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A Vector Multivariate Hazard Rate 
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A vector definition of multivariate hazard rate, and associated definitions of 
increasing and decreasing multivariate hazard rate distributions are presented. 
Consequences of these definitions are worked out in a number of special cases. 
Relationships between hazard rate and orthant dependence are established. 

1. INTRODUCTION 

The hazard rate h,(x) of the distribution of an absolutely continuous random 
variable X with cumulative distribution F,(x) = Pr[X < ~1, and density 
functionf,(x) = F,‘(x) is defined as 

U4 = -(d/W Wl - FxW) = f&>/U - ~~(4 = f&>/G&4, (1) 

with G,(x) = 1 -F,(x), in the interval 0 < G,(x) < 1 and is undefined 
otherwise. 

The hazard rate has been used (see, for example [I]) as a basis for certain 
kinds of classification of univariate distributions. If h,(x) is an increasing 
(decreasing) function of x (for those values for which it is defined), the distri- 
bution is termed increasing (decreasing) hazard rate, denoted by IHR (DHR). 
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Of course, most distributions are neither IHR nor DHR - h,(x) may increase 
over certain ranges of x, and decrease over others. 

2. MULTIVARIATE HAZARD RATE 

Some attempts have been made to extend the definition of IHR and DHR 
to multivariate distributions [2, 4, 6, 7, IO, 111, in which multivariate hazard 
rate has been defined as a single scalar quantity, or there has been no explicit 
definition of a multivariate hazard rate. 

In [8] we took the point of view that, for a concept such as “hazard rate,” it is 
unreasonable to expect a single value to represent this aspect of a multivariate 
distribution. The basic idea underlying the univariate definition is that of rate 
of decrease in “survivors” with increase in value (x) of X (as in a life table where 
the hazard rate is in fact the force of mortality). When there are two or more 
variates this rate depends on which variate is changed (or more generally, the 
proportions in which different variates are changed) and we need a different 
“rate” for each variate. 

We defined the (joint) multivariate hazard rate of m absolutely continuous 
random variables Xi ,..., X, as the vector 

h,(x) = (-(a/W,..., -(a/&,)) log G,(x) = -grad log G,(x), (2) 

where G,(x) = P(Xi > xi , i = I,..., m}. For convenience we will write 
-(8/8x,) log G,(x) = hx(x), , j = I,..., m. 

If for all values of x, all components of h,(x) are increasing (decreasing) 
functions of the corresponding variable, i.e., hx(x)j is an increasing (decreasing) 
function of x5 for j = 1, 2,..., m, then the distribution is called (muZtivariate) 
IHR (DHR). 

If we wish to emphasize this particular definition we will call it vector (or 
gradient) multivariate IHR (DHR). 

If hx(x)j is an increasing (decreasing) function of xj (j = I,..., m) at 
x’ = (Xl , x, ,..., x,,J we say that the distribution is vector (or gradient) multi- 
variate IHR (DHR) at the point (xl ,..., x,). 

Marshall [IO] and Block [3] 1 a so regard hx(x) as being relevant to the concept 
of multivariate hazard rate. Marshall’s definition of multivariate IHR appears 
to require that hx(x)5 is an increasing function of each of x1 , ~a ,..., x, ; Block [3] 
requires (i) h,(x + dl)j to be a decreasing function of A (for any x and all j), 
and (ii) hX(x)j is an increasing function of xt for all i # j (Note that both of these 
definitions place conditions on variation of hx(x)5 with respect to variables other 
than xj .) 
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3. SOME PROPERTIES 

(i) If X1 ,..., X,,, are mutually independent then h,(x), = hrl(x,) where, of 
course, the left-hand side is a component of a multivariate hazard rate and the 
right-hand side is a univariate hazard rate. 

So, if Xi ,..., X, are independent, their joint distribution is IHR (DHR) if 
and only if the distribution of each X, ,..., X, is IHR (DHR). 

(ii) Suppose that X1 ,..., X, are exchangeable, i.e., G,(x) is unchanged if 
X r ,..., X,,, are permuted in any order. This implies that if the joint distribution 
is IHR (DHR) for some particular set of values x1 ,..., x, it will also be IHR 
(DHR) for any permutation of these values. 

