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Most accounts of human cognitive architectures have focused on computational accounts of cognition while
making little contact with the study of anatomical structures and physiological processes. A renewed conver-
gence between neurobiology and cognition is well under way. A promising area arises from the overlap be-
tween systems/cognitive neuroscience on the one side and the discipline of network science on the other.
Neuroscience increasingly adopts network tools and concepts to describe the operation of collections of
brain regions. Beyond just providing illustrative metaphors, network science offers a theoretical framework
for approaching brain structure and function as a multi-scale system composed of networks of neurons, cir-
cuits, nuclei, cortical areas, and systems of areas. This paper views large-scale networks at the level of areas
and systems, mostly on the basis of data from human neuroimaging, and how this view of network structure
and function has begun to illuminate our understanding of the biological basis of cognitive architectures.
Introduction
The term ‘‘cognitive architecture’’ used to refer to concepts that

were entirely the domain of cognitive or computer scientists (see

Box 1) whose efforts to elucidate the rules behind human cogni-

tion (Fodor and Pylyshyn, 1988) made little or no reference to the

underlying biological substrate—the human brain. Times have

changed. A new picture of cognitive architecture has begun to

emerge, as amply documented by the contributions to this Spe-

cial Issue. Most ‘‘cognitive architectures’’ now are thought of as

sets of brain regions that contribute to the performance of some

set of related tasks or a particular set of functions. Often these

architectures are explicitly referred to as networks, for example,

the default mode network (Raichle et al., 2001) and the attention

networks (e.g., Corbetta and Shulman, 2002).

However, themeaning of the term ‘‘network’’ is highly variable.

In many cases, network is informally applied to a simple collec-

tion of regions that is activated during a set of related fMRI

imaging studies, without any explicit reference to connections

between these regions. In contrast to this informal notion of net-

works as sets of regions stands the more formal definition of

what constitutes a network, which is adopted in this article. A

network is a set of pairwise relationships between the elements

of a system—formally represented as a set of edges that link a

set of nodes. Neurobiological networks come at many levels of

scale from cell-specific metabolic or regulatory pathways inside

of neurons to interactions between systems of cortical areas and

subcortical nuclei (see Figure 1). At each level (neurons, neuronal

circuits and populations, and systems), different kinds of net-

works with importantly different properties are present. At each

of these levels, it is important not just to understand how the in-

dividual elements work but also to understand the sets of pair-
wise relations that put the elements into the context of the larger

interconnected system (Sporns, 2011). With some exceptions,

cognitive architectures mostly involve structures and mecha-

nisms at this highest level of analysis (Sejnowski and Church-

land, 1989). For this article, we would like to focus at these high-

est levels, with a view to understanding networks that relate to all

or much of the brain. We would like to explore large-scale archi-

tectural principles and properties that encompass the more spe-

cific architectures discussed in other articles in this issue.

Approaching Large-Scale Brain Networks
The bulk of the article will entail looking at some of the concepts

and results coming from taking an explicitly network perspective

on brain organization in two related types of studies.

We first turn to work that has aimed to elucidate the anatom-

ical networks upon which all functional activity unfolds. Anatom-

ical networks provide the skeleton that constrains the passage of

neuronal signaling and information that is crucial for shaping our

thoughts, understanding, and actions.

A secondmajor way in whichmany brain network studies have

been studied is through correlated fluctuations of the fMRI BOLD

signal (cf. Power et al., 2014). These studies often observe these

correlations without any explicit task, forming so-called resting-

state functional connectivity (RSFC). This work began with the

important observation that, even at rest, fluctuations of the

fMRI BOLD signal correlate in anatomically specific ways across

the brain. For example, many regions that relate to motor func-

tion are strongly correlated with one another in the absence of

any task. The organization of RSFC has been demonstrated to

provide insight into common functional relationships between

many brain regions beyond the motor system. The second
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Figure 1. Schematic Representation of Levels of Structure within
the Nervous System
The large-scale analyses discussed in the paper focus on the levels of areas/
maps and systems, but network ideas clearly extend down to the level of
neuronal circuits and populations, individual neurons and synapses, as well as
genetic regulatory and protein interaction networks. Adapted from a similar
illustration in Churchland and Sejnowski (1992) and Sejnowski and Churchland
(1989).

Box 1. Current Status of the Field

d The classic notion of ‘‘cognitive architecture’’ postulated

the basic idea that human cognition is a computational

process carried out as a series of operations on symbolic

representations. This view explicitly embraced function-

alism, which implies that cognition can be studied and un-

derstood without much (if any) reference to its biological

basis.

d In parallel, understanding of the neural bases of human

cognition was materially advanced through the mecha-

nistic study of neurocognitive circuits in nonhuman pri-

mates and the application of noninvasive imaging technol-

ogy in the human brain. An enduring achievement was the

discovery of task-specific activations of specific neuronal

populations and localized brain regions aided by the devel-

opment of statistical tools for mass-univariate region-

based analyses.

d Today, ROI-based analyses are increasingly comple-

mented by an alternative perspective, based on the notion

that cognitive function emerges from the dynamics of

extended cortical and subcortical networks. Unlike classic

‘‘neural nets,’’ these networks have a distinct anatomical

basis in the brain’s structural connectivity (the connec-

tome) and manifest through coherent fluctuations in neural

activity at rest as well as distributed patterns of activation

in task states.

