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Bishop’s informal set theory is briefly discussed and compared to Lawvere’s Elementary
Theory of the Category of Sets (ETCS). We then present a constructive and predicative
version of ETCS, whose standard model is based on the constructive type theory of Martin-
Löf. The theory, CETCS, provides a structuralist foundation for constructive mathematics in
the style of Bishop.
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1. Introduction

Errett Bishop’s book Foundations of Constructive Analysis from 1967 contains a chapter on set theory. This set theory, apart
from being informal, is quite unlike any of the theories of Zermelo–Fraenkel or Gödel–Bernays, which are derived from the
iterative concept of a set.

‘‘A set is not an entity which has an ideal existence: a set exists only when it has been defined. To define a set we
prescribe, at least implicitly, what we (the constructing intelligence) must do in order to construct an element of the
set, and what we must do to show that two elements are equal.’’ Bishop [3, p. 2]

We find a similar explanation of what a set is also in the type theory of Martin-Löf (1984). Both explanations are aligned to
Cantor’s early explanation of sets from 1882 in the respect that they mention conditions for equality of elements explicitly;
see [24] for a discussion. Bishop [3, p. 74] emphasizes that two elements may not be compared unless they belong to
some common set. This indicates a type-theoretic attitude to the foundations. Bishop’s version of set theory has, despite
its constructiveness, a more abstract character than e.g. ZF set theory in that it does not concern coding issues for basic
mathematical objects. It defines a subset of a set X to be a pair (A, iA) where iA : A // X is a function so that a = b if, and
only if, i(a) = i(b). An element x ∈ X is a member of the subset if x = iA(a) for some a ∈ A. That the subset (A, iA) is included
in another subset (B, iB) of X is defined by requirement that there is a function f : A // B so that iA = iB ◦ f , i.e. that the
diagram
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commutes. The subsets are equal in case f is a bijection. Unions and intersections are only defined when the involved
sets are subsets of the same underlying set. These and other features of Bishop’s set theory are remarkably reminiscent
of Lawvere’s Elementary Theory of the Category of Sets (ETCS) introduced in 1964. ETCS is obtained by singling out category-
theoretic universal properties of various set construction in such a way that they become invariant under isomorphism;
see [15] and the introduction [9–16], the full version of the 1964 paper. This invariance is of course fundamental for a
structuralist foundation. ETCS is an elementary theory in the sense that it uses classical first order logic as a basis, and make
no special assumption on existence of second order or higher order objects. The theory is equivalent to the axioms of a well-
pointed topos with the axiom of choice [15,11]. It should be emphasized that ETCS was introduced to give an immediate
axiomatization of sets, while the Lawvere–Tierney elementary theory of a topos was intended to give axioms for sheaves of
sets over an arbitrary topological space.

Bishop [4,5] considered various versions of Gödel’s system T as a possible foundation for his set theory. At the basis of
the interpretation is a system of computable functions and functionals, which in effect are the core operations of certain
modern programming languages. Full-fledged systems suitable for the formalization of constructive mathematics in the
style of Bishop emerged later with the constructive type theory of Martin-Löf [14] and the constructive set theories CST [20]
and CZF [1]. Of these, the type-theoretic system is themore fundamental from a constructive semantical point of view, since
it describes explicitly how the computation of functions are carried out. Indeed, the mentioned set-theoretic system, CZF,
can be justified on the grounds of Martin-Löf’s type theory (MLTT) as shown by Aczel [1] by a model construction. In MLTT
the explanation of when elements of a set (type) are equal halts at the level of definitional equality. There are no quotient
constructions, so it is customary to consider a type together with an equivalence relation, as a set-like object, a so-called
setoid. This gives two possible conceptions of constructive sets based on the formal theories CZF andMLTT, namely iterative
sets (sets as trees) and setoids respectively.

In this paperwe present a constructive version of ETCS, called CETCS, which is obtained abstracting on category-theoretic
properties of CZF sets and of setoids in a universe inMLTT. A first requirement on CETCS is of course thatwe use intuitionistic
first order logic instead of the customary classical logic. CETCS has however the property that by adding the law of excluded
middle and the axiom of choice (AC), we get a theory equivalent to ETCS. Furthermore the theories of Aczel–Myhill and
Martin-Löf are (generalized) predicative, so that power set principles are not valid. Thus a constructive ETCS cannot be
obtained by adding axioms to the elementary theory of toposes. In [18,19] a notion of predicative topos was introduced
taking the setoids of MLTT with a hierarchy of universes as a standard model. Other variants of predicative toposes have
been introduced and studied [25]; see also [12,2]. A drawback of the category of setoids, as opposed categories of sets, is
that there is no canonical choice of pullbacks (Sect. 6, [6]). This makes the formulation of some axioms a bit less concise, but
also more general.

