w,€ 2, let x;= X(®w,) and u,(1) = X, (w,) = u(t, x,), for
i=1, 2. Assume, for instance, that x, < x,. Then

D.%;(wn wz):j~ (ul(t)-“z(t))z dt:J - lzdt=x2—x, =d2(x], x) 1
1 xy
In the following, given a random variable X, X will denote the process
obtained from X using Construction 1. Proposition 2 gives an additional
relation between X and X, which in the continuous case allows us to write
X as a sort of “continuous sum of indicators.”

PROPOSITION 2.
j X, dF(t)=F- X. 2)
1

In particular, when F is continuous, this integral gives a uniform (0, 1) ran-
dom variable, and X can be expressed as

X=F ' (j, X, dF(t)).

Proof. Given weQ, let x=X(w)e(a, b). As X, (w)=1 for te(a, x)
and =0 otherwise, we have [, X,(w)dF(t)=(1dF(t)=F(x), and (2)
holds. [l

ProposiTiON 3.  The covariance function of X is given by
K(s, 1y =min{F(s), F(t)} — F(s) F(1), s, tel 3)

Proof. As X, X=X ... ., we have K(s, 1) =E(X, X,) — E(X,) E(X,) =
| — F(max{s, t}) — (1 — F(s))(1 — F(¢)) = F(s)+ F(r) — F(max{s, t}) —
F(s) F(0). 1

K is a symmetric, positive semidefinite kernel, and when X is continuous,
K also has this property. In any case, 0 < K(s, 1)< 1, for all (s, t)eIx I, and
K tends to 0 on the boundary of its domain. It is worth noting that K is
the difference between two bivariate distribution functions having F as both
marginals, namely, the upper Fréchet bound F* (s, t)=min{F(s), F(1)}.
and the product F(s) F(¢).

When X is a uniform (0, 1) random variable, (3) is the ubiquitous kernel
min{s, t)—st, which appears in probability theory as the covariance
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function of the Brownian bridge, in statistics, in the study by Anderson
and Darling 1, 2] of empirical processes, in mechanics, as the Green
function for the vibrating string, etc.

Whereas the continuous Euclidean representation (Construction 1) can
be written in principle for any random variable, we will be interested
in properties which require that kernel K verifies the following finitude
conditions:

I t(K)={, K(s, s) ds < + 0.
2. KeZ¥(IxI).

From Cauchy-Schwarz inequality, |K(s, 1))> < K(s, s) K(z, t), we see that
square integrability of K is implied by the finitude of tr(X). This condition
can be translated in terms of geometrical properties of X with respect to
distance (1) with the help of the following.

DEFINITION 2. The geometric variability of a (real valued) random
variable X with respect to a distance function § is the quantity

Vy(X)=1 [Rl §%(s, 1) dF(s) dF(1), (4)

o

where F is the distribution function of X, provided that this integral exists.

2V,(X) is the expected value of the distance function (-, -), evaluated
on two random variables, independent and identically distributed as X.
When ¢ is the Euclidean distance, V;(X) coincides with Var(X). When
0 is the distance (1), V,/(X) is another measure of dispersion of X.
Straightforward computations provide some examples of ¥, as compared
to ¢ =,/ Var(X).

e For X~ N(u, 6%), V,(X)=20//n.
» For a uniform random variable, V‘,(X)=J/ﬁ.
« For a negative exponential random variable, V,(X)=0/2.
» For a logistic random variable, V,(X) = V/§¢r/n.
The geometric variability of a random vector is similarly defined. It was
used by Cuadras [4-6], to perform a Discriminant Analysis based on

distances between observations, and by Rao [12], to define dissimilarity
coefficients between populations.

PROPOSITION 4. Let X be a random variable such that lim__, _ sF(s)=0,
and let d be the distance function (1). Then, when any of the quantities
V,(X), tr(K) is finite, the other is also finite, and the equality V,(X)=tr(K)
holds.
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Proof. The distances we are considering are symmetric nonnegative
functions, vanishing on the diagonal [ y = x]<R?2 Thus, for any §, the
geometric variability (4) is equivalent to an integral on a half-plane, and it
can be computed through iterated one-dimensional integrals

V(0=

[y<x]

3%(x, y) dF(x) dF(y) :'Fm (JY 33(x, ) dF(y)) dF(x).