(iii) If 2, = -X1 then (remembering the variables are continuous) 

h Z,J,,.... X&l > x2 ,***s x,h = M--z, , ~2 ,a.., 41, (3.1) 

while for j > 2 

h ZpX,..... x&, , x-2 >***, xm)j = h, ,..., x&z ,..., x,)i - hx(--z, 9 ~2 ,..a> xm), . 
(3.2) 

Similar (though more complicated) results can be obtained when several of 
the Xg’s are changed in sign. 

If Yj is a continuous increasing monotonic function of X, for j = 1,2,..., m 
and Xj = &(Y,) (j = l,..., m), then 

hY(Yh = hX(S(Y)MW~Y~). (4) 

If X is IHR (DHR) and a&/$~, is a nondecreasing (nonincreasing) function of 
yj forj = 1, 2,..., m then Y also is IHR (DHR). In particular, if X is IHR (DHR) 
then so is (b,X, + a, ,..., b,X,,, + n,) if b > 0. 

(iv) If the multivariate hazard rate is constant, (i.e., does not vary with any 
of x, , x2 )...) x,), so that hx(x) = c, this means that (whenever the hazard 
rate exists) (a log Gx(x)/&) = -cj (j = l,..., m). 

Hence Gx(x) = exp(--c& g&i ,..., x+r , xi+i ,..., xm) (j = l,..., m), whence 

Gx(x) = exp - z vj . 
( ) 

(5) 

Thus, the X’s are mutually independent exponential variables if and only if 
the multivariate hazard rate is constant. 

We may distinguish between stridy constant vector hazard rates (hx(x) = c, 
as in this Section) and loculdy constant rates, for which h,(x), does not depend on 
xj , though it may depend on the other x’s. We shall see (in Sect. 5.4) that 
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bivariate distributions with locally constant vector multivariate hazard rates 
belong to the family of Gumbel’s bivariate exponential distributions. 

(9 Noting that Gx(x) = Gx,.....x,(x~ F-.9 xd ~‘Jx~....,~,(x~ I x2 ,..., x,d 
where (?,rllx, ,..., x,(x1 1 xa ,..., x,) = Pr[X, > x1 I n,“=, (Xi > xj)], we see that 

h,(x), = -ww 1% G,lX*.....X,(% I 32 9*'*3 %), 

in an obvious notation. Generally 

hx(X)j = jlyjl(X,...., m, x ) (Xj I (Xl >.‘., %)j), (7) 

where (X1 ,..., X,& denotes X1 ,..., X,-1 , X,,, ,..., X, , and similarly for 
(Xl ,--*, %)j - 

Thus the components of the vector multivariate hazard rate are in fact uni- 
variate hazard rates of conditional distributions of each variate, given certain 
inequalities on the remainder. 

A direct consequence of these results is that if the joint distribution of 
X 1 ,..., X, is IHR (DHR) so is the conditional joint distribution of any subset 
of the X’s, given inequalities of form (Xj > xj) on the remainder. 

Since 2;,,k, ,..., x,(xl I x2 7-..p x,) is the expected value, with respect to variation 
of x2 )...) X, of the hazard rate ~~,I~,,..,,~,(x~ 1 X2 ,..., X,) of the distribution 
of X, given X2 , Xa ,..., X, , we might expect the joint distribution of X1 ,..., X,,, 
to be IHR (DHR) if each of the conditional joint distributions of Xj given the 
other (m - 1) X’s (j = l,..., m) is IHR (DHR). This would certainly be so if 
the appropriate distribution of the other variables did not depend on the value 
of x, . However, in the equation 

(subscripts omitted for conveneince) the relevant joint distribution of X2 ,..., X, 
is that cond&?~ned on X1 > x1 and truncated by nz, (Xj > xj). 

It is known [l, p. 371 that mixtures of univariate DHR distributions are also 
DHR. (A similar property is not valid for IHR distributions.) Since h,(x), is 
the hazard rate of the conditional (univariate) distribution of X1 given 
fly=, (X, > xJ, (see (6)), it follows that mixtures of multivariate DHR distri- 
butions are also DHR. 

(vi) If X1 , X, ,..., X, are mutually independent and each is IHR (DHR) then 
the least of them, L = min(X, , X2 ,..., X,), is also IHR (DHR). 