We emphasize that ETCS does not deal with the set-class distinction or replacement axioms. ETCS with replacement has
however been considered [21,15]. A constructive treatment of the set-class distinction was given by Joyal and Moerdijk [8]
by the introduction of notion of a small map. Predicatively acceptable versions of this were developed in [19,26]. It seems
rather straightforward to extend CETCS to include axioms for small maps along those lines. Another possible extension of
CETCS is to add inductively defined subsets. We leave these investigations for another occasion. A feature of CETCS is that it
introduces a constructive version ofwell-pointedness. Shulman [23] gives a definition of this notionwhichworks forweaker
categories.

An outline of the paper is a follows: in Section 2 a standard first-order logic definition of categories is given.We present in
Section 3 somenotation regarding relations and subobjects for categorieswhere products are not supposed to be chosen. The
axioms of ETCS and CETCS are presented in parallel and compared in Section 4. In Section 5 some elementary set-theoretic
consequence are drawn from CETCS, which indicates its usefulness for Bishop style constructive mathematics. It is shown
that CETCS together with the axiom of choice and classical logic gives the original ETCS. The relation of CETCS to standard
category theory notions is given in Sections 6 and 7. This can part can be skipped by the reader that is not particularly
interested in categorical logic. Section 7 contains a technical contribution which shows how a ‘‘functor free’’ formulation of
locally cartesian closed categories (LCCCs) can be employed in categorical logic.

2. Elementary categories

We shall take care to formulate all the axioms so that they may be easily cast in many sorted first-order (intuitionistic)
logic. Following the notation of [11], a category C is specified by an algebraic signature consisting of three collections
C0,C1,C2 (for objects, mappings (or arrows), composable mappings) and six functions id : C0 // C1, dom, cod : C1 // C0,



1386 E. Palmgren / Annals of Pure and Applied Logic 163 (2012) 1384–1399

comp : C2 // C1, fst, snd : C2 // C1. The intention is that dom gives the domain of the mapping while cod gives its
codomain. The collection C2 is supposed to consist of composable mappings

·
f // ·

g // ·

and fst gives the first of these mappings while snd gives the second mapping. Then comp is the composition operation. The
axioms for a category are then briefly as follows, where variables ranges are x ∈ C0, f , g, h, k, ℓ ∈ C1, u, v ∈ C2: (K1)
dom(idx) = x, (K2) cod(idx) = x, (K3) dom(comp(u)) = dom(fst(u)), (K4) cod(comp(u)) = cod(snd(u)) and

(K5) fst(u) = fst(v), snd(u) = snd(v) =⇒ u = v

(K6) dom(f ) = cod(g) =⇒ (∃u : C2) (snd(u) = f & fst(u) = g) .

We introduce abbreviations: for mappings f , g, hwrite h ≡ g ◦ f for (∃u ∈ C2)[fst(u) = f & snd(u) = g & comp(u) = h],
that is, the diagram

· ·
h

//

·

·

??
f

��
��

��
��

��
·

·

g

��?
??

??
??

??
?

is composable and commutes. Write k ◦ h ≡ g ◦ f if there is a mapping m so that m ≡ g ◦ f and m ≡ k ◦ h, that is, the
following diagram composes and commutes

· ·
k

//

·

·

h

��

· ·
f // ·

·

g

��

In terms of these abbreviations we can express the monoid laws: (K7) f ≡ f ◦ (iddom(f )), (K8) f ≡ (idcod(f )) ◦ f , and (K9)
if k ≡ f ◦ g and ℓ ≡ g ◦ h then k ◦ h ≡ f ◦ ℓ.

f : a // b and a
f // b are abbreviations for the conjunction dom f = a& cod f = b. We shall often omit ◦ and write

h ≡ g f for h ≡ g ◦ f . Moreover ≡ is often replaced by = when there is no danger of confusion.

3. Subobjects and relations

Wemay define the notion of an n-ary relation in any category. Recall that a mapping f : A //B ismonic or is a mono if for
any mappings h, k : U // Awith fh = fk it holds that h = k. We write in this case f : A // // B. This notion can be generalized
to several mappings. A sequence of mappings r1 : R // X1, . . . , rn : R // Xn are jointly monic, if for any f , g : U // R

r1f = r1g, . . . , rnf = rng =⇒ f = g.

In this case we write (r1, . . . , rn) : R // // (X1, . . . , Xn). We regard this as an n-ary relation between the objects X1, . . . , Xn. In
particular, a binary relation between X1 and X2 is a pair of mappings r1 : R // X1 and r2 : R // X2 which are jointly monic.
Another particular case is: if the category has a terminal object 1, a 0-ary relation () : R // // ()means that the unique map
R // 1 is a mono.