— —

Specializing to d*(x, y)=|x— y|, using Riemann-Stieljes integration by
parts and taking into account the hypothesis lim, , _, yF(y)=0, we see
that for any xe R the integrand equals

X

[ =nar == FN L+ [ Foyar=] Fa.

— — 0

Since the integrand is non-negative, Fubini’s theorem allows us to inter-
change the order of integration, giving

vao=["" (" rra)ar=["" (7 are) Fonas

W

=[ T U=-FOD Py dr = k).

3. PrRINCIPAL COORDINATES

In this section, X will denote an absolutely continuous random variable,
with c.d.f Fand probability density f (with respect to the Lebesgue measure),
such that the finitude conditions u=E(|X|)< +o0, lim, , _ sF(s)=0,
and V,(X)< +oc are verified. From Mercer’s theorem (see, for example,
Courant and Hilbert [3, Vol. I, Chap. 3]),

K(s, )=}, L (s) ;)

i=1

is absolutely and uniformly convergent (in both s and ¢) on /x I, where
{¥,} .~ is @ complete orthonormal (in ZL*(I) set of solutions of

J, W,(8) K(s, 1) ds = A, (1). (5)
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From the theorem of Kac and Siegert [10] (see Shorack and Wellner
[13]), we obtain a countable decomposition,

X=3 Zy;1), (6)

i=1

where {Z,}_ is an orthogonal (i.c., uncorrelated) set of square integrable

random variables defined by
z,:j Xy (t1)ydr,  jeN, (7)
!

and verifying that Var(Z,)=4,.

By analogy with the finite case, each Z; is called a principal component
of X. In the following theorem we show that principal components are
obtained as continuous functions # of X, and we compute an explicit
differential equation for A.

THEOREM 1. Let  be an eigenfunction of K, with associated eigenvalue
A (< o¢), and consider the function

h(s):js W) d,  se(ab)

Then

1. The Principal Component Z corresponding to A is given by
Z=h(X).

2. m=EZ)={" [1 = F(t)] (1) dr.

3. his a solution of
A"+ (h—m)f =0, hia)=0, h(a)y=0. (8)

Proof. 1. Given weQ, Z(w) = [) X (w)y(r)dt = [1 (1) dt =
h(X(w)).

2. As Z=h(X) is a square integrable random variable, in particular,
the integral m=E(Z)=[° h(t) f(t)dr is finite. Integrating by parts, we
obtain

r=x X b
- F(z)w(t)dz)zj [1—Fn)]¢()dr.  (9)

x—h

m = lim (h(r)F(t)
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3. Using kernel (3),

[ Kt 0yptoy do= [ LR = Fis) FyY () de + o [ (1= Fu) e de.
(10)

From 2, the integral in the second summand is m—j'f‘ (1 —F()) () dr.
Substituting into (10) and simplifying, we obtain

;up(s)=f F(1) (1) di + F(s)(m — h(s)).
Since y(s)=Ah'(s), differentiation of this equation yields (8) (using the
fundamental theorem of calculus). Initial conditions are immediate from
the boundary condition for K and from the definition of 4. ||

Besides (8), the equation for g(1)=Ah(t) —m, ie.,

ig"+fg=0, glay=-m, g(a)=0, (11)

will be also useful.

The following theorem summarizes properties of the set {Z;} _y. Com-
parison with the classical (finite) Metric Scaling solution as described by
Mardia er al. [11, p. 399], suggests that, once standardized, each Principal
Component Z should be a “principal coordinate axis” for X with respect to
distance (1).

We denote by C; and C* the results of standardizing Z; to mean 0 and
to mean 0 and variance 1, respectlvely

THEOREM 2. 1. The C,’s are uncorrelated absolutely continuous random
variables. The sequence of variances {Var(C,)}, ~ is decreasing and sum-
mable, the sum being equal to the trace of K.

2. Given w,, w,€Q, the Euclidean distance between the sequences
{Ciw)}en and {Ci(@,)} o n» equals d(X(wy), X(w,)).

Proof. 1. The first statement is a standard property of the principal
components of a stochastic process.

