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Abstract

A commutative ring R has the unique decompositions into ideals (UDI) property if, for any
module L that decomposes into a 2nite direct sum of ideals, the decomposition of L into ideals is
unique apart from the order of the ideals. We characterize the UDI Noetherian integral domains.
c© 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

A commutative ring R is said to have the unique decompositions into ideals (UDI)
property, if, for any module L that decomposes into a 2nite direct sum of ideals, the
decomposition of L into ideals is unique apart from the order of the ideals. That is,
for any ideals I1; : : : ; In; J1; : : : ; Jm of R, if I1 ⊕ · · · ⊕ In ∼= J1 ⊕ · · · ⊕ Jm, then n=m and
after reindexing, Ij ∼= Jj for each j. If R is an integral domain, then it is easy to see
that if I1 ⊕ · · · ⊕ In ∼= J1 ⊕ · · · ⊕ Jm, then n= m. Thus, for integral domains, the force
of UDI is the assertion that there is a reindexing of indices such that Ij ∼= Jj for all j.
In this article, we study UDI for Noetherian integral domains. Throughout the paper,

R always represents a Noetherian integral domain with quotient .eld Q, and >R denotes
the integral closure of R in Q.
In Section 2 we show that the issue of characterizing Noetherian UDI domains breaks

down nicely into the problem of determining local UDI domains. Speci2cally, R has
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UDI if and only if R is a PID or R has exactly one nonprincipal maximal ideal M and
RM has UDI. Section 3 contains an explicit description of when a local domain R has
UDI, given in terms of the splitting of its maximal ideal in certain 2nitely generated
overrings of R inside the integral closure >R of R. Our results aEord a characterization
of the Noetherian domains R such that every 2nitely generated torsion-free module
decomposes uniquely into the direct sum of ideals of R, as rings such that every ideal
is 2-generated and all but at most one maximal ideal is principal.
Recall that an R-submodule of Q is said to have rank one as a module. We also

show that for Noetherian domains of Krull dimension 1, the Krull–Schmidt property for
ideals implies the Krull–Schmidt property for rank one modules, thus relating UDI to a
theorem of R. Baer on rank one modules over a PID. More precisely, a one-dimensional
Noetherian domain has UDI if and only if whenever X1 ⊕ · · · ⊕ Xn

∼= Y1 ⊕ · · · ⊕ Ym

for rank one modules Xi; Yj, then n = m and after reindexing, Xi
∼= Yi for all i. That

is, decompositions into rank one modules are unique when decompositions into ideals
are unique.
In the recent pair of articles [3,4], Levy and Odenthal analyze the Krull–Schmidt

property for 2nitely generated modules of semiprime, module-2nite algebras over com-
mutative Noetherian rings having Krull dimension one. In particular, they character-
ize when such an algebra possesses the torsion-free Krull–Schmidt property (TFKS):
if A1; : : : ; An; B1; : : : ; Bm are indecomposable, 2nitely generated torsion-free �-modules
such that A1 ⊕ · · · ⊕ An

∼= B1 ⊕ · · · ⊕ Bm, then n = m and after rearrangment, Ai
∼= Bi

for all i. Our schema is somewhat diEerent in that while we restrict to (commutative)
integral domains, we allow �=R to be any (not necessarily one-dimensional) Noethe-
rian domain. And although our approach to UDI is quite diEerent from the approach of
Levy and Odenthal to the deeper property of TFKS, there is commonality among the
results obtained in the one-dimensional case. In fact, comparing Theorem 1:3 of [3] and
Theorem 3.2 of the present paper, one sees that the class of one-dimensional Noethe-
rian domains satisfying TFKS is tightly contained in the class of UDI one-dimensional
Noetherian domains. This containment, however, is proper: Example 4.4 guarantees the
existence of a one-dimensional local domain which has UDI and whose integral closure
has precisely 3 maximal ideals. Such a ring cannot satisfy TFKS [3, Theorem 3:1].
All of the modules mentioned below are torsion-free and have 2nite rank, where the

rank of A is de2ned as the dimension of the Q-vector space Q ⊗R A. The R-module
endomorphism ring of a module A will be denoted by E(A).

2. Reduction to the local case

Lemma 2.1. If R has UDI; then all but at most one maximal ideal of R is principal.

Proof. If R is not local and M1 and M2 are distinct maximal ideals of R, M1 ⊕M2
∼=

R⊕M1 ∩M2. Because R has UDI, one of M1 or M2 is principal. Thus there cannot be
2 nonprincipal maximal ideals of R.
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Recall that a domain R is called h-local, if (i) every nonzero element of R is
contained in only 2nitely many maximal ideals of R, and (ii) each nonzero prime ideal
of R is contained in a unique maximal ideal of R. Equivalent to the de2nition of h-local
is the condition, for each maximal ideal M of R, R[M ] ·RM=Q, where R[M ]=

⋂{RN | N
is a maximal ideal diEerent from M} [6]. In case R is Noetherian, (ii) implies (i); this
can be seen by considering primary decompositions of an ideal.