Consider a category C with a terminal object 1. An element of an object A of C is a mapping x : 1 // A. For a monic
m : M // X and element x of X write x ϵm if (∃a : 1 // M)ma = x. We say that x is a member of m. More generally, if
(m1, . . . ,mn) : M // // (X1, . . . , Xn) and (x1, . . . , xn) : 1 // // (X1, . . . , Xn) we write (x1, . . . , xn) ϵ (m1, . . . ,mn) if there is
a : 1 // M so that mia = xi for all i = 1, . . . , n.

To simplify notation we often write x ∈ X and (x1, . . . , xn) ∈ (X1, . . . , Xn) for x : 1 // X and (x1, . . . , xn) :

1 // (X1, . . . , Xn), respectively. Note the difference between the signs ∈ (elementhood) and ϵ (membership).
We shall be interested in categorieswhere there is no canonical construction for products, butwhere it ismerely assumed

that they exist. Recall that an n-ary product diagram in a category is a sequence of mappings X pi
// Xi (i = 1, . . . , n) so that

for any sequence of mappings C pi
// Xi (i = 1, . . . , n) there is a unique h : C // X such that fi ≡ hpi for all i = 1, . . . , n.

We write

h ≡ ⟨f1, . . . , fn⟩p̄

when fi ≡ hpi for all i = 1, . . . , n, where p̄ = p1, . . . , pn. It is convenient to drop the subscripts p̄when the product diagrams
are obvious from the context.
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Proposition 3.1. Suppose that X pi
// Xi (i = 1, . . . , n) is a product diagram. If (r1, . . . , rn) : R // (X1, . . . , Xn), r ′

: R // X

and r ′
≡ ⟨r1, . . . , rn⟩p̄, then r ′ is monic iff (r1, . . . , rn) are jointly monic. Moreover, for (x1, . . . , xn) ∈ (X1, . . . , Xn), x′

∈ X with
x′

≡ ⟨x1, . . . , xn⟩p̄, we have

x′ ϵ r ′
⇐⇒ (x1, . . . , xn) ϵ (r1, . . . , rn). �

A binary relation f = (ξ , υ) : R // // (X, Y ) is a partial function in case ξ is mono. It is a total function in case ξ is iso. A
relation

f = (ξ1, . . . , ξn, υ) : R // // (X1, . . . , Xn, Y )

is a partial function of n variables if (ξ1, . . . , ξn) : R // // (X1, . . . , Xn). We write

f : (X1, . . . , Xn) ⇁ Y .

It is total function of n variables if R
ξ // Xi (i = 1, . . . , n) is a product diagram. We write

f : (X1, . . . , Xn) // Y .

For x1 ∈ X1, . . . , xn ∈ Xn and y ∈ Y we write

f (x1, . . . , xn) ≡ y

in case (x1, . . . , xn, y) ϵ f .

4. Axioms of ETCS and CETCS

Lawvere’s theory ETCS [9] has eight axioms: (L1) finite roots exist, (L2) the exponential of any pair of objects exist, (L3)
there is aDedekind-Peano object, (L4) the terminal object is separating, (L5) axiomof choice, (L6) every object not isomorphic
to an initial object contains an element, (L7) Each element of a sum is amember of one of its injections, (L8) there is an object
with more than one element.

We present a constructive version of ETCS, called CETCS, and some extensions, by laying down axioms for a category C.
(It should be evident that the following axioms may be formulated in first-order logic in a language with C0,C1,C2 as sorts
and the function symbols id, dom, cod, comp, fst, snd as indicated in Section 2.)

Lawvere’s (L1) says that the category is bicartesian, i.e. both cartesian and cocartesian.
Recall that C is cartesian if the conditions (C1)–(C3) are satisfied:
(C1) There is a terminal object 1 in C.
(C2) Binary products exist: For any pair of objects A and B there exists an object P and two mappings

A oo p
P

q // B

which are such that if A oo f
X

g // B then there exists a unique h : X // P so that ph ≡ f and qh ≡ g .

(C3) Equalizers exist: For any parallel pair of mappings A
f //
g

// B there exists a mapping e : E // A so that fe ≡ ge and

such that whenever h : X // A satisfies fh ≡ gh then there exists a unique k : X // E with ek ≡ h.
A category C is cocartesian if it satisfies (D1)–(D3), which are the categorical duals of (C1)–(C3).
(D1) There is an initial object 0 in C.
(D2) Binary sums exist: For any pair of objects A, B there is a diagram

A i // S oo j
B (2)

such that if A
f // T oo g

B then there is a unique h : S // T with hi ≡ f and hj ≡ g .