2. Given w;, w,e 8, let x;= X(w;) and u,(t)= X, (w;})=ul(t, x,), for
i=1,2. Expanding u,(t) — u,(t) with respect to the complete orthonormal
set {y,} on I, we obtain the Fourier series > 7., a,¥;(¢), where
a;= [, (u, (1) —ux(1)) ¥ (1)dr=h;(x,)—h,(x,), where h; is defined in
Theorem 1. Then Parseval equality gives

|x1—x2|_j (1,(t) — us(1))? i ,=Z (Ci(w)— Ci(w))* 1
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Thus, each C; can be called a principal coordinate axis for X and, given
weQ, the sequence {C,(w)}, n can accordingly be called a continuous
metric scaling representation for X(w) with respect to distance (1).

4. SOLUTION FOR A UNIFORM DISTRIBUTION

In this section, explicit results are obtained when X is a (0, 1) uniform
random variable. In this case, (11) becomes the familiar differential equa-
tion of trigonometric functions. An appropriate solution is

2 1
g,(n)= ——\Lcos(jm), by=—, 0<1<1, jeN.
jn ToUm)y
The corresponding standardized variables, C* = —\/E cos(jnX) have the

following remarkable property.

PROPOSITION 5. The standardized C¥’s are identically distributed, with
probability density function

{nl(?.—.\'z) ls“2’ if_\/i<x<\/§,

0, otherwise,

glx)= (12)

with respect to the Lebesgue measure.

Proof. The characteristic function of the symmetric r.v. C* is given by

(1) =fl exp[iz(—ﬁ cos(jnx))] dx=fl cos[t ﬁ cos(jnx)] dx.

Applying the change of variable y=jnx, we obtain ¢@(1)=(1/jn)
{47 cos[t \/5 cos y] dy, which can be written as a sum of j integrals on the
intervals [(k— 1)n, kn], (k=1, .., j). As the integrand is an even, periodic
(with period = 2x) function of y, all these summands coincide, thus

1 n
o(ty=— J cos[¢ V/E cos )y} dy,
Ty

independently of j. This integral equals JO(\/E ), where J, is the zeroth
order Bessel function (see, e.g, [15, Chap.IIl, Sect.3.3]). The inverse
Fourier transform

g(x) =2—1n- I+: o{t) exp(—itx) a’t=]; Lx JO(\/E t) cos{tx) dt
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yields the probability density function (12), by using a standard property
of Bessel functions (see, e.g., [15, Chap. XIII, Sect. 13.427). [

Remark. An alternative, more elementary proof follows from the fact
that given j>0 and ye(—ﬁ, \/5), the equation y = -—\/5 cos(jnx) has
exactly j real roots x,, .., x;, hence the value g;(y) of the density of C* is
given by

7 / dy
&= ¥ filx)] } el (13)
where f,(x;)=1 (the density of the (0, 1) uniform r.v. X), and
dy . . ) 3
I =jn./2 sin(jrnx,)=jn./2—y
Adding the j (equal) terms, we obtain (12).
The equality
Y (Cx)=Ciy)P=1x—yl (14)

can be proved in this case by direct computation (see Appendix A). Finally,
it is worth noting the formal analogy with the finite metric scaling solution

[8]
Cr=—V2T(0),

where V' =cos(nX) and T, is the jth Chebyshev polynomial of the first
kind.

5. SOLUTION FOR AN EXPONENTIAL DISTRIBUTION

Let X be a negative exponential random variable with c.df F(x)=
1 —exp(—ax), xe(0, o), a >0. Equation (11) is now

}t@f—)+o¢ exp(—oax) g(x)=0. (15)
dx

Integrating this differential equation we obtain

PROPOSITION 6. The jth standardized principal coordinate axis for X is
given by

| _ .
Cj _J()(éj) Jo(é; f:Xp( (ZX/2)), (JEN)’ (16)
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where J is the zeroth order Bessel function (of the first kind), and &, is the
kth positive root of the first order Bessel function J,.