Lemma 2.2. If M is a maximal ideal of R such that every maximal ideal other than
M is principal; then R is h-local; and R[M ] is a PID that is also a <at R-module.

Proof. If P be a nonzero prime ideal contained in a principal maximal ideal N , then
P=N by the Krull Principal Ideal Theorem. Otherwise, P is contained in M exclusively,
and it follows that R is h-local. Also, R[M ] is a Kat R-module because the localizations of
R[M ] at maximal ideals of R are either R[M ]RM =Q, or RN where N 	= M . Furthermore,
the maximal ideals of R[M ] are N · R[M ], where N is a principal maximal ideal of R,
so R[M ] is a PID.

A fundamental idea in the study of torsion-free abelian groups can be adapted to our
setting and will play an important role in the proof below. Two torsion-free modules
G and H are called nearly isomorphic, if for each ideal I 	= 0, there is an embedding
f :G → H such that J = ann Coker f is a nonzero ideal of R comaximal with I (i.e.,
I+J =R). Clearly, if G and H are isomorphic torsion-free modules, then G and H are
nearly isomorphic. Also, it is not hard to check that near isomorphism implies genus
isomorphism, i.e. if G is nearly isomorphic to H , then GM is isomorphic to HM for
all maximal ideals M of R.
A consequence of Proposition 2.4, which shows the strength of the UDI hypothesis,

is that isomorphism, near isomorphism and genus isomorphism all coincide for direct
sums of ideals over UDI Noetherian domains. This property of UDI domains is special
since for example any ideal in a Dedekind domain is nearly isomorphic to a principal
ideal, yet not every ideal of a Dedekind domain need be principal.

Lemma 2.3. Suppose R has UDI and that G and H are .nitely generated torsion-free
modules. If GM

∼= HM for all maximal ideals M of R; then G is nearly isomorphic
to H .

Proof. From Theorem 7:11 in [8], due to the fact that G;H are 2nitely generated,
Hom(G;H)N = Hom(GN ;HN ) for each maximal ideal N . Let M be a 2xed maximal
ideal of R such that every other maximal ideal is principal (Lemma 2.1). In light of
Lemma 2.2, R[M ] is a Kat R-module, so from Theorem 7:11 again, Hom(G;H)[M ] =
Hom(G[M ]; H[M ]).
There is a monomorphism f :G → H such that fM :GM → HM is an isomorphism.

Since G and H are 2nitely generated and torsion-free, and for any other maximal ideal
N , RN is a DVR, GN

∼= HN , and consequently there exists a monomorphism h :G → H
such that hN is an isomorphism.
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Given a nonzero ideal I , let N0 =M;N1; : : : ; Nk be distinct maximal ideals containing
I along with M (Lemma 2.2). For each j ≥ 0 there exists fj :G → H , such that
(fj)Nj is an isomorphism. With L= Hom(G;H), the submodules N0 · L; : : : ; Nk · L are
comaximal in L, and so are Nj · L and (�i �=jNi) · L for each j. Mimicking the proof of
the Chinese Remainder Theorem in [2], we can 2nd a map g :G → H such that gNj is
an isomorphism for each j. Since H=g(G) is a 2nitely generated torsion module that
is locally zero at each Nj, annR H=g(G) is an ideal of R relatively prime to I .

Proposition 2.4. Assume that R has UDI and that R has exactly one nonprincipal
maximal ideal M . Suppose G is a .nitely generated torsion-free module and H is
completely decomposable. Then the following statements are equivalent:

(1) GM
∼= HM .

(2) G and H are nearly isomorphic.
(3) G and H are isomorphic.

Proof. That (1) ⇒ (2) is given by Lemma 2.3. Claim (3) ⇒ (1) is immediate, so
it remains to show (2) ⇒ (3). We prove this in the rank one case 2rst. Suppose I
and J are two ideals of R such that IM ∼= JM . By Lemma 2.3, I and J are nearly
isomorphic. Let f1 : I → J be such that (f1)M is an isomorphism, and let f2 : I → J
be such that the ideals Aj = annCoker fj are relatively prime. There exists aj ∈ Aj

such that a1 + a2 =1. De2ne f : I ⊕ I → J by f(x; y)=f1(x)+f2(y). Then f is split
by g : J → I ⊕ I where g(x) = (g1(x); g2(x)) and gj =f−1

j · $aj for $aj= multiplication
on J by aj. Since R has UDI, I ∼= J , proving the claim for the rank one case.
Write H=J1⊕· · ·⊕Jn for ideals J1; : : : ; Jn of R, and set H1=J1⊕· · ·⊕Jn−1. Since G

and H are nearly isomorphic, GM
∼= HM and there is a map f :G → H such that fM

is an isomorphism. With % :H → H1 taken to be the coordinate projection, by Lemma
2.3, the module X = % · f(G) is nearly isomorphic to H1 because XM = (H1)M , and
any two torsion-free modules of the same rank over a PID are isomorphic. We will
show that G ∼= X ⊕ Jn, establishing the theorem by induction. Call f′ = % · f.
There exists g1 ∈ Hom(XM ;GM ) such that (f′ ·g1)M=1XM . Set K=Ker f′. If 0 	= r ∈