In the general case, however, 

h,(Z) = f h,(Z, I ,..., qj. (9) 
j=l 
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If hx(Z, I,..., Qj is an increasing (decreasing) function of I for all j, then L is IHR 
(DHR), but this is not ensured simply by the condition that X is vector multi- 
variate IHR (DHR). If hx(Zi , I, ,..., I,,& is an increasing (decreasing) function 
of each of ZI , I, ,..., I,,, (not only of 4) for all j, this does ensure that L is IHR 
(DHR). 

On the other hand, it appears that L might be IHR (DHR), even though X 
is not vector multivariate IHR (DHR). 

We note that if X1, X, ,..., X, are exchangeable, then h,(Z, I,..., Z)j does not 
depend on j (equal to H,(Z), say) and 

h,(Z) = m&(Z). (10) 

4. HAZARD RATES AND ORTHANT DEPENDENCE 

Lehmann [9] has defined positive (negative) quadrant dependence between two 
variables X, , X, by 

(11) 

for all x1 , x, . He has shown that these definitions are equivalent to those 
obtained by replacing RF(ll,XZ)(~l , x.J by 

&(X,.X,)(% 3 4 = Gx(x)ijfJ Gxb%j. (12) 

Dykstra et al. [5J have extended these definitions to define positive (negative) 
orthant dependence among m(>2) variables Xi , X, ,..., X, to correspond to 

for all x. 

Jb(X,W = F,(x)@ Fx&)l 2 (a (13) 
j=l 

We, however, will work with the equally natural extended definition 

for all x, which we will call G-positive (negative) otthant dependence. 
For m = 2, the two definitions are equivalent; for m > 2 this is not so. (A 

counterexample is easily constructed (for m = 3) by noticing that (13) is satisfied 
if the conditional joint distribution of X1 and X, given (X, < x3) has positive 
(negative) quadrant dependence, while (14) is satisfied if the joint distribution 
given (X, > xa) has positive (negative) quadrant dependence.) 
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We will now develop some relations among &x,(x) and various hazard 
rates. We first note that 

In particular, for m = 2 

Since 

8 log &,&)/ax, = 8 log Gx(x)/axj - 8 log Gx,(xj)/tXq , 

= hXj(%) - MX)j , (17) 

we see that for bivariate distributions (m = 2), if h,$(x,) > (<) Ax(x), for all 
x and j = 1,2 then (remembering (16)), the distribution has positive (negative) 
quadrant dependence. The converse is not necessarily true. 

We cannot immediately extend this result to cases m > 2. In view of (la), we 
do have results like: 

If X, )..., X,-r have G-positive (negative) orthant dependence and 
/zrm(xm) > (<) /ax(x), for all x, then X1 ,..., X, have G-positive (negative) 
orthant dependence. 

Recently Yanagimoto [12] refined the concept of positive dependence for 
bivariate distributions and proposed three closely related definitions. Relations 
between his definitions and vector bivariate hazard rates will be discussed in 
another place. 

5. EXAMPLES 

5.1. &variate Normal Dthibutions. It is known that all normal distributions 
are IHR. For a multinormal distribution, the conditional distributions of any 
variable, given the remainder, is normal, and so IHR. However, this does not 
mean that all multivariate normal distributions are IHR, according to the vector 
multivariate hazard rate defined in this paper. 

In fact, bivariate normal distributions with positive (or zero) correlation are 
vector bivariate IHR. A proof of this result, by J. Galambos, is given in the 
Appendix. If X1 , Xa have a joint standard bivariate normal distribution with 
correlation coefficient p, then 
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&(x1 9 x2) = 1277 d/(1 - p2y /‘D J-m exp[- +( 1 - p2)-l(tr2 - 2&t, + t22)] dt, dt, , 
a2 $1 

C+(X) = (1/2rr)-l exp(- $4”) 9 @p(x) = 1’ &A) du. 
--m 

The ratio of this component of the multivariate hazard rate to the univariate 
hazard rate, hr,(xr), is 

hX(X)l _ I ( 1 - @ ;(l-$) )I (1 - ~(%N 
h,,o- -wl 3 x2) 

(19) 

Since h8+-, Gxl,x,(xl , 2 x ) = GX1(x,), we might expect that 

From Table I it can be seen that this limit is approached more rapidly when 
(i) p is large and positive, or (ii) X, is large and positive. 

More extensive tables are given in [8]. 