(D3) Coequalizers exist: For any parallel pair of mappings A
f //
g

// B there exists a mapping q : B //Q so that qf ≡ qg and

such that whenever h : B // Y satisfies hf ≡ hg then there exists a unique k : Q // E with kq ≡ h.
The axiom (L2) of ETCS says together with (L1) that the category is cartesian closed. Instead, we take for an axiom the

following (5) which, together with cartesianess and axiom (G) below, states that the category is locally cartesian closed.
(This axiom is a theorem of ETCS.)
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(5) Dependent products exist: For any mappings Y
g // X

f // I there exists a commutative diagram

Y oo evY

g

��??
??

??
??

??
?

X I
f

//

P

X

π2

��

P F
π1 // F

I

ϕ

��
(3)

where the square is a pullback, andwhich is such that for any element i ∈ I and any partial functionψ = (ξ , υ) : R⇁ (X, Y )
such that

(a) for all (x, y) ∈ (X, Y ), (x, y) ϵ ψ implies gy ≡ x and fx ≡ i,
(b) if fx ≡ i, then there is y ∈ Y with (x, y) ϵ ψ ,

then there is a unique s ∈ F so that ϕs = i and for all (x, y) ∈ (X, Y ),

(s, x, y) ϵ α ⇐⇒ (x, y) ϵ ψ. (4)

Here α = (π1, π2, ev) : P // // (F , X, Y ).
A diagram (3) satisfying these properties is called a universal dependent product diagram or shortly a universal5-diagram

for Y
g // X

f // I .
The third axiom (L3) of ETCS says, in now common terminology, that there exists a natural numbers object (NNO). A

category C has an NNO if there is a sequence of mappings (the NNO) 1 0 // N s // N so that for any other sequence of

mappings 1 b // A h // A there is a unique f : N // Awith f 0 ≡ b and fS ≡ hf .
Axiom (L4) states in modern terminology that 1 is a separating object, i.e. as in Proposition 4.2. We consider instead a

stronger axiom (G) which is a theorem of ETCS. A mapping f : A // B of C is onto if for any y ∈ B there exists an x ∈ A so
that y ≡ fx. Our axiom is

(G) Any mapping which is both onto and mono, is an isomorphism.
The fifth axiom (L5) of ETCS states the axiom of choice in peculiar way; see Section 5.2. A more standard way is to first

define an object P ofC to be a choice object, if for any onto f : A //P there is a g : P //Awith fg = idP . The axiomof choice (AC)
says that every object is a choice object. This is a far too strong assumption in a constructive setting. There is a constructively
acceptable weakening which accords well with Bishop’s distinction of operations and functions, the presentation axiom [1]:

(PA) For any object A there is an onto mapping P // Awhere P is a choice object.
Axiom (L6) of ETCS says in contrapositive form: if an object has no elements then it is an initial object. We take instead
(I) The object 0 has no elements.
This together with (G) implies (L6).
The Axiom (L7) of ETCS is each element of a sum is a member of one of its injections.We adopt this axiom unaltered but call

it the disjunction principle (DP) as it connects sums to disjunctions:

(DP) In a sum diagram A i // S oo j
B: for any z ∈ S, z ϵ i or z ϵ j.

The final axiom (L8) of ETCS states that there exists object with at least two elements. We state this as

(NT, Non-triviality) For any sum diagram 1 x // S oo y
1 it holds that x ≠ y.

There are two further axioms that we shall consider, which are in fact theorems of ETCS.
(Fct) Factorization. Any mapping f can be factored as f ≡ iewhere i is mono and e is onto.
(Eff) All equivalence relations are effective. For each equivalence relation (r1, r2) : R // // (X, X) there is some mapping

e : X // E so that

(x1, x2) ϵ (r1, r2) ⇐⇒ ex1 ≡ ex2

for all (x1, x2) ∈ (X, X).
In summary, the theory CETCS consists of the axioms (C1–C3), (D1–D3), (5), (G), (PA), (I), (DP), (NT), (Fct) and (Eff).

Observe that it is a finitely axiomatized theory just as ETCS. We do not know whether this set of axioms is optimal.

Remarks 4.1. Note that it is not assumed that the (co)products or (co)equalizers are given as functions of their data. The
axiom (G) is in the terminology of [7] that 1 generatesC. It entails that one can ‘‘reason using elements’’ as the two following
results exemplify. This gives a substantial simplification of the internal logic.

Proposition 4.2. Let C be a cartesian category which satisfies (G). Then

(a) For any pair of mappings f , g : A // B, f = g whenever (∀x ∈ A)( fx = gx).
(b) A mapping f : A // B is monic if and only if (∀x, y ∈ A)( fx = fy ⇒ x = y).
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Proof. (b) follows easily from (a). To prove the non-trivial direction of (a): assume that (∀x ∈ A)( fx = gx). Construct an

equalizer E e // A
f //
g

// B of f and g . Then e is monic. By the assumption and the equalizing property it is also easy to see it

is onto. Hence by (G) e is an isomorphism. Since fe = gewe get f = g . �

Define an element-wise inclusion relation for monosm : M // X and n : N // X

m ⊆̇ n ⇐⇒def (∀x ∈ X)(x ϵm ⇒ x ϵ n).