R is such that rg1 :X → G, then the torsion module (g1(X )+K)=K is bounded by r, and
consequently this torsion module has a nontrivial annihilator A1. Additionally, A1 * M
because (f′ · g1)M = 1XM . On the other hand, f

′
[M ] :G[M ] → X[M ] splits with splitting

map g2 ∈ Hom(X[M ]; G[M ]). As noted above, Hom(X[M ]; G[M ]) = Hom(G;H)[M ], so the
annihilator, A2, of the torsion module (g2(X ) +K)=K is nonzero, and is not contained
in any maximal ideal N 	= M . It follows that A1 +A2 =R and so a1 + a2 = 1 for some
aj ∈ Aj.
Observe, ajgj :X → G. Furthermore, the map ' :X → G given by '(x)= a1g1(x)+

a2g2(x) satis2es f′ ·'(x)=a1f′ ·g1(x)+a2f′ ·g2(x)=a1x+a2x=x, and g(X ) ∼= X is a
summand of G. It follows from the general theorem that 2nitely generated torsion-free
modules over local rings cancel (Theorem 7:13 in [1]) that the complement, K , of
g(X ), is locally isomorphic to Jn. Hence K is nearly isomorphic to Jn by Lemma 2.3,
which completes the proof.
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Corollary 2.5. If R has UDI; then RN has UDI for every maximal ideal N .

Proof. Evidently, it suNces to consider RM in the case that M is a nonprincipal max-
imal ideal for R. Let I ′1; : : : ; I

′
n; J

′
1; : : : ; J

′
n be ideals of RM such that I ′1 ⊕ · · · ⊕ I ′n ∼=

J ′
1⊕· · ·⊕ J ′

n. Set Ij= I ′j ∩R and Ji= J ′
i ∩R. The modules G=

⊕
j Ij and H =

⊕
i Ji are

2nitely generated and torsion-free, and satisfy GM
∼= HM . By Proposition 2.4, G and

H are isomorphic, and so Ij ∼= Jj for all j after reordering. Thus, I ′j ∼= J ′
j for all j.

Lemma 2.6. If there exists a maximal ideal M for R such that every other maximal
ideal of R is principal; then every ideal I not contained in M is principal. In addition;
every invertible ideal is principal.

Proof. Let I be an ideal not contained in M . Then IM = RM and I[M ] = aR[M ], with
a=ae1

1 · · · aem
m , for some ei ≥ 1, where Ni=aiR are all of the maximal ideals of R over

I . Then I = aR since this equality holds locally (a 	∈ M). Now let J be invertible, and
consider the exact sequence

0→ Hom(J;M)
g→Hom(J; R)→ Hom(J; R=M)→ 0:

Since J is invertible, g cannot be an epimorphism, so there exists a q ∈ Hom(J; R)
such that qJ * M . Thus qJ ⊆R is principal.

Lemma 2.7. Suppose R has a unique nonprincipal maximal ideal M . If S is an over-
ring of R and N is a maximal ideal of S lying over M such that NM is principal;
then N is principal.

Proof. Write NM = aSM for some a ∈ S. Because R is h-local (Lemma 2.2), there
are only 2nitely many maximal ideals P of R for which (aS)P 	= S, so that we will
produce a generator for N by induction on the number of maximal ideals P of R such
that (cS)P 	= S where c ∈ S is such that cSM = NM .
Suppose P is a maximal ideal of R diEerent from M for which (aS)P 	= S; so that,

aS is contained in a maximal ideal N ′ of S such that P = R∩N ′ is diEerent from M .
Since P is principal, it follows that N ′ must also be principal. Write N ′ = bS.
Let n be the largest positive integer such that bn | a, and write bnc=a with c=a=bn ∈

S. Then bn 	∈ N but a=bn ·a=bn ∈ N , so a=bn ∈ N . Thus NM=(a=bn)SM . Also a=bn 	∈ bS.
Because P = R ∩ bS is a principal maximal ideal of R, bS is the only maximal ideal
of R lying over P, and so SP = SbS [8, p. 91]. Therefore, (a=bn)SP = SP . Because R
is h-local, there are only 2nitely many maximal ideals P of R such that aRP 	= RP ,
and so after a 2nite number of applications of the procedure above, we can produce a
generator for N .

Theorem 2.8. R has UDI if and only if R is a PID; or; there exists a lone nonprincipal
maximal ideal M of R and RM has UDI.
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Proof. One direction is clear from Lemma 2.1 and Corollary 2.5. For the converse,
assume that R has a unique nonprincipal maximal ideal M and RM has UDI. The proof
that R has UDI will follow once we observe that a 2nitely generated overring S of R
has at most one nonprincipal maximal ideal, so let N be a maximal ideal of S. Note
that if N is a maximal ideal of S, then R∩N is a maximal ideal of R due to the fact
that S is 2nitely generated over R. Also, if N ∩ R is principal, then so is N , so we
assume that N lies over M .
Since RM has UDI and SM is a 2nitely generated overring, Lemmas 2.7 and 2.1

show that SM has at most one nonprincipal maximal ideal. By Lemma 2.7, if NM is a
principal maximal ideal of SM , then N is a principal ideal of S, so S has at most one
nonprincipal maximal ideal.
Suppose I1; : : : ; In; J1; : : : ; Jn are ideals of R for which I1⊕· · ·⊕In ∼= J1⊕· · ·⊕Jn. After

localizing at M , we 2nd there is a permutation of the indices such that (Ij)M ∼= (Jj)M
for each j, since RM has UDI. To simplify notation, 2x j ≤ n and set I = Ij, J = Jj
and S = E(J ).
Observe that Hom(I; J ) is a fractional ideal of S that is locally invertible, since