d Network approaches are appealing because they (1) tran-

scend local and global function, as connectivity simulta-

neously accounts for regional differences (segregation)

and interregional signaling and communication (integra-

tion); (2) can provide a common framework for describing

both endogenously and exogenously driven neuronal ac-

tivity and their mutual relations; and (3) can be applied

across spatial scales, from neurons to regions, and even

across different data domains, from genes to neural dy-

namics to social interactions.

d Current challenges for network approaches include the

development of novel data acquisition and analytic meth-

odologies that can cope with the ever-increasing volume

and complexity of ‘‘big data.’’ Mapping cognition to the

brain will increasingly rely on sophisticated multivariate

statistical algorithms involving clustering, module detec-

tion, and other dimension reduction approaches. In future,

the growing application of ‘‘data-driven’’ machine learning

or pattern recognition approaches could substantially

benefit from added constraints coming from the rich tradi-

tion of cognitive anatomy.
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main section of the article explores some basic observations and

properties that these studies have provided.

In the final section we explore the relationship between struc-

tural and functional networks that we think is fundamental for un-

derstanding the biological mechanisms that underpin cognitive

architectures (see Box 2). While recent work has uncovered

some relationships between these two types of brain networks,

many aspects of how structural connections constrain functional
208 Neuron 88, October 7, 2015 ª2015 Elsevier Inc.
networks, and how these constraints play out on multiple time-

scales, remain incompletely understood. Integrative studies of

networks across structure and function are an important goal

for the future, and we end our article with charting some tentative

footsteps down this path.

Anatomical Networks
The search for anatomical principles of neurocognitive networks

has a long history, extending at least as far back as the 19th cen-

tury andmarked by the development of new histological methods

and new ideas about the localization of brain function. Deeply

rooted in this tradition is the view that human cognition relies

upon an intricately connected cortical architecture that underpins

its various functional capacities. The fundamental idea that cogni-

tive architecture has a structural foundation remains valid today.

Insights from Nonhuman Primates

Preceding the recent expansion of studies utilizing fMRImethod-

ology in humans, the biological foundations of cognition were

mainly explored from the vantage point of large-scale anatomy

and cellular physiology in model organisms such as nonhuman

primates. These classic approaches have led to the formulation



Box 2. Future Directions

d We need a more complete and more accurate view of the

anatomical underpinnings of cognitive architectures. In the

case of the human brain, this will require the development

of more reliable tools for noninvasive imaging of anatom-

ical connections as well as rigorous cross-validation with

more invasive histological or imaging approaches in

nonhuman primates. We need progress toward more

consistent and biologically motivated quantification of

the geometry, strengths, and efficiencies of anatomical

pathways.

d We need increasingly accurate functional parcellations,

both within groups as well as within individuals. The over-

arching goal behind these efforts is to more clearly define

the functional building blocks from which large-scale brain

networks are configured. Key challenges here are related

to the quality of functional imaging data, excluding system-

atic biases and sources of noise, as well as deploying

sophisticated data analysis techniques that can reveal

network communities across scales, down to the level of

individual brain regions.

d We need new approaches for mapping brain networks

engaged in specific cognitive tasks that can capture their

rapid reconfiguration and dynamic functional connectivity.

Current methods for creating functional connectivity maps

with fMRI are limited in terms of their temporal resolution,

and they cannot reveal the direction of information flow.

d We need more systematic assessment of individual

variability in brain structure and function as a basis for

revealing biological mechanisms that drive individual dif-

ferences in behavior and cognition. Going beyond work

that aims at creating ‘‘population averages’’ of brain net-

works, mapping the anatomical and functional networks

of individuals will be essential for revealing the network ba-

sis of their specific cognitive capabilities and styles.

d We needmore accurate and more powerful computational

models of dynamic brain activity. Such models will be

indispensable for understanding the complex patterns of

signaling and communication within and between brain

networks. Also, such models will be able to inform empir-

ical research by generating predictions about the network

structures and dynamic relationships that are most impor-

tant for maintaining cognitive function.

d We need better understanding of the neurobiological

mechanisms that determine switches or transitions be-

tween cognitive states. While convergent lines of evidence

suggest that such transitions are associated with reconfi-

gurations in functional brain networks, we know very little

about the underlying causes. One possibility is that spe-

cific network nodes are responsible for triggering transi-

tions in global network states. An alternative possibility is

that switches reflect metastable transitions in brain dy-

namics. Understanding the mechanisms behind network

transitions is crucial for moving the field beyond mere

description and toward prediction and control.
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of candidate principles for the organization of neurocognitive

networks that continue to influence our modern view. Key princi-

ples include functional specialization, distributed networks,

segregated processing streams, cortical hierarchy, and conver-

gence zones. Functional specialization was articulated as a prin-

ciple of brain organization in the work of Semir Zeki (Zeki and

Shipp, 1988), building on the finding that cortical regions main-

tained unique sets of afferent and efferent projections, later

termed ‘‘cortical fingerprints’’ (Passingham et al., 2002). Distrib-

uted circuits, exemplified in the work of Patricia Goldman-Rakic

and Vernon Mountcastle, consisted of sets of brain regions and

interconnecting pathways that collectively performed a specific

perceptual or cognitive function (Goldman-Rakic, 1988). Pro-

cessing streams, for example, the ventral and dorsal visual

cortex, combined serial/hierarchical arrangements of regions

with functional specialization. Cortical hierarchy was postulated

based on projection patterns in collated anatomical data (Felle-

man and Van Essen, 1991) and was one of the hallmarks of

Marcel Mesulam’s seminal proposal for a cortical architecture

that consisted of nested shells of areas ranging from unimodal

sensory and motor regions to an inner core of transmodal

or multimodal areas (Mesulam, 1990). A related idea was that

of cortical convergence zones (Damasio, 1989), representing

anatomical elements with key roles in binding and cross-refer-

encing distributed sources of information.