TABLE I 

Values of hx(x),/h+) 

p = 0.4 p = 0.8 

Xl 
X2 -2.0 -1.0 0 1.0 2.0 -2.0 -1.0 0 1.0 2.0 

-2.0 0.9235 0.9733 0.9924 0.9981 0.9996 0.7575 0.9806 0.9996 1.0000 1.0000 
-1.0 0.6908 0.8498 0.9389 0.9778 0.9927 0.1847 0.6799 0.9629 0.9990 1.0000 

0 0.3766 0.6069 0.7924 0.9000 0.9544 0.0075 0.1552 0.6288 0.9418 0.9976 
1.0 0.1529 0.3505 0.5837 0.7593 0.8656 4 0.0072 0.1561 0.6003 0.9176 
2.0 0.0484 0.1662 0.3772 0.5900 0.7416 4 0.0001 0.0094 0.1730 0.5847 

o - denotes “ <0.00005.” 

5.2. Multiwariate Pareto Llistributions. Consider the m-dimensional multi- 
variate Pareto distribution, with density function 

Px(x) = a(a + 1) *** (a + m - 1) 5 19 ( 
j=l 

3” ( 2 e;lxj - m + l)-(a+m) 
j=l 

(a > 0; xj > 0, > 0). (21) 
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For this distribution Gx(x) = (xi”=, Bilxi - m + I)-“. Hence 

( 

m  

1 

-1 

-a log GX(x)/axr = ~0;~ C 0;13cj - m + 1 . 
j=l 

I (22) 

This is a decreasing function of x, for all r ( = 1,. . . , m). Hence this is a decreasing 
vector multivariate hazard rate distribution. 

5.3. Morgenstern-Gumbel-Farlie Distributions. Consider the family of bivariate 
distributions for which 

Gxl,x,(xl 7 4 = Gx@d Gx,(M + 41 - Gx&dXl - G&d1 
with 1 (Y ] < 1. (23) 

(These were originally detined in terms of a similar equivalent relation among 
the cumulative distribution functions.) For this family 

hx,>x,(x)j = hx,W - 41 - Gx,_,(~s-i)>fx,(x,>/[l + 4 - Gx,WU - ~x,GGl~ 

= [l - WxjWF1 - 1H hx,(G (24) 

where ,8 = 1 + [a{1 - GxsJxs-I)}]-l. 
Note that p has the same sign as ~1, since 1 OL 1-l > 1 and 1 I- Gx,Jxa-j)l-’ > 1. 
If 01 is positive (negative) then (noting that Grf(xj) is a decreasing function of 

xi) hx(~)~ is an increasing (decreasing) function of xj . 
It follows that if both Xi and X, are IHR (DHR) then X is multivariate 

IHR (DHR) if 01 is positive (negative). 
We have 

(Rc(.) is defined in Section 4, Eq. 12.) In this case Ro~u,,~,)(xr , ~a) 2 (<) 1 
according as (II > (<) 0. Also, from Eq. (24), h,$(xj) - hx(xlj has the same 
sign as (II, so in this case positive (negative) quadrant dependence does imply 

hxpi) > (0 MX)J~ 
In the special case when both X, and X, have exponential distributions, SO 

that h,(x,) = h, and h,(x,) = htz are constants, we have 

h,(x), = [l - {/3 exp(h& - 1)-l] Jzl , (26) 

with /? = 1 + [or{1 - exp(--h,.+&}]-1. Hence the joint distribution is 
multivariate IHR if a! is positive, DHR if a! is negative. 

If, in (24), X1 and X, each have Weibull distributions, with 

Gx,(xj) = exp(--xij) (Cj > 0, xj > 0;j = 1,2), 
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then 

hx(x)j = [l - {/3 exp(Q) - l}-‘] cjxT+ (j = 1, 2), (27) 

where /3 = 1 + [ar{l - exp(--x&!)}]-I. Further detailed analysis gives: 

(a) If OL > 0 (~0) and c5 > 1 (<l) for i = 1,2, then the joint distribution 
of X, and X, is multivariate IHR (DHR). 

(b) The joint distribution is vector bivariate DHR if 0 < cy < 1 and 
Cl,% < l/2. 

(c) If l/2 < ci < 1 (j = 1,2) then the distribution is DHR provided 
(Y (>0) is less than 

(2b,)-‘(1 + 8b#/2} exp[-1 + 3b, - @,2{1 + (1 + 8bj2)1/2}-1], 

where bj = c;l- 1, forj = 1,2. Some numerical values are: 

ci 0.6 0.7 0.8 0.9, 
Upper limit for OL 0.948 0.797 0.566 0.285. 