The standard inclusion relation in a category is given bym ≤ n ⇐⇒def (∃f : M //N)(m = nf ). Compare diagram (1). Their
correspondence is given by:

Proposition 4.3. Let C be a cartesian category which satisfies (G). Then for all monos m : M // X and n : N // X,

m ⊆̇ n ⇐⇒ m ≤ n.

Proof. (⇐) This is straightforward in any category with a terminal object. (⇒) Suppose that m : M // // X and n : N // // X
satisfiesm ⊆̇ n. Form a pullback square

M Xm
//

P

M

q

��

P N
p // N

X

n

��

To provem ≤ n it is evidently enough to show that q is an isomorphism. Now q is the pullback of a mono, so it is a mono as
well. By (G) it is sufficient to show that q is onto. Let y ∈ M . Thusmy ϵm and by assumption alsomy ϵ n. There is thus t ∈ N
with my = nt . Hence by the pullback square there is a unique u ∈ P so that qu = y and pu = t . In particular, this shows
that q is onto. �

Functions as a graphs and as morphisms can be characterized as follows.

Proposition 4.4. Let C be a cartesian category which satisfies (G). Let r = (r1, r2) : R // (X, Y ) be a relation. Then

(a) r is a partial function if and only if

(∀x ∈ X)(∀y, z ∈ Y )[(x, y) ϵ r & (x, z) ϵ r ⇒ y = z]. (5)

(b) r is a total function if and only if

(∀x ∈ X)(∃!y ∈ Y )(x, y) ϵ r. (6)

(c) (Unique Choice) If (∀x ∈ X)(∃!y ∈ Y )(x, y) ϵ r, then there is f : X // Y with

(∀x ∈ X)(x, fx) ϵ r.

Proof. (a): by definition r is a partial function if and only if r1 ismono. By Proposition 4.2, r is thus a partial function precisely
when

(∀s, t ∈ R)[r1s = r1t ⇒ s = t].

This is easily seen to be equivalent to (5).
(b, ⇒): Suppose r is a total function. Then r1 is iso. For x ∈ X , we have (x, y) ϵ r with y = r2r−1

1 x). By (a) it follows that y
is unique.

(b, ⇐): Suppose (6) holds. By (a) r1 is mono. For each x ∈ X there is some t ∈ R and y = r2t so that (x, y) ϵ r . Thus r1 is
onto, and by (G) r1 is iso.

(c): This is clear from (b,⇐) since then r1 is invertible, and wemay take f = r2r−1
1 : for x ∈ X , x = r1r−1

1 x and fx = r2r−1
1 x

so (x, fx) ϵ r . �

Proposition 4.5. Let C be a cartesian category which satisfies (G). Then a commutative diagram

B Cg
//

P

B

π2

��

P A
π1 // A

C

f

��

is a pullback diagram if, and only if,

(∀x ∈ A)(∀y ∈ B)[fx = gy =⇒ (∃!t ∈ P)x = π1t & y = π2t]. (7)
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Proof. (⇒) Immediate. (⇐): Assume (7). It follows that π1 and π2 are jointly monic. Suppose there is given a commutative
square

B Cg
//

Q

B

q2

��

Q A
q1 // A

C

f

��
.

Form the pullback

P A × B
⟨π1,π2⟩

//

R

P

k

��

R Qh // Q

A × B

⟨q1,q2⟩

��
.

Clearly h is mono, since it is a pullback of a mono. By (7)

(∀s ∈ Q )(∃!t ∈ P)[q1s = π1t & q2s = π2t] (8)

but this implies that h is onto. Hence h is iso by (G). Thus m = kh−1
: Q // P satisfies πim = qi for i = 1, 2, and is the

desired map. It is unique since π1 and π2 are joint monic. �

5. Basic set-theoretic consequences

Wemention some easy consequences of the axioms.

Proposition 5.1 (Quotient Sets). Suppose that the bicartesian category C satisfies (G). For any equivalence relation r =def
(r1, r2) : R // // (X, X) there exists a mapping q : X // Q so that for all (x1, x2) ∈ (X, X)

(x1, x2) ϵ r =⇒ qx1 = qx2 (9)

and if f : X // Y is any mapping with

(x1, x2) ϵ r =⇒ fx1 = fx2. (10)

then there exists a unique h : Q // Y with hq = f .
In case the category also satisfies (Eff) it follows that (9) is an equivalence.

Proof. Construct a coequalizer diagram

R
r1 //
r2

// X
q // Q .