More recent work has shed new light on some of these classic

concepts by applying data-driven and quantitative analytic tools,

from graph theory and network science to neurocognitive sys-

tems. For example, analysis of the topology of projections

among a subset of regions in macaque cortex has shown that

unique sets of inputs and outputs, especially those made over

longer distances, convey functional specificity (Markov et al.,

2013). Cortical hierarchies, while not always arranged in strictly

serial order, define gradients of progressively more complex

physiological properties in sensory and motor systems. Pro-

cessing streams, for example, those in visual cortex, may corre-

spond to network modules or communities that are defined by

the topology of interregional projections in cerebral cortex.

Diverse and widespread anatomical connections have repeat-

edly been described as the defining feature of transmodal/multi-

modal areas, for example, the various subdivisions of the pre-

frontal cortex (Markov et al., 2013) or the precuneus (Parvizi

et al., 2006). The network embedding of these regions renders

them candidate network hubs, putative focal points that are

important for attracting and dispersing a diverse set of neural

signals (van den Heuvel and Sporns, 2013). Another prominent

network feature is based on a high density of anatomical linkages

among hub nodes, which are often seen as forming a core (Hag-

mann et al., 2008) or rich club (van den Heuvel and Sporns,

2011). Overall, modern network-based studies and analyses

validate most classic anatomical principles and advance a

coherent framework for the topology of neurocognitive systems

that is rooted within the larger context of network science.

Going forward, the continued exploration of the anatomical

basis of cognitive networks will benefit from the development

of more sensitive quantitative methods for estimating the geom-

etry and topology of cortical projection systems. Invasive label-

ing and tract-tracing technologies are evolving toward more
Neuron 88, October 7, 2015 ª2015 Elsevier Inc. 209
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comprehensive (Bota et al., 2015) and high-throughput (e.g., Oh

et al., 2014) detection of interregional pathways. Despite their

status as ‘‘gold standards’’ in connectional anatomy, these

methods also have some methodological limitations, as they

require aggregating data across many individuals (often without

tracking gender, age, or hemispheric location) and do not cap-

ture inter-individual variability.

Structural Networks in the Human Brain

In recent years, much work on the structural basis of human

cognitive networks has relied on reconstructions of anatomical

networks derived from diffusion imaging and tractography.

Methodological advantages of this approach are partly comple-

mentary to the limitations of invasive tract-tracing studies—for

example, whole-brain coverage in neuroimaging allows con-

struction of complete anatomical networks from single individ-

uals and hence the potential systematic assessment of individual

differences and heritability. However, diffusion imaging also suf-

fers from numerous limitations and biases in data acquisition and

computational reconstruction of connectivity. These include the

complete lack of gray-matter connections, an inability to deter-

mine directionality or physiological efficacy, and uncertain mea-

sures of connection strength or magnitude (Fornito et al., 2013).

Considerable efforts are under way to further improve diffusion

imaging acquisition and signal deconvolution. In addition, com-

putational inference of anatomical pathways with noninvasive

imaging is undergoing continuing development—one promising

avenue is the introduction of model-based global tractography

approaches (Pestilli et al., 2014). Cross-validation between

tract-tracing and diffusion data continues to be invaluable for

verifying key features of human anatomical networks. In model

organisms, such cross-validation has led to mixed results, with

some studies reporting significant mismatches (Thomas et al.,

2014) and others finding significant convergence and overlap

(Calabrese et al., 2015), with gains in reliability and sensitivity

that depend on the selection of optimal tractography parameters

and parcellation schemes (Chen et al., 2015).

Over the past few years, a large number of studies have at-

tempted to reconstruct whole-brain (or at least cortical) network

maps in humans and reported a number of significant features of

network topology (Sporns, 2013, 2014). These network features

include unique connectivity fingerprints, a high density of trian-

gles (high clustering) and short path length, densely connected

network communities or modules, and skewed degree distribu-

tions characterized by a small set of regions that maintain a large

set of diverse connections. Several studies have reported these

regions to comprise portions of the superior and lateral frontal

cortex and portions of medial parietal cortex, the cingulate,

and the insula. In addition to their high degree of connectivity,

these regions have been found to be mutually densely intercon-

nected (van den Heuvel and Sporns, 2011), paralleling the high

density of connections among network hubs found in model or-

ganisms (Bota et al., 2015; Rubinov et al., 2015; Shih et al., 2015;

Towlson et al., 2013). It is worth noting that, while the methods

for reconstructing human anatomical networks continue to

evolve, there is strong convergence between humans and other

species across very different anatomical measurement tech-

niques with respect to prominent features of large-scale net-

work topology (e.g., clustering, modules, hubs, and core). This
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convergence raises the possibility that common architectural

themes are the result of common driving forces shaping anatom-

ical networks.