(d) If 01 < 0 and cj > 1 the distribution is bivariate IHR provided 01 exceeds 
certain lower limits (see [8]). 

5.4 G’umbel’s Bivariate Exponential Distributions. The standard joint cumu- 
lative distribution function for these distributions 

&&, , X2) = 1 _ e-Z1 _ e-% + e-(~l+%+w%) (Xl > 0, x2 > 0; B > O), 
(28) 

so that 

Gx,,x,~ , x2) = exp(---xl - x2 - %x2), 

whence h,(x) = (1 + Bx, , 1 + 8x1). 

(2% 

These components are constant with respect to variation in the corresponding 
variable (i.e., h,(x), does not depend on x1 , nor hx(x)2 on x2) but not with 
respect to variation in the other variable. Using the terminology introduced in 
Section 3(iv), the distribution of X has locally, but not strictly constant bivariate 
hazard rate. We now show that under fairly general conditions a locally constant 
bivariate hazard rate implies that the distribution is of Gumbel’s bivariate 
exponential form (possibly with location and scale parameters not equal to 0 
and 1, respectively). 

If we assume OX = (fi(x2), f2(q>>, then log Gx(x) = --~J&x2> + A,@,) = 

-~.f~h) + A,@,), where A(*), A,(.) are arbitrary functions subject to the 
standard conditions on Gx(x). 
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Putting x, = 0 gives A,(O) = -x.&(O) + As(x.J, so A,(x,) must be a 
linear function of x2 . Similarly A,(%,) must be a linear function of x1 . Now 
putting x1 = a # 0, we obtain 

-afi(xz) = -xzfi(a) + (linear function of xs), 

so that f.(xs) must be a linear function of x2. Similarly fi(xl) must be a linear 
function of x1 . It follows that the joint distribution of appropriate linear trans- 
forms of X, , X, is of form (29). 

To summarize, Gumbel’s family of bivariate exponential distributions 
includes all distributions with locally constant bivariate hazard rates. 

5.5 Bivariate Exponential Distributions of Marshall and O&n. These have 
joint survival functions of form 

Gx,.x,~ , x2> = expt-4xl - A2x2 - Xl2 m=(xl , x2)) 

(A, , A2 , A,, > 0; Xl , x2 > 0). (30) 

For these distributions 

(4 > A2 + 42) 
hx(x) = I(& + A,, 1 A,) 

(Xl < x2), 
(Xl > x2). (31) 

They are not strictly IHR, but for x&x1) fixed the first (second) component is 
a nondecreasing function of x1(x,). 

The analysis for multivariate (m > 2) Marshall-O&in distributions follows 
similar lines. 

5.6 Freund’s Bivariate Exponential Distribution. For this distribution, the 
joint density is 

with 01, /3, LX’, /3’ > 0. 
We will assume OL + p # CY’, /l’, and 01’ > (Y, B’ > /3. We find 

(a + P - B’>-l[a expi--8’x2 - (a + B - #%I 

Gx,.x&i 9 4 = 
+ (B - 8’) exP{-(a + /9~2ll (0 G x1 < X2)9 

(a + /I - /l’)-Qt? exp{-a’s1 - (a + B - a’)x2} 
(33) 

+ (a - a’) expi-(a + B)xJl (0 G X2 < 4, 

and 

1 

a@ + B - B’) 

hx(x)l = 

- 8) exP{--(a + B - B%2 -4 

;aLrf - a)(a + B) exp{-(a + B - a')(3 - x2)) 

(0 d Xl -c x2) 

(34) 

/?-(a'- a) expt-(a + B - a'%% --x2)> 
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Taking the case a + /I > a’ > a; a + p > 8’ > p we find that for x1 < x2 ; 
h,(x), is of form cl{c2 - cs exp(c,x,))-’ where cj > 0 (j = 1,2, 3,4), and SO 
is an increasing function of x1 . 

For x1 > xa ; h,(x), is of form (cr, exp(c,x,) - c,)/(cs exp(c,x,) - cs), where 
cj > 0, and is an increasing function of x1 if c,cs - csca > 0. Now c7cg - csc,, = 
v(a’ - a) exp{(a + /3 - a’) xa}][a + p - a’] > 0. So h,(x), is also an increasing 
function of x1 for x, > xa . Similarly Ax( is an increasing function of xa for 
all xa . The joint distribution is IHR. 