Since the diagram commutes, the implication (9) holds. Let f : X // Y be any mapping satisfying the implication (10).
Thus for any t ∈ R, fr1t = fr2t . Thus by Proposition 4.2 (a) we have fr1 = fr2 and since q is a coequalizer, there is a unique
h : Q // Y with hq = f .

From Axiom (Eff) it follows that there is some e : X // E such that

(x1, x2) ϵ r ⇐⇒ ex1 = ex2 (11)

for all (x1, x2) ∈ (X, X). Thus er1 = er2. Let e′
: Q // E be the unique mapping so that e′q = e. Thus if qx1 = qx2, it follows

that ex1 = ex2 and hence (x1, x2) ϵ r by (11). �

Proposition 5.2 (Induction). Assume that C is a cartesian category which satisfies (G) and (NNO). Let r : R // // N. Suppose that
0 ϵ r and that for each n ∈ N, n ϵ r implies Sn ϵ r. Then for all n ∈ N, n ϵ r.

Proof. Since 0 ϵ r , there is z : 1 // R with 0 ≡ rz. Form a pullback square

R N
S◦r

//

P

R

p

��

P R
q // R

N

r

��
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As r is mono, so is p. We claim that p is onto. Let u : 1 // R. Thus ru ϵ r . Hence by assumption Sru ϵ r . There is thus a map
v : 1 // R with Sru = rv. By the pullback property there is x : 1 // P so that px = u and qx = v. In particular p is onto. By
(G) p is an isomorphism. Let p−1 be its inverse. Thus qp−1

: R // R. By the property of the natural number object there is a
unique f : N // Rwith f 0 = z and fS = qp−1f . Now (rf )0 = 0 and

(rf )S = rqp−1f = Srf .

But idN instead of r ◦ f also satisfies these two equations. Thus rf = id. Thus for any n ∈ N , rfn = n, and hence n ϵ r . �

Proposition 5.3 (Exponential Objects). Assume that C is a cartesian category that satisfies (G) and (5). Then for any objects X
and Y there is an object E and a total function e : (E, X) // Y such that for every morphism f : X // Y there is a unique s ∈ E
such that for x ∈ X and y ∈ Y :

e(s, x) ≡ y ⇐⇒ f ◦ x ≡ y.

Theorem 5.4 (Dependent Choices). Assume that C is a cartesian category that satisfies (G), (5), (Fct) and (PA). Then for any
object X, any total relation r = (r1, r2) : R // // (X, X) and any x ∈ X there is a morphism f : N // X with f 0 = x and for all
n ∈ N

( fn, f ◦ Sn) ϵ r. (12)

Proof (Sketch). Take a projective cover p : P // X of X . Since r is total, we have thus for each u ∈ P some v ∈ P with
(pu, pv) ϵ r . As P is a choice object, there is a morphism g : P // P with (pu, pgu) ϵ r for all u ∈ P . Let x ∈ X . Then p ◦w ≡ x

for some w ∈ P . Now 1 0 // N S // N is a natural numbers object, so there is h : N // P with h0 = w and hS = gh. Now it
is easy to check by induction that f =def ph satisfies (12). �

5.1. Constructing new relations

We review some of the possibilities to construct relations in a bicartesian category satisfying the axioms (G), (5), (DP),
(Fct) and (I). On any object X the identity mapping gives a universally true relation tX = idX : X // X , i.e. for all x ∈ X

x ϵ tX .

The unique mapping from the initial object fX : 0 // X gives an universally false relation, i.e. for all x ∈ X ,

¬(x ϵ fX ).

If E e // X
g //
h

// Y is an equalizer diagram, then for x ∈ X

x ϵ e ⇐⇒ gx = hx.

Given a relation r = (r1, . . . , rn) : R // //(X1, . . . , Xn)we can extend it with a variable. Let Y be a object and let R oo p
R′

q //Y
be a product diagram. The extended relation

r ′
= (r1p, . . . , rnp, q) : R′ // // (X1, . . . , Xn, Y )

satisfies, for all (x1, . . . , xn, y) ∈ (X1, . . . , Xn, Y ) that

(x1, . . . , xn, y) ϵ r ′
⇐⇒ (x1, . . . , xn) ϵ r.

If σ : {1, . . . , n} // {1, . . . , n} is a permutation then

rσ = (rσ(1), . . . , rσ(n)) : R // // (Xσ(1), . . . , Xσ(n))

satisfies for all (x1, . . . , xn) ∈ (Xσ(1), . . . , Xσ(n))

(x1, . . . , xn) ∈ rσ ⇐⇒ (xσ−1(1), . . . , xσ−1(n)) ∈ r.

The following lemma is standard

Lemma 5.5. If in the universal5-diagram

Y oo evY

g

��??
??

??
??

??
?