IN ∼= JN for each maximal ideal N of R. Because S has at most one nonprincipal
maximal ideal, Hom(I; J ) must be a principal fractional ideal of S (Lemma 2.6). If
Hom(I; J )= g · S, then IN ∼= JN for all maximal ideals N and g is an isomorphism.

It remains to examine the local case.

3. Local domains with UDI

We can readily supply nonintegrally closed, local domains R with UDI in view
of the well-known fact that if >R, the integral closure of R in its quotient 2eld, is
quasilocal, then the endomorphism ring of each ideal of R is local and hence R has
UDI [1, Example 7:5]. Thus what remains to be classi2ed are those local domains
without quasilocal integral closure.

Lemma 3.1. If R is local with UDI; then >R has at most 3 maximal ideals.

Proof. Suppose >R has at least 4 distinct maximal ideals. Then there exists a 2nitely
generated overring S of R with least 4 distinct maximal ideals; call them M1; M2; M3; M4.
The map , : (R+M1M2)⊕ (R+M3M4)→ S with ,(a; b) = a+ b, is split by the map
' : S → (R + M1M2) ⊕ (R + M3M4) given as '(t) = (tx; ty) where x ∈ M1M2 and
y ∈ M3M4 are such that such that x + y = 1. Then ' is a splitting map for , and by
UDI, we may assume, without loss of generality, that S ∼= R+M1M2. But since both
objects in question are rings, we must have S = R +M1M2. This is impossible since
M ⊆M1 ∩ M2 = M1M2 implies (R + M1M2)=M1M2

∼= R=M while M1M2 is not prime
in S.
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Given a ring R, let |max(R)| represent the number of maximal ideals of R.

Theorem 3.2. Assume that R is local with maximal ideal M . The following are equiv-
alent for R:

(1) R has UDI.
(2) There exists a fractional overring R′ of R with |max(R′)| = |max( >R)| such that

one of the following occurs:
(i) R′ is local.
(ii) R′ has exactly 2 distinct maximal ideals M ′

1; M
′
2 such that M ′

1 is principal
with M * (M ′

1)
2; and R′=M ′

1
∼= R=M .

(iii) R′ = >R has exactly 3 distinct maximal ideals M ′
1; M

′
2; M

′
3; all are principal

and satisfy M * (M ′
j )
2 and R′=M ′

j
∼= R=M .

(3) Every fractional overring R′ of R such that |max(R′)|= |max( >R)| satis.es (i); (ii)
or (iii) above.

Proof. (1) ⇒ (3). Assume that R has UDI and let R′ be a fractional overring of R
with |max(R′)|= |max( >R)|. This implication breaks down according to the number of
maximal ideals in >R, of which there are at most 3 by Lemma 3.1. If >R is quasilocal
then it is easy to check that R′ is local.
If |max(R′)|= 2 and M ′

1, M
′
2 are the two maximal ideals of R

′, let ej be the largest
positive integer such that M ⊆(M ′

j )
ej . As above, the map , : (R + (M ′

1)
e1 ) ⊕ (R +

(M ′
2)

e2 ) → R′ with ,(a; b) = a + b, is split by ' :R′ → (R + (M ′
1)

e1 ) ⊕ (R + (M ′
2)

e2 )
given by '(t) = (tx1; tx2), where xj ∈ (M ′

j )
ej , j = 1; 2 are such that x1 + x2 = 1.

Since Ker , is isomorphic to an ideal of R, by UDI, we may assume without loss of
generality that R′ = R+ (M ′

1)
e1 . Since M ⊆(M ′

1)
e1 , R′=(M ′

1)
e1 ∼= R=M , clearly implying

that e1 = 1 and R′=M ′
1
∼= R=M .

By Lemma 2.1, one of M ′
1; M

′
2 is principal. If M

′
1 is principal, then we have completed

case (ii). If M ′
1 is not principal, then the addition map M ′

1 ⊕ (R+ (M ′
2)

e2 )→ R′ splits,
implying R′ = R + (M ′

2)
e2 . As before, e2 = 1 and R′=M ′

2
∼= R=M . In this case, (ii) is

satis2ed after switching indices.
Finally, assume R′ has distinct maximal ideals M ′

1; M
′
2; M

′
3, and let e1; e2; e3 be de2ned

as above. Considering the homomorphism , : (R+(M ′
1)

e1 )⊕ (R+(M ′
2)

e2 )→ R′ like the
one above, we obtain e1 = 1 and R′=M ′

1
∼= R=M (after reindexing). Next consider the

analogous map (R+ (M ′
2)

e2 )⊕ (R+ (M ′
3)

e3 )→ R′ to obtain e2 = 1 and R′=M ′
2
∼= R=M

(after reindexing). The addition map (R + M ′
1M

′
2) ⊕ (R + (M ′

3)
e3 ) → R′ splits. Since

M ⊆M ′
1M

′
2 =M ′

1 ∩M ′
2, R

′ = R+M ′
1M

′
2 is impossible, so e3 = 1 and R′=M ′

3
∼= R=M as

before. If M ′
1 is not principal, say, then the splitting of (R+M ′

1M
′
2)⊕M ′

3 → R′ implies
R′ 	= R+M ′

1M
′
2, contradicting UDI.