Factors Shaping Anatomical Networks

One of the most enduring observations in anatomical connectiv-

ity is an overabundance and high density of short-range projec-

tions and, as a consequence, a high propensity for neighboring

brain regions to be anatomically linked (Averbeck and Seo,

2008; Young, 1992). These findings suggest that the layout of

anatomical projections is largely determined by spatial con-

straints, minimizing or at least conserving wiring length and

volume as well as conduction delays. Recent studies have

expanded on these views, for example, proposing an exponen-

tial distance rule as the key generative factor for inter-regional

projections (Ercsey-Ravasz et al., 2013). However, distance or

wiring length alone can neither account for all observed topolog-

ical features of anatomical brain networks (Kaiser and Hilgetag,

2006) nor predict specific patterns of (often long-distance) cou-

plings among areas that share high-degree (van den Heuvel and

Sporns, 2011) and common cytoarchitectonic patterns (Barbas,

2015). Thus, generative principles for anatomical networks likely

comprise a combination of factors, including connectional

geometry and cost as well as aspects of topology and micro-

structure, competing as part of an economic trade-off between

low-cost and efficient performance (Bullmore and Sporns,

2012). The search for generative principles that can explain the

arrangement of network elements in nervous systemsmay even-

tually provide insights regarding the evolutionary origin of cogni-

tive architectures. It appears that the anatomical substrate is

subject to severe and ultimately inviolable constraints that force

a trade-off between the expense of material, space, and energy

on the one side and computational performance on the other.

This trade-off places sharp boundaries around the subsets of ar-

chitectures that can be physically realized and, at the same time,

are biologically viable. A corollary of this perspective is that ex-

isting cognitive architectures may be optimally negotiating a

trade-off among multiple design constraints but may also fall

well short of theoretical limits on any one dimension, that is,

combine suboptimal cost with suboptimal performance.

This last point reinforces the importance of considering the

biological implementation (for example, in the topology of

anatomical networks) as inseparably linked with the more ab-

stract level of neural computation—a point that runs counter to

David Marr’s classic notion of separable levels of analysis

(Marr, 1982). Instead, structure (implementation) and function

(computation) appear inseparable. Anatomical networks define

the space of what is functionally possible (Avena-Koenigsberger

et al., 2015)—their structure imposes strong constraints on pat-

terns of neural signaling and dynamics, effectively shrinking an

impossibly large space of functional network configurations

to a lower-dimensional manifold that defines an envelope of

possible functional interactions. This envelope is expressed in

spontaneous and task-evoked fluctuations in functional connec-

tivity that in turn define functional networks.

Functional Correlation Networks
As stated earlier, one approach to large-scale brain networks is

through the use of RSFC. At this time, there is considerable



Figure 2. Resting-State Functional Correlation: Basic Observations
The top half of the figure shows two regions of interest from motor cortex in red and blue on a brain image. On the right are resting time courses from these two
regions showing high correlation across severalminutes. This is resting-state functional correlation (RSFC). The bottompanel shows regions of the brain that have
high correlation with the red region of interest (ROI) from above. Each of these regions is nominally related to motor and somatosensory processing, suggesting
that RSFC illuminates regions that are functionally related. Note also that the right cerebellar response in the rightmost brain section is several anatomical steps
from the ROI.
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consternation about what correlations really represent in these

very ‘‘unconstrained’’ situations. However, there is little question

that observations of RSFC, both at the group and individual

levels, can show high levels of reliability and reproducibility.

Indeed, many of the observations of network data from RSFC

persist across different types of ‘‘rest’’ (eyes open versus eyes

closed [McAvoy et al., 2012] versus light anesthesia or early

stages of sleep [Horovitz et al., 2009; Larson-Prior et al.,

2011]). Further, many of the overall network relationships appear

to persist across task states (Cole et al., 2014). Nonetheless,

tasks do produce perturbations on the underlying networks pre-

sent during rest (Cole et al., 2014; Davison et al., 2015), and deep

sleep and deep anesthesia (Heine et al., 2012) also produce clear

disruptions of the functional architecture of RSFC.

Thus, real questions exist about what these RSFC fluctuations

represent. They appear to be constrained by the underlying

anatomical relationships, but overall they clearly do not duplicate

anatomical relationships (see the next section). Very strong func-

tional correlations can be found between brain regions that

demonstrably are not linked by any direct (one-step) anatomical

connections. For example, functional correlations can be found

between left motor cortex and right cerebellum (Buckner et al.,

2011), two structures that are multiple steps away from one

another in anatomical terms (Figure 2). The eccentric representa-
tions of primary visual cortex in left and right hemispheres also

clearly correlate, also without the presence of direct anatomical

connections (Vincent et al., 2007).

The fact that RSFC does not represent single-step anatomical

correlations unfortunately calls into question the appropriateness

of some otherwise very useful network tools that are based on

representations of paths and path lengths (referring to the num-

ber of steps between two locations). While some measures

based on paths, including global efficiency and some centrality

measures, are widely used in functional network studies, they

must be interpreted with caution. Path-based analyses in corre-

lation networks may be useful for inferring hierarchical relation-

ships and multi-step associations among the brain’s functional

systems. However, interpretations that make direct reference

to information flow or communication along functional connec-

tions may be inappropriate in light of the complex and indirect

way that correlation networks relate to network paths in the un-

derlying anatomical networks. Neural signals are passed along

anatomical paths, and functional connections emerge as a result.