X I
f

//

P

X

π2

��

P F
π1 // F

I

ϕ

��
(13)

the mapping g is mono, then so is ϕ. �
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Relations can be combined using the logical operations (∧, ∨, ⇒) and quantifiers (∀,∃) over fixed objects:

Theorem 5.6. Let C be a bicartesian category satisfying the axioms (G), (5), (DP), (Fct) and (I). Let r = (r1, . . . , rn) :

R // // (X1, . . . , Xn) and s = (s1, . . . , sn) : S // // (X1, . . . , Xn). Then exists (r ∧ s), (r ∨ s), (r ⇒ s) : R // // (X1, . . . , Xn) so
that for all x = (x1, . . . , xn) ∈ (X1, . . . , Xn)

(a) x ϵ (r ∧ s) if and only if x ϵ r and x ϵ s,
(b) x ϵ (r ∨ s) if and only if x ϵ r or x ϵ s,
(c) x ϵ (r ⇒ s) if and only if x ϵ r implies x ϵ s,

Moreover, if m : M // // (X1, . . . , Xn, Y ) then there is ∀(m) : A // // (X1, . . . , Xn) and ∃(m) : E // // (X1, . . . , Xn) so that for all
x = (x1, . . . , xn) ∈ (X1, . . . , Xn)

(d) x ϵ ∀(m) if and only if for all y ∈ Y , (x1, . . . , xn, y) ϵm,
(e) x ϵ ∃(m) if and only if for some y ∈ Y , (x1, . . . , xn, y) ϵm.

Proof. By Proposition 3.1 it is enough to prove (a)–(c) for the case when n = 1; write X = X1, r = r1, s = s1.
As for (a): form the pullback square

R Xr
//

P

R

p

��

P S
q // S

X

s

��
.

The diagonal, call it (r ∧ s) is a mono. It is straightforward by the pullback property that the equivalence in (a) holds.

As for (b): form a sumdiagram R i //U oo j
S. Let f : U //X be the uniquemappingwith r = fi and s = fj. LetU e //I m //X

be a factorization of f as an onto mapping followed by a mono (Fct). We claim that (r ∨ s) =def m satisfies the equivalence
in (b). Suppose that x ∈ X satisfies x ϵ r . Then x = rt for some t ∈ R. Thus x = fit = meit , and hence x ϵm. Similarly x ϵ s
implies x ϵm. Suppose on the other hand that x ϵm. Now, e is onto so there is some u ∈ U with x = fu. Then by Axiom (DP)
we have u = it for some t ∈ R, in which case x ϵ r , or we have u = jv for some v ∈ S, in which case x ϵ s.

As for (c): Form the pullback

R X//
r

//

Q

R

��
p

��

Q S// q // S

X

��
s

��
(14)

Axiom (5) yields for Q
p // R r // X a universal5-diagram

Q oo evQ

p

��??
??

??
??

??
?

R Xr
//

P

R

π2

��

P F
π1 // F

X

ϕ

��
(15)

We claim that (r ⇒ s) =def ϕ makes the equivalence in (c) true. Let x ∈ X . To prove (⇒) assume that x ϵ ϕ. Thus x = ϕu
for some u ∈ F . Suppose x ϵ r . Thus x = rv for some v ∈ R. By the pullback in (15) there isw : 1 //w so that π2w = v and
π1w = u. We have further by the diagrams

x = rv = rπ2w = rp evw = sq evw.

This shows x ϵ s. As for the converse (⇐) suppose the implication

x ϵ r ⇒ x ϵ s

holds. We aim to show x ϵ ϕ using the properties of the universal5-diagram. Form a pullback diagram

1 X//
x

//

T

1

��

��

T Q// t // Q

X

��
rp

��
(16)
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Then ψ = (pt, t) : T // // (R,Q ) is evidently a partial function since p and t are monic. If ψ(u) ≡ v, then there is w ∈ T , so
that u = ptw and v = tw, and hence u = pv and ru = rpv = x. This verifies condition (a) of (5). To verify condition (b)
of (5), assume that ru = x. Thus x ϵ r , and so by the implication above x ϵ s, i.e. sw = x, for some w. By the pullback (14)
there is v : 1 // Q with u = pv and w = qv. Thus rpv = x. But, by the pullback (16) there is z : 1 // T with tz = v. Now
(ptz, tz) = (u, v), i.e. ψ(u) ≡ v. According to (5), there is now some k ∈ F with ϕk = x. Thus x ϵ ϕ.

As for (d): Suppose m = (m1,m2) : M // // (X, Y ). Using (Fct) factor m1 into a onto mapping followed by a mono

M e // I i // X . Let ∃(m) = i. Thus using the fact that e is onto

x ϵ ∃(m) ⇔ (∃t ∈ I)x = it ⇔ (∃s ∈ M)x = ies ⇔ (∃s ∈ M)x = m1s.