(3)⇒ (2) This is clear.
(2)⇒ (1). Let I1; : : : ; In, J1; : : : ; Jn be ideals of R such that I1⊕· · ·⊕In ∼= J1⊕· · ·⊕Jn,

and regard L = I1 ⊕ · · · ⊕ In = J1 ⊕ · · · ⊕ Jn as two internal decompositions of L into
rank-1 2nitely generated torsion-free modules. If one of the summands, I1 say, has
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local endomorphism ring S = E(I1), then consider

(†) 1I1 = %1.1 = /j%1.′j%
′
j.1;

where .j : Ij → A and .′j : Jj → A are the canonical embeddings and %j :A → Ij and
%′
j :A → Jj the coordinate projections.
One of the terms %1.′j%

′
j.1 must be a unit in S, since S is local; say when j=1. Then

f = %1.′j : J1 → I1 is an epimorphism and consequently J1 ∼= I1. By the cancellation
result Example 7:5 from [1] mentioned at the beginning of this section, I2⊕ · · ·⊕ In ∼=
J2⊕· · ·⊕Jn. Repeating as necessary, we are led to the case that all of E(Ij) and E(Ji)
are not local, and so we must now assume >R has at least two maximal ideals.
Let S be any nonlocal fractional overring of R. Then the fractional overring S ′=R′S

is readily seen to have properties (ii) or (iii) relative to its maximal ideals. We claim
that under the present circumstances, either S = >R and S is a PID, or, S has two
maximal ideals M1; M2 with M1 principal and satisfying S=M1

∼= R=M . There are two
cases:
Case 1: R′ has property (ii). R′ has two maximal ideals M ′

1; M
′
2 as in (ii), and

consequently S has two maximal ideals M1; M2 lying under M ′
1; M

′
2; respectively (R

′

is integral over S and S is not local). Because M ′
j is the unique maximal ideal of

R′ over Mj; RM ′
j
= RMj ; j = 1; 2 [8, p. 91]. With M ′

1 principal such that R′=M ′
1
∼=

R=M; SM1 +M1R′
M1
=RM ′

1
and so SM1 =R′

M ′
1
is a DVR. Also, M1 is a (locally) principal

ideal of S such that S=M1
∼= R=M .

Case 2: R′ has property (iii). If S has 3 maximal ideals, Mj ⊆M ′
j ; j = 1; 2; 3, then

as above SMj +MjR′
Mj
=R′

Mj
implies SMj =R′

Mj
for each j. In this case S =R′= >R is a

PID. Otherwise, suppose S has exactly two maximal ideals M1; M2. Since R′ is 2nitely
generated over S, each S ∩ M ′

j is a maximal ideal of S. Therefore, after reindexing,
we may assume that M1⊆M ′

1 and M2⊆M ′
2 ∩M ′

3. As in the previous case, SM1 = >RM1

and M1 is a principal ideal of S such that S=M1
∼= R=M .

Working under the assumption that each E(Ij) and E(Ji) is nonlocal, among all of
Ii; Jj, choose one, I1 say, for which S = E(I1) is minimal with respect to inclusion
(identifying each endomorphism ring as a fractional overring of R in >R). If S has three
maximal ideals, then as shown above, S= >R is a PID and all of the ideals Ij; Ji j=1; : : : ; n
are >R-modules and therefore pairwise isomorphic. It therefore suNces to assume that
S has exactly two maximal ideals M1; M2, with M1 principal and S=M1

∼= R=M .
Now consider (†): One of the terms %1.′j%

′
j.1, is a unit in SM2 , say when j = 1.

For this to be the case, f(J1)SM2 = (I1)M2 where f = %1.′1. Write M1 = aS. For some
n ≥ 0; 1=anf(J1)⊆(I1)M1 yet 1=a

nf(J1)* M1(I1)M1 . Set h= (1=a
n)f. Then h : J1 →

I1 since h(J1)⊆(I1)M1 ∩ (I1)M2 = I1. Because (I1)M1 is a principal ideal in the DVR
SM1 , and SM1 = R + M1SM1 ; h(J1) + M1(I1)M1 = (I1)M1 . Also, h(J1)SM2 = (I1)M2 . Let
U = Hom(J1; I1)J1, so that U is an S-submodule of I1 containing h(J1). From what
we have just shown, U = I1 since U agrees with I1 at each maximal ideal M1; M2. We
conclude that I1 is an E(J1)-module and therefore by the minimality of S; S = E(J1).
So h is an S-module map. Using Nakayama’s lemma again, since h(J1) is known to be
an S-submodule of I1, we conclude that h(J1)M1 = (I1)M1 . Evidently h(J1)M2 = (I1)M2 .
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Therefore h : J1 → I1 is an isomorphism, and so by cancellation again, we have that
I2 ⊕ · · · ⊕ In ∼= J2 ⊕ · · · ⊕ Jn. The proof now follows by induction on n.