Hence, instead of interpreting functional connections as direct

links between two brain regions, a more reasonable supposition

is that an RSFC correlation represents composite (perhaps a

weighted sum of the) functional relationships along many or all

of the anatomical paths that exist between the two regions, for
Neuron 88, October 7, 2015 ª2015 Elsevier Inc. 211
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Figure 3. Two Versions of Community
Detection
On the right is the layout of communities from a
network science infomap community detection al-
gorithm on group RSFC data. On the left is the
layout of communities from a clustering approach.
Notice the high spatial similarity of the two versions.
Adapted from figures in Power et al. (2011) and Yeo
et al. (2011).

Neuron

Perspective
example, see Power et al. (2014) for review. Importantly, these

correlations reflect not only the anatomical presence but also

the synaptic efficiencies of these connections. Thus, functional

relationships can vary not only as a result of the structural ar-

rangements of paths but also as a result of changes in the syn-

aptic efficiencies along these paths. For example, performance

of a task a large number of times can increase the correlation

between commonly activated regions (e.g., Lewis et al., 2009;

Mackey et al., 2011). An interesting way to think about the

generic correlation structure across the brain is that it represents

a very high-level statistical representation of historical coactiva-

tion between regions constrained (but not fully determined) by

the underlying anatomy.

Early studies using RSFC used a seed-based approach. This

technique took a seed or contiguous collection of voxels and

looked at how all the rest of the voxels in the brain correlated

with the seed (Biswal et al., 1995). In many cases, the correlation

patterns seem to represent functionally related regions. Notably,

in 2003, a study by Greicius et al. (2003) showed that placing a

seed in the posterior cingulate region related to the default

mode network revealed a set of correlations that looked very

much like the set of regions comprising the default mode

network, much as seeding the connections from left motor cor-

tex reveals much of motor systems. The default mode network

had previously been described as a set of regions that have

the unusual property of decreasing their activity whenever a

subject goes into many different kinds of active task states.

This study unleashed a torrent of further studies with similar

outcomes. Different attentional systems were defined using

different seeds, and these networks again showed that resting

correlation patterns followed coactivation patterns during tasks.

Community Detection

The success of this piecemeal approach at describing local

relationships of ‘‘neighbors’’ (and the difficulties in putting

these different ‘‘neighborhoods’’ together) encouraged several

different groups to attempt descriptions of all or much of the

brain in terms of sets of modularized correlation relationships.

In network science, the attempt to find underlying group struc-

ture in a large-scale network is termed community detection. A

community is a set of objects or nodes (in this case, brain re-

gions) that maintain denser and stronger relations among them-

selves than with members of other communities.

Using quite different techniques, several groups have

described similar community or cluster structures (Figure 3)
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(e.g., Damoiseaux et al., 2006; Power

et al., 2011; Sorg et al., 2007; Yeo et al.,

2011). Further, the community structure it-

self has a very high degree of face plau-
sibility. In many cases, it replicated the neighborhoods found

using seed-based techniques, which in turn had replicated co-

activation relationships found in task-based fMRI studies. For

example, the ‘‘attentional’’ networks found in Figure 4 had strik-

ing similarity to the dorsal and ventral attention systems of Cor-

betta and Shulman (2002) and the frontoparietal and cingulo/

opercular systems of Dosenbach et al. (2007) (see also executive

control and salience systems of Seeley et al., 2007).

Some of the communities that were found in these studies had

not been previously described. In some cases, the new commu-

nities identified regions that had previously described coactiva-

tion relationships. For example, a set of parietal regions was

described, near default mode regions that shared specific coac-

tivation relationships across memory-encoding and retrieval

tasks, and these regions have come to be termed, perhaps

inauspiciously, the parietal encoding retrieval network (PERN)

(light blue regions onmidline of Power communities, and gray re-

gions in Yeo clusters in Figure 3). Other communities were some-

what surprising in their configuration. For example, somatic

motor regions were broken into regions related to themouth rep-

resentation and to the rest of the body separately. In further

exploring this distinction, it was found that the mouth represen-

tation community more closely correlated with an auditory com-

munity than the body representation did (Power et al., 2011). This

suggests the tantalizing speculation that the strong relationships

created between oral and aural processing in language leads,

perhaps by way of Hebbian plasticity, to this somewhat unintui-

tive result.

Several studies have taken a more formal approach to the

question of the relationship of underlying correlation patterns

at rest with what is seen during tasks. Meta-analyses of large da-

tabases recording task-evoked cortical activation patterns allow

the description of coactivation patterns estimated across a large

number of cognitive tasks. These coactivation patterns often

show significant overlap with RSFC clustering. The cluster struc-

ture of these patterns may also be used to extract relations

among different cognitive tasks and domains, a step toward

creating a data-driven ontology of cognitive states (e.g., Smith

et al., 2009). Such an ontology would further reinforce the notion

that the capacities of human cognition have their roots in the

network architecture of the human brain.