Similar results are obtained for other inequalities between a + fl, a’ and /3’ 
(but always keeping a’ > a, /3’ > p). 

5.7 Bivariate Logistic. We consider the joint cumulative distribution 
function: 

Fx,.x,(~~ , x9> = (1 + e-‘l + e+T1, (35) 
for which 

Gx,.x&I ,+I 

= 1 - (1 + e-y-1 - (1 + P)-’ + (1 + e-‘l + e-28)-1, 

=e -“1-“5(1 + e-“l)“(l + e-z-re)-‘(l + em21 + e-“s)-l(2 + eVzl + e-“*). (36) 

We find 

hx(x)l = (1 + eez2)(2 + eVzl + e-‘*)-l((l + e-‘l + e?)-’ + (1 + e-21)-1} 

(37) 
which is an increasing function of x1 . The joint distribution is IHR. 

6. CONCLUDING REMARKS 

We feel that enough results have been presented to provide evidence of the 
usefulness of our proposed vector definition of multivariate hazard rate. 

Using the definitions of IHR and DHR based on this concept we are able to 
classify a number of important multivariate distributions, comparable with 
those so classified by other definitions of IHR and DHR. 

We feel however that the criteria of overall IHR and DHR are too sweeping 
to be of general usefulness. Even for univariate distributions, the DHR,property 
implies that (if continuous) the density must be a decreasing function of x 
over its support. 

Rather, the hazard rate function itself is of value as a description of the 
distribution-in particular of the intervals in which hazard rate is increasing 
or decreasing. 

683/S/I-5 
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From this point of view, the desirability of some form of vector hazard rate 
for multivariate distributions is evident. Whether the particular one we have 
chosen is, in any sense, optimal, is an open question. We believe that we have 
shown it to be useful. 

APPENDIX I: PROOF THAT BIVARIATE NORMAL DISTRIBUTIONS WITH 
NONNJIGATIW CORRELATION COEFFICIENTS ARE MULTIVARIATE IHR( J. GALAMBOS) 

LEMMA. 

Proof. 

d(x) - x(1 - Q(x)} > 0. 

and 
(4dGK4 - x(1 - @p(x)}] = -{l - Q(x)} < 0, 

lh[#(x) - x(1 - @(x)}] = 0. 

THEOREM. If 1 > p > 0 then 

h,(x), = u - @[(x2 - PXl)l w - Pm 4<‘%>/L,<% 9 4 

is an increasing function of x, for all x2 . 

Proof. The result is clearly true for p = 0, so we suppose p > 0. 

ah 1 

- = M% 3 x2P ax1 [ 1/u ” P”) 
Jkl(Xl 9 XPM ( x2 - pxl ) w 

I41 - P”) 

- x1%4{1 - @‘((x2 - PXlYl/(l - P”))>44% 9 4 

+ re4u - @((x2 - PXl)/d(l - PW] 

> #%){l - “p- fyu - Ia> 
P 1, 

x wwu - @((x2 - PXl)ll/(l - PW - +u% t xzll 

So 8h/i@ > 0 if xi < 0 or if (cf. definition &(x1, x2)) 

(since p > 0). 

Denote the left-hand side of (A.l) by /3(x1 , x2). Now 

5% B(x1 , x2) = 0. (A-2) 
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We also have 

Again using the lemma, we have 

= w(x1 , x2; P). 

When x, > 0, (@/&,) < 0 if y(xI , x2 ; p) < 0. Now 

.fiEm Y(Xl 9 x2; P> = 2% Y(X1 , x2; P) = 0, 

and 

(A.31 

This changes sign only at x1 = p-1x2 , and for this value of x1 , 

YbJ-1x2 , x2; P) = ) 
dt - (1 - @(p-‘x2)}( &)-I 

-?f* 2x2 
4(t) * (%‘%)-I dt - (1 - @(p-‘x2)} (&r)-1 = 0. 

Hence from (A.3), it follows that y(x, , x2 ; p) < 0 for all x1 , x2 and so 

appx, < 0 for all x2 and all x1 > 0. 

Combining this with (A.2) we see that /3(x1 , x2) > 0 for all x2 and all x1 > 0. 
Hence 

ah/ax, > 0 for all x2 and all x1 . 

(We have already noted that &/ax, > 0 for x1 < 0.) 
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