Corollary 3.3. Let R be local. If R has UDI then one of the three possibilities occurs:

(i) >R is quasilocal.
(ii) >R has exactly 2 distinct maximal ideals P1; P2 such that P1 is principal; M * P21 ;

and >R=P1 ∼= R=M .
(iii) >R has exactly 3 maximal ideals P1; P2; P3; that are principal and satisfy >R=Pi

∼=
R=M and M * P2i for each i.

The converse holds if >R is a .nite R-module.

Proof. Let R′ be a fractional overring as in Theorem 3.2(2). If M ′
1 is a principal

maximal ideal of R′ with R′=M ′
1
∼= R=M , and P1 is the maximal ideal of >R lying over

M ′
1, then R′

M ′
1
= >RP1 has principal maximal ideal M

′
1R

′
M ′
1
= P1 >RP1 . Thus, P1 is (locally)

principal, and >R=P1 ∼= R′=M ′
1
∼= R=M . The converse holds since >R can be used for R′

in Theorem 3.2 when >R is 2nitely generated over R.

Corollary 3.4. The following are equivalent:

(1) R has UDI.
(2) R is a PID; or; R has a unique nonprincipal maximal ideal M such that RM

satis.es the conditions of Theorem 3:2.

4. Applications and examples

If R is local with every ideal 2-generated, then either >R is 2nitely generated over R
or >R is local [6]. In the 2rst case, with M the maximal ideal of R, >R=M >R is at most
two dimensional over R=M . From this it follows that >R is local with maximal ideal
M >R, or, M >R = P1P2 for distinct ideals P1, P2 of >R, with >R=Pj

∼= R=M; j = 1; 2. By
Theorem 3.2, R has UDI. Theorem 4.1 globalizes this observation.

Theorem 4.1. R has the property that every .nitely generated torsion-free R-module
uniquely decomposes into the direct sum of ideals if and only if every ideal of R is
2-generated, and all but at most 1 maximal ideal of R is principal.

Proof. If every 2nitely generated torsion-free R-module uniquely decomposes into a
direct sum of ideals, then, in particular, R has UDI. Assuming that R is not a PID,
by Lemma 2.1, R must possess a unique nonprincipal maximal ideal M . If L is a
2nitely generated torsion-free RM -module, then it is easy to 2nd a 2nitely generated
torsion-free R-module K such that KM =L. Thus L is a direct sum of ideals and so RM

has the property that every 2nitely generated torsion-free module uniquely decomposes
into the direct sum of ideals by Corollary 2.5. In [7] it is shown that such rings have
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every ideal 2-generated. Lemma 2.2 shows that R is h-local, so by a theorem of Cohen
[7, Theorem 26], every ideal of R is 2-generated.
Conversely, from Theorem 2.8 and the arguments above, R has UDI. Also, from

Theorem 57 in [7], R has Krull dimension one. Thus, by a theorem of Rush [9],
every 2nitely generated torsion-free module decomposes into the direct sum of ideals.
Because R has UDI, the decompositions are unique.

Rush shows that when ideals of R are 2-generated, any 2nitely generated torsion-free
module K decomposes into R1⊕ · · ·⊕Rn ⊕ I where R1⊆ · · ·⊆Rn ⊆Rn+1 are fractional
overrings of R, and I is an invertible ideal of Rn+1 [9]. His assertion that the decompo-
sitions are unique refers to the fact that if K ∼= S1⊕· · ·⊕Sn⊕J with S1⊆ · · ·⊆ Sn ⊆ Sn+1

fractional overrings of R and J is an invertible ideal of Sn+1, then Rj=Sj for j=1; : : : ; n
and I ∼= J . Subrings of quadratic number 2elds have every ideal 2-generated but such
rings do not usually have UDI (as Example 4.6 will show), so the uniqueness assertion
of [9] is the best one could hope for under the circumstances.

Proposition 4.2. If R is one-dimensional with UDI; then every overring of R has UDI.