Large-scale network science tools also allow interpretation

beyond the simple presence of separate communities. One way

is by creating a representation of how the different communities



Figure 4. The Isolated Layout of Some
Frontal and Parietal Communities
These spatial layouts are recognizable as the
cingulo-opercular (purple) and fronto-parietal
(yellow) systems from fMRI studies of Dosenbach
et al. (2007) and the dorsal and ventral attention
systems based on fMRI studies of Corbetta and
Shulman (2002).
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relate to one another, not in an anatomical space but in a network

space. A popular network visualization tool treats each of the cor-

relations as a mechanical spring with a spring constant propor-

tional to the correlation strength. A repulsive force is placed on

all the regions/nodes of the network, and the springs between

the nodes pull the entire network into a new energy-minimizing

configuration. As can be seen in Figure 5, spring embedding pla-

ces the more enclosed processing type networks, the blue visual

system and cyan and brown motor systems, on the edges of the

network. The more control-related attentional systems reside

more centrally, as if they would be expected to relate to other sys-

temsmore broadly. Interestingly, the default mode ‘‘network’’ sits

at the edge, more like a ‘‘processing’’ than a control system (for

more discussion, see Power et al., 2014).

Relation to Cognitive Architectures

All of this leads to some interesting functional questions. The

community-oriented studies have suggested that there may be

somewhere between one and two dozen different systems in

resting correlation. It is our supposition that several of these

will relate to the more specific cognitive architectures that are

addressed in the other articles in this issue. On the other hand,

humans seem to have amazing behavioral flexibility with a

myriad of well-defined sets of functional capabilities. One can

imagine that relatively separable RSFC systems should be asso-

ciated with these different kinds of capabilities. So, as we go

through the other chapters in this Special Issue, one might be

interested in mapping, say, a ‘‘reward system’’ onto one of our

communities. What if this doesn’t happen?

One explanationmight be that network communities that man-

ifest in the resting state just do not faithfully represent specific

cognitive or behavioral functional distinctions. But the many

counterexamples already explored here at least somewhat

argue against a strong dissociation. A second explanation is

that there may be further breakdowns within the dozen or

so ‘‘coarse-grained’’ systems detected in most resting-state
Neuron 88
studies that represent more ‘‘fine-

grained’’ functional distinctions. This, of

course, can be explored in future studies.

A third and more interesting possibility is

that many kinds of task distinctions that

may be important to us as humans do

not represent statistically useful descrip-

tions of overall coactivation in the life

of the individual and hence are not ex-

pressed in aggregate RSFC patterns.

To this end, let us look at a set of

regions consistently activated during

reading tasks that in some cases have

been identified as the ‘‘reading network’’
(e.g., Dehaene et al., 2010; Fiez and Petersen, 1998; Perfetti

and Bolger, 2004). This set of regions includes a region that

has come to be called the ‘‘visual word form area’’ in extrastriate

cortex, regions in the angular and supramarginal gyri, and

others. When resting state is examined among these regions,

and these regions are viewed inside of large-scale networks,

their mutual RSFC correlations are unremarkable or non-exis-

tent. It is not that these regions do not have strong relationships

at all (Vogel et al., 2013). In fact, these regions seem to be very

much parts of other quite coherent networks, particularly the

dorsal attention system (Figure 6) (Vogel et al., 2012). So, what’s

going on here?

Reading is clearly very important to humans—in fact, it is a

task that you, the reader, are currently engaged in and presum-

ably spend a lot of time exercising. However, the regions that are

commonly utilized in reading tasks appear also to be utilized for

many other different kinds of tasks (Price and Devlin, 2003; Vogel

et al., 2012). Thus, the statistical nature of the relationships spe-

cific to reading may not represent the ‘‘day jobs’’ of many of the

involved regions. This suggests that our behavioral flexibility may

depend on our ability to usefully configure sets of regions for

specific tasks and that these configurations are not necessarily

representative of the baseline way that those regions are ‘‘nor-

mally’’ conjoined. Reading appears to be a very interesting

example of this—it involves breaking baseline network coher-

ence to create task-specific new networks bound by new sets

of dynamic relationships. This immediately implies that the rela-

tion between (relatively stable) anatomical networks and (highly

dynamic) functional networks is bound to be a complex issue.

Relations between Anatomical and Functional Networks
Structure/Function Relations

So far, we have examined cognitive architectures sepa-

rately from a structural/anatomical and functional/physiological

perspective. A more complete understanding of the biological
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Figure 5. A Spring-Embedded Representation of 264-Region RSFC
This pulls anatomically disparate members of systems together in a ‘‘network space’’ (see text for description of spring embedding). Important to note is that the
circles encompass visual (blue), motor (cyan and brown), and default systems (red) that are located along the edge of the network, while control-related and
attentional systems are more centrally located. From Power et al. (2011).
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foundations of cognition requires considering their interaction—

the emergence of functional brain activity and dynamics on top

of structural networks, as well as the continued modification of

structural networks that results from activity-dependent modula-

tion and plasticity.

Functional Networks Emerging on Structural Networks

Patterns of structural and resting-state functional connectivity

exhibit significant relationships in both nonhuman primates

(Vincent et al., 2007) and humans (Hagmann et al., 2008; Her-

mundstad et al., 2013). Components of functionally coherent

resting-state networks are anatomically interconnected (Grei-

cius et al., 2009), structural and functional connection strengths

are significantly correlated (Honey et al., 2009), and the path

structure linking indirectly connected node pairs is partly predic-

tive of the strength of functional couplings (Adachi et al., 2012).