The variance of the corresponding centered principal coordinate axis is
given by

4
Var(C)) =

r2"

J

Proof. Applying to (15) the change of variable
t=2(xh) 17 exp(—ax/2),

and denoting yv(t) = g(x(¢)), we have

dg dy dt ' dy
dx " d ax T WA exp(maxia)
and
d’¢ d (dg\ o7 dy « ’y
a2 dx (dx> =553 Xl —ax/2) God T exp(—ax)

which, substituting in (15), gives the Bessel differential equation

dr’  dt

+1y=0, (17)

where re (0, 2(ai) ')
As the solution of (17) must be finite for r =0, it will be of the form

y(1) = AJy(1),

where A is a constant. The contour condition y’(2(x4) '?)=0 imposes
that ¢ =2(ad) "2 is a root of y'= —AJ,(t). Thus, we obtain a countable
set of solutions of (15), substituting for ¢ each of the positive roots &; of J,,
(jeN), in

g(x) = AJo(S exp(—ox/2)). (18)

Given ¢, the constant 4 is determined by imposing the condition that
Var(g(X))= 4, or equivalently, in the notation of Theorem 1, that the
eigenfunction y =g’ is normalized so that | y*=1. In general, the kth
moment u, = E(g(X)) is obtained by evaluating

= A" J: [Jo(& exp(—ax/2))]* « exp(—ox) dx.
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The change of variable 1= ¢ exp(—ax/2) gives

24%

ﬂk:'é—z

[ Lo 1* e a
0

For k=1 and k = 2, this integral can be computed in closed form, (see, e.g.,
[15, Chap. V, Sect. 5.1]). The first moment is

24
W=7 [t/:(1)1§=0,

as ¢ is a root of J,. The second moment is

(Jé(r)+J%(r))T = A27%(),

0

2421+
#22? —2‘

From this expression, the equality

4
ﬂ2='1=&é—2

gives
PR
S EI(E)

Substituting into (18), the centered principal coordinate axis corresponding
to & is

2
C=—=——Jo(¢ exp(—aX/2}),
Vo Ef8)
and the corresponding standardized variable is

c* Jo(¢ exp(—aX/2)). 1

"Il

The probability density function of the principal coordinate axes of the
negative exponential r.v. cannot be written as a closed formula. However,
from the equality

1

* _ y2
=T PV
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where U =exp(—aX) is a uniform (0, 1) random variable, we can obtain a
formal expression for the density g, which is suitable for numerical com-
putation (see the remark after Proposition 5).

An immediate observation is that in the exponential case, the C*’s are
not equally distributed. In particular, the range of values of C}* is the
interval

1=

7

{(l/ﬁj’ ﬂ]/ﬁj)’ if j is odd,
(By/B, 1B, if jis even,

where f8,=J(&;), j= 1. This statement follows from the fact that the maxi-
mum value of J, is 1, the minimum (i.e., the negative value with maximum
absolute value) is f§, = Jy(&,) = —0.402759, and the sign of §; is given by
the parity of ;.

Given yel, we can write g;(y) as a sum of terms, one for each of the
roots of the equation

= ﬁi Tol&, ),

7
In contrast with (13), the number of roots depends now on y. Let us
denote this number by k,(y), and given one of these roots x;, 1 <i<k;(y),

dy 1 &
i — J Yo 7 ,
d,\' . ’ﬁj) | I(Su(}))[ 2CU()')

where {;(y)=¢,x]””. Hence

G 2B T L)
g ()= 3 ; PR N !

APPENDIX A

The proof of equality (14) amounts to checking that

(cos(jmx)— cos(jny))?

u
Ix—yl== ¥ ; »
2 ~ jz

which is obtained from the Fourier double series expansion of |x — y| on
[0, 11x[0,1]

I [ ls
7 Awts X Ao cos mux+3 3 Ay, cos nmy

m=1 n=1

[x—yl=

e i
+ 3 > A,, cos max cos nmy,

m=1 n=1
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where A, = 4 {3 (3 |x — | cos mnx cos nmy dx dy (m, n > 0). Further
computations give
Ao =4/3,
Ao=4mn) 2 [1+(-1)"], m>0,
Ag=4(nm) 2 [1+(=1)"],  n>0,
A= —dnr)"%5,,, m, n>0.

Deleting null terms, using cos 2a=2cos’a—~1 and ¥*_, 1/n?=n?/6, we
obtain

COS NTX COS NTY

nZ

1/4 = cos’nmx | 4
X—YV| =- 2— —_ —_— e — | — —
T 2(n2 RS 3) 3

I8

n=1

*  (cos nmx — cos nny)?
=3 Z 2 .

1 n
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