Proof. For the moment assume that R is local and let D be an overring of R. The
maximal divisible submodule h(D=R) = D0=R of D=R is such that D0 is an overring
of R and D=D0 is 2nitely generated [7]. It is enough to show that D0 has UDI, since
it easy to see that fractional overrings of UDI domains have UDI. So, without loss
of generality, we will assume that D=R is divisible. A consequence of this is that
J = D(J ∩ R) and D=J ∼= R=(J ∩ R) for every ideal J of D [7, Theorem 3:4]. In
particular, D is local with maximal ideal MD.
Let R′ be a 2nitely generated overring of R with |max(R′)| = |max( >R)|, and set

D′ = R′D. Note that D′=R′ is an image of R′ ⊗R D=R and is therefore divisible. Recall
that >R is a PID since R is one dimensional and local, and so >D must be one of >R; >RP

for some maximal ideal P of >R, or >RP1 ∩ >RP2 for maximal ideals P1; P2 of >R. If >D is
local, then as discussed at the beginning of Section 3, D has UDI, so we may exclude
this case.
A maximal ideal of >D is P >D where P is a maximal ideal of >R. Let M ′ be the

maximal ideal of R′ lying under P. Then the maximal ideal N ′ = P >D ∩ D′ of D′ lies
over M ′. Thus, since D′=R′ is divisible, when M ′ is principal, N ′=(N ′∩R′)D′=M ′D′

is principal. Furthermore, D′=N ′ ∼= R′=M ′ from which it follows that D′ satis2es items
(i), (ii) or (iii) from Theorem 3.2 relative to the local ring D, and consequently D has
UDI.
For the general case, R has at most one nonprincipal maximal ideal M . If D is any

overring of R, then any maximal ideal of D not containing M must be principal (as it
must lie over a principal maximal ideal of R). But we have just shown that DM has
UDI, so DM has at most one nonprincipal maximal ideal. Hence by Lemma 2.7, D has
at most one nonprincipal maximal ideal, and if there is a nonprincipal maximal ideal
M ′ of D, then DM ′ has UDI (from above). Therefore, D has UDI by Theorem 2.8.
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Theorem 4.3. Let R have Krull dimension 1. Then R has UDI if and only if for any
rank one R-modules X1; : : : ; Xn; Y1; : : : ; Yn; if X1 ⊕ · · · ⊕ Xn

∼= Y1 ⊕ · · · ⊕ Yn; then after
reindexing; Xj

∼= Yj for all j.

Proof. Our argument is similar to that of the proof the Krull–Schmidt theorem for
direct sums of rank one abelian groups. Two rank 1 modules X and Y are called
quasi-isomorphic when each is isomorphic to a submodule of the other; equivalently,
there is an element 0 	= r ∈ R such that X is isomorphic to a submodule X ′ of Y for
which r(Y=X ′)=0. A type 2 is the quasi-isomorphism class of a rank 1 module X , and
the collection of types is a lattice with partial order 21 ≤ 22 when X1 is isomorphic to
a submodule of X2 (where Xj corresponds to 2j).
Given a torsion-free module G and 0 	= x ∈ G, the type of x is the type of the

rank 1 pure submodule of G generated by x; i.e., the type of {y ∈ G | ry = sx for
some r; s ∈ R}, and given a type 2; G(2) ≡ {x ∈ G | type of x ≥ 2}. Suppose
G = Xi ⊕ · · · ⊕ Xn

∼= H = Y1 ⊕ · · · ⊕ Yn for rank-1 modules X1; : : : ; Xn; Y1; : : : ; Yn in a
one-dimensional UDI domain R. Since types are preserved under isomorphisms, given
a type 2; G(2) =

⊕{Xj |Xj has type ≥ 2} ∼= H (2) =
⊕{Yi |Yi has type ≥ 2}, and

G=G(2) ∼= H=H (2).
Let X; Y be two submodules of Q containing R. Since (X=R)=h(X=R) is 2nitely gen-

erated, where h(X=R) represents the maximal divisible submodule of X=R, it follows
that X and Y are quasiisomorphic if and only if h(X=R) = h(Y=R). Moreover, with
D=R = h(X=R), D is an overring of R and X is a module over D [7]. Therefore, if
we select a D such that D=R = h(Xi=R) is maximal with respect to inclusion among
h(Xj=R), and set 2 equal to the type of D, then G(2) ∼= H (2) are D-modules and each
is a direct sum of ideals of D. By Proposition 4.2 we can match up the summands,
and apply induction to G=G(2) ∼= H=H (2).

Examples of one dimensional local domains with UDI that conform to the possibil-
ities of Theorem 3.2 can be found readily. The ring of integers is denoted by Z and
its quotient 2eld by Q.

Example 4.4. Let A be the number ring (the integral closure of Z) in a 2nite-
dimensional 2eld extension of Q; and let p be an integral prime. Write pA=Pe1

1 · · ·Pen
n :

(i) If S = AP1 ; then R=Z+pS has quasilocal integral closure and hence R has UDI.
(ii) If e1 = 1 and A=P1 ∼= Z=pZ; then for S =AP1 ∩AP2 ; R=Z+pS is local with UDI

and >R= S has 2 maximal ideals.
(iii) If e1=e2=e3=1 and A=Pj

∼= Z=pZ for j=1; 2; 3; then for S=AP1 ∩AP2 ∩AP3 ; R=
Z+ pS is local with UDI and >R= S has 3 maximal ideals.