Nonlinear dynamic simulations of spontaneous neural activity

(Ghosh et al., 2008; Gollo et al., 2015; Honey et al., 2007) as

well as formally simple generative models based on the topology

of anatomical connections can create synthetic patterns of func-

tional connectivity that resemble empirical resting state (Figure 7)

(Abdelnour et al., 2014; Goñi et al., 2014; Mi�si�c et al., 2015).

These and other findings strongly suggest that anatomical con-

nectivity plays an important role in shaping the patterns of func-

tional connectivity that characterize long-time averages of spon-

taneous BOLD fluctuations. Recent work on relations between

anatomical patterns and electroencephalogram (EEG) functional

connectivity further strengthens this idea (Chu et al., 2015).
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Structure is predictive of function in other domains as well. For

example, in line with findings coming from nonhuman primates

(see above), anatomical connectivity patterns can predict func-

tional specialization of brain regions in the fusiform gyrus (Saygin

et al., 2012) and in other portions of human temporal cortex

(Gomez et al., 2015).

Despite strong and reproducible relations between structural

and functional networks, network topology diverges in a number

of important ways. A root cause for this divergence is a funda-

mental difference in the nature of structural and functional con-

nectivity. Structural connections represent direct anatomical

linkages and define (within fine-grained parcellations) relatively

sparse networks. Functional connections express (in their most

common usage) the similarity of BOLD time courses and define

correlation networks that are dense due to transitive closure (Za-

lesky et al., 2012). Transitivity refers to themathematical fact that

individual correlations in functional connectivity are generally

interdependent such that changes in individual correlations often

propagate across the network. Transitive closure implies that

this basic property of correlation networks induces topological

structure such as triadic closure or clustering, an effect that

should be accounted for in appropriate statistical comparisons

and null models (Zalesky et al., 2012). As a result of these and

other features, network measures must be interpreted differently

across the two domains of structure and function (Power et al.,

2014; Sporns, 2014). For example, while it is appropriate to

use node degree as a defining feature of network hubs in



Figure 6. Resting-State Functional
Correlation of Reading-Related Visual
Region Does Not Correlate with Many Other
Regions Activated in Reading Tasks
The upper panels show RSFC (color bar patches
across cortex) from the putative visual word form
area (pVWFA) (red sphere) (adapted from Vogel
et al., 2012). ‘‘Reading regions’’ from meta-anal-
ysis are shown in blue, and dorsal attention
network areas are shown in green. The RSFC from
pVWFA are almost exclusively related to dorsal
attention regions and avoid members of the task-
based reading network.
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structural networks, ‘‘functional node degree’’ is confounded by

the properties (e.g., transitivity) of networks built from pairwise

cross-correlations. Node participation, that is, the diversity of

its functional connections relative to a module partition, offers

a more robust approach (Power et al., 2014). As different mea-

sures for functional connectivity (e.g., partial correlations or

directed information flow) come into play, interpretation of

network measures must remain sensitive to the nature of what

is expressed in the edge weights and their topology.

Earlier in this Perspective, we discussed the important roles of

resting-state or intrinsic connectivity networks as functional

building blocks of cognitive architecture. It is therefore an impor-

tant question to investigate how patterns of structural connectiv-

ity relate to the partitions defined by these functional building

blocks. In general, structural and functional networks do not sim-

ply ‘‘line up’’ across domains—for example, structural network

communities do not, for the most part, correspond to functional

communities. Nevertheless, anatomical nodes and connections

are organized in ways that relate to functional partitions. For

example, several studies have shown that high-degree (anatom-

ical) brain regions or network hubs are widely dispersed around

the brain, across lateral and superior frontal cortex, parietal cor-

tex, and the insula, among others, and they are densely intercon-

nected, a hallmark of ‘‘rich club organization’’ (van den Heuvel

and Sporns, 2011). Comparison to functional modules has

shown that these structural hubs are also widely dispersed

among resting-state networks and that their interconnections

may be important for communication between such networks

(van den Heuvel and Sporns, 2013). The latter point about the

‘‘importance of weak links’’ (Granovetter, 1973) (defined as links

that connect different communities) has been reinforced by other

studies that have shown significant anatomical links spanning

functional modules (Gallos et al., 2012).

While structural and functional networks are clearly related,

no structurally based computational model has thus far suc-

ceeded in capturing all of the variance observed in functional

brain recordings. Likely causes for this shortfall are complex

physiological underpinnings of the BOLD response and its tem-

poral fluctuations, the lack of important information on the

directionality and physiological strength of pathways, as well

as biases and noise corrupting both structural and functional

data acquisition. While the latter may be partly addressable

through future methodological refinements, current technology

does not allow direct noninvasive observations of neural pro-
cesses in the human brain that combines both spatio-temporal

precision and whole-brain coverage. Extremely promising work

addressing this gap in knowledge is under way in model organ-

isms, where whole-brain connectomics and large-scale func-

tional recordings are likely to converge soon, offering unprece-

dented glimpses of highly resolved network structure/function

relationships.