It follows from our theorems that if R is one dimensional with UDI, then >R is a
PID. For by Proposition 4.2, the Dedekind domain >R has UDI, and hence by Lemma
2.6, >R is a PID.
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Constructing global UDI rings is delicate. Using the strong results in [11] we can
characterize the one-dimensional noetherian domains with module 2nite integral closure
that possess UDI. Given such a ring R, the ideal C = (R :R >R) is the largest ideal
common to both R and >R and is called the conductor of >R in R. The notation ( >R=C)∗

and (R=C)∗ constitute the groups of units in the respective rings. Additionally, �R

denotes the subgroup of ( >R=C)∗ consisting of u+ C where u is a unit of >R [11].

Proposition 4.5. Suppose R is one dimensional and >R is a .nite R-module such that
>R 	= R. Then R has UDI if and only if

(a) >R is a PID,
(b) C is a primary ideal of R with radical M; and M obeys one of the splitting

conditions (i); (ii); or (iii) of Theorem 3:2; and,
(c) ( >R=C)∗ = (R=C)∗ · �R.

Proof. Item (c) is the characterization from [11] of when the ring R with integral
closure a PID has every invertible ideal principal.
Suppose R has UDI. Let C=C1 ∩ · · · ∩Cn=C1 · · ·Cn be a reduced primary decom-

position of C in R. If M is not the radical of one of the Cj’s, then C is principal by
UDI and it follows that C = R and therefore R= >R is a PID. Otherwise, C = cC1 for
some c ∈ R and M -primary C1, but because C is the trace of >R in R and c−1f maps
>R into R when f does, c = 1.
Conversely, suppose (a)–(c) hold. By Theorem 3.2, it is enough to show that M is

singular. Let N be a maximal ideal of R diEerent from M . Locally N is principal since
at maximal ideals other than N , N localizes to that of R while at N; R coincides with
>R. Therefore N is invertible by (c). Thus M is a singular maximal ideal and Theorem
3.2 is satis2ed.

The proposition allows us to determine when a Z-order in a quadratic number 2eld
has UDI. Our 2rst example shows that this rarely happens in the case of nonreal
quadratic number 2elds. As the justi2cation for the next example and its successor
follow from the arguments in [10], we will omit the proofs.

Example 4.6. Let Q[
√
d] be any nonreal quadratic number 2eld, and let >R represent

the ring of integers in this number 2eld. A Z-order R in Q[
√
d] has UDI if and only

if d ∈ {−1;−2;−3;−7;−11;−19;−43;−67;−163} and

(a) R= >R, or
(b) R= Z+ p >R in one of the following situations; p = 3 and d=−3, or p = 2 and

d=−1;−3;−7.

An algorithm for determining the real quadratic Z-orders of the form R = Z + p >R
having UDI is easily obtained. Recall that the fundamental unit u of a real quadratic
number ring (a unit such that every unit is of the form ±uk ; k ∈ Z) can be found as
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follows: When d ≡ 2; 3mod 4, choose b¿ 0 minimal such that db2 ± 1 is a square,
a2 (a¿ 0), and set u= a+ b

√
d. When d ≡ 1mod 4, choose b¿ 0 minimal such that

db2 ± 4 is a square, a2 (a¿ 0), and set u = (a=2) + (b=2)
√
d [5]. Assuming one has

a PID >R to begin, we 2nd k minimal such that uk is congruent to an integer modp.
Then (R=p >R)∗ ·�R has order k(p− 1). For R to have UDI, this number must coincide
with p2 − 1 = (p+ 1)(p− 1) when p is inert, (p− 1)2 when p splits, and p(p− 1)
when p rami2es.

Example 4.7. Let >R be the ring of integers in the real quadratic number 2eld Q[
√
d],

and assume that >R is a PID. Let R=Z+p >R for some integral odd prime p, and let u
be the fundamental unit of >R, u= a+ b

√
d when d ≡ 2; 3mod 4, and u= (a+ b

√
d)=2

when d ≡ 1mod 4, for integers a; b.

(a) If p ≥ 5 divides a or b; then R does not have UDI.
(b) If p |d and p does not divide a or b, then R has UDI.
(c) (R. Wiegand) If p ≡ 1mod 4 or u has norm 1, then R has UDI implies p |d.
(d) If 3 | a; then R has UDI if and only if 3 splits in >R; if 3 | b then R does not have

UDI.
(e) R has UDI when p=2; 3; 5; 7; 11 and d=5 (here the fundamental unit is u=(1+√

5)=2).

If R is a Noetherian UDI domain that is not a PID, then R can be written as the
intersection of a local UDI ring and a PID; namely, R = R[M ] ∩ RM , where RM is a
local ring with UDI, and R[M ] =

⋂
N �=M RN is a PID (here M is the singular ideal of

R). This property, however, does not characterize UDI domains.

Example 4.8. Any Dedekind domain R of prime class number is the intersection R=
R[M ] ∩ RM ; where M is some maximal ideal of R such that R[M ] is a PID. Hence the
intersection condition R = R[M ] ∩ RM , with R[M ] a PID and RM UDI, in general, is
insuNcient for R to have UDI.

Proof. Since R has class number p for some integral prime p, there exists a maximal
ideal M such that every ideal not isomorphic to M is principal. It follows that every
ideal of R[M ] is either the extension of a principal ideal of R, or is isomorphic to
M · R[M ] = R[M ].
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