Network Dynamics, Flexibility, and Reconfiguration

In most previous studies, relations between structural and

functional networks have been most evident when considering

long-time averages of correlations among spontaneous or

resting-state fluctuations. Over shorter time periods, however,

structure/function relations diminish (Van Dijk et al., 2010). One

possible interpretation of the latter finding is that shorter obser-

vation periods undersample the set of dynamic patterns that

jointly contribute to the long-term average of resting-state func-

tional connectivity. The implication is that functional connectivity

is ‘‘dynamic,’’ that is, its spatial pattern changes over time

(Hutchison et al., 2013). In line with this view, some theoretical

and computational models have suggested that spontaneous

dynamics in the brain occur ‘‘near criticality,’’ a dynamic regime

characterized by ongoing noisy fluctuations and a rich repertoire

of brain states (Deco et al., 2011; Haimovici et al., 2013).

Others have suggested that observed fluctuations may result,

more broadly, from processes that confer ‘‘dynamic instability’’

(Breakspear, 2002; Friston et al., 2012). In general, criticality

and dynamic instability both suggest that noise-driven fluctua-

tions should result in short-term deviations from the long-term

average pattern of functional connectivity.

In empirical resting-state fMRI studies, the status of time-

dependent functional connectivity is still in flux. Some studies,

usually carried out on the temporal evolution of windowed pat-

terns of functional connectivity, have suggested that a subset

of functional connections exhibits non-stationary fluctuations in

magnitude (Zalesky et al., 2014), and others have provided evi-

dence that functional connectivity passes through a restricted

set of network states with distinct topology and community

structure (Allen et al., 2014). Important and difficult methodolog-

ical issues involve demonstrating the robustness of clustering

methods used for deriving families of network states, inherent

limitations in diagnosing network-wide transient connectivity

states on the basis of mutually dependent sets of pairwise corre-

lations, the uncertain level of persistence of such states in

conservatively configured (e.g., phase-randomized) null models,
Neuron 88, October 7, 2015 ª2015 Elsevier Inc. 215



Figure 7. A Network-Based Computational Model of Functional Connectivity
FromGoñi et al. (2014). The left side of the figure represents empirical RSFC, while the right side represents results from amodel of functional connectivity based
on the network architecture of structural connectivity. In the middle, the left triangular half of the plot shows a functional connectivity (cross-correlation) map of
500 parcels comprising the right cortical hemisphere (Hagmann et al., 2008). The right triangular half of the plot shows modeled or predicted functional con-
nectivity derived from the computational model. The model was based entirely on network measures of communication applied to the underlying structural
connectivity (connectome) matrix. The two halves of the plot are significantly correlated (R = 0.60). The outer plots (left and right) show examples of a seed-based
cross-correlation map (with the seed placed in the superior parietal cortex) projected onto the lateral and medial surface of the cortex. Plots on the left depict a
correlation map from empirical data (Hagmann et al., 2008). Plots on the right depict model predictions (R = 0.55).
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and the unknown nature of neurobiological mechanisms driving

state transitions. Multimodal studies as well as studies in model

organisms (Keilholz, 2014; Tagliazucchi and Laufs, 2015) will

likely help to clarify the physiological origin of fluctuating rs-

fMRI functional connectivity. It should be noted that fast non-sta-

tionary fluctuations in spontaneous task-free brain connectivity

are well documented in the EEG/magnetoencephalography

(MEG) and neurophysiological literature (Breakspear, 2002;

Ioannides, 2007). For example, long-term recordings of sponta-

neous network patterns with intracranial EEG revealed a core of

persistent functional connections as well as a set of connections

that are consistentlymore variable andmetastable (Kramer et al.,

2011). More recently, rapid transitions (on the order of 100–

200 ms) among transient brain states resembling cortical

resting-state networks have been observed in MEG recordings

of resting brain activity (Baker et al., 2014).

In addition to these fast responses of functional connectivity in

response to sensory perturbations and momentary shifts in

cognitive demands, structural and functional networks underpin-

ning human cognitive architecture are also changingmore slowly

in the course of learning and plasticity. Resting-state functional

networks were sensitively remodeled in the course of a visual

perceptual learning task (Lewis et al., 2009), and the acquisition

of a complex motor skill was found to be associated with

changes in the modular organization of fMRI functional networks

(Bassett et al., 2011). Taken together, these findings demon-

strate that the networks underlying human cognitive architecture

partly reflect individual experience and skill acquisition. This view

is supported by numerous studies that have shown that individ-

ual differences in neurocognitive networks (structural and func-

tional) can be predictive of individual differences in cognitive

and behavioral performance.
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Conclusions
The emerging picture is one in which dynamic processes of

neuronal signaling and communication play out on an intricate

web of anatomical projections. The resulting interplay between

structure and function renders brain networks capable of

both robust computational performance and flexible adaptive

response—a cognitive architecture that as a ‘‘network of net-

works’’ maintains consistent, recognizable, and reproducible

topology across individuals and yet retains many additional

degrees of freedom for context-, stimulus-, and task-dependent

reconfiguration. Different networks make different contribu-

tions—while some may be more heavily engaged in domain-

specific (e.g., visual or motor) processes, others may be more

important for integrating multimodal information or for task

switching and control. Importantly, the view that emerges is

one in which the elementary building blocks of cognitive archi-

tecture are networks, not regions or individual neurons. We

believe that this network-centric perspective provides a fruitful

basis for how to understand the biological basis of human

cognitive architecture.
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