The latter implies that (x,m2s) ϵ (m1,m2). Clearly m2s ∈ Y . Conversely, suppose that for some y ∈ Y we have
(x, y) ϵ (m1,m2). Thus for some s ∈ M it holds that x = m1s and y = m2s and we have x ϵ ∃(m).

As for (e): Suppose m = (m1,m2) : M // // (X, Y ). First construct a product diagram X oo p
U

q // Y . Then let
m′

≡ ⟨m1,m2⟩p,q. Use (5) to obtain a universal5-diagram

M oo evM

m′

��??
??

??
??

??
?

U Xp
//

P

U

π2

��

P F
π1 // F

X

ϕ

��
(17)

We let ∀(m) = ϕ. Suppose x ∈ X . To prove (e, ⇒) suppose x ϵ ϕ and y ∈ Y . Thus x = ϕf for some f ∈ F and moreover there
is u ∈ U with x = pu and y = qu. By the pullback in (17) we get w ∈ P so that u = π2w and f = π1w. From the triangle of
(17) it follows thatm′ evw = π2w. Hence u ϵm′ and thus (x, y) ϵm. To prove (e, ⇐) let x ∈ X be fixed and suppose that for
all y ∈ Y , (x, y) ϵm. Let n : N // M be the pullback of x alongm1:

1 Xx
//

N

1
��

N Mn // M

X

m1

��
(18)

Then (m′n, n) : N // // (U,M) is a partial function since both m′ and n are mono. As for condition (a): if (u, v) ϵ (m′n, n)
then u = m′nt and v = nt for some t ∈ N . Clearly, m′v = u and pu = m1nt = x. Regarding condition (b): Suppose
that u ∈ U satisfies pu = x. Let y = qu. By the first assumption (x, y) ϵm. Thus for some s ∈ M , x = m1s and y = m2s.
By construction of m′ we have m′s = u. Since x = m1s, the pullback (18) gives a unique t ∈ N with s = nt . Thus t is a
witness to (u, s) ϵ (m′n, n). Since conditions (a)–(b) are now verified, (5) gives f ∈ F satisfying, in particular, ϕf = x. Hence
x ϵ ϕ. �

5.2. Decidable relations and classical logic

Let C be a CETCS category. Construct a two element set using the sum axiom 1
f // 2 oo t 1. If r : P // // X is decidable, i.e.

for all x ∈ X ,

x ϵ r or ¬x ϵ r,

then we can construct χr : X // 2 so that for all x ∈ X

x ϵ r ∧ χr(x) = t or (¬x ϵ r) ∧ χr(x) = f .

It follows that χr is the unique map X // 2 such that x ϵ r iff χr(x) = t . Thus 1 t // 2 classifies decidable relations. In case

we take the axioms of CETCS with classical logic every relation is decidable, and hence 1 t // 2 is a full subobject classifier
for the category. In this case C is a topos.

The Lawvere’s choice axiom (L5) states: if f : A // B is mapping and A contains at least one element, then there is a
mapping g : B // A so that f g f = f .

Theorem 5.7. In CETCS with classical logic (AC) and (L5) are equivalent.

Corollary 5.8. ETCS and CETCS + PEM + AC have the same theorems.
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6. Correspondence to standard categorical formulations

Lemma 6.1. Let C be a cartesian category which satisfies (G). Then a pullback of an onto mapping is again an onto mapping.

We recall some basic definitions from [7]:

Definition 6.2. A sequence of mappings A e // I m // B is an image factorization of f : A // B if f ≡ m ◦ e and m is a mono,
and whenever f ≡ m′

◦ e′ where m′
: I ′ // B is mono then there is some t : I // I ′ with m ≡ m′

◦ t . Such an m is a called
an image of f .

Definition 6.3. A morphism f is a cover if whenever it can be factored as f ≡ m ◦ g where m mono, then m be must an
isomorphism.

Proposition 6.4. In any category, if A e // I // i // B is an image factorization of f : A // B, then e is a cover.

Theorem 6.5. Let C be a cartesian category satisfying (G). If f : X // Y is factored as X
g // I // i // Y , where g is onto, then it is

an image factorization.

Proof. Suppose therefore that X h // J // j // Y is another factoring of f . It is sufficient to show that i ≤ j as subobjects of Y .
By Proposition 4.3 it is equivalent to prove i ⊆̇ j. Suppose that y ∈ Y satisfies y ϵ i. Then y = it for some t ∈ I . Now g is onto,
so there is x ∈ X with gx = t . Now y = igx = fx = j(hx). Hence y ϵ j. Thus we have i ⊆̇ j. �

Lemma 6.6. Suppose that C is a cartesian category that satisfies (G). Then

(a) every onto mapping is a cover,
(b) if C in addition satisfies (Fct), then every cover is onto.

Proof. (a): If f : A // B is onto, then A
f // B id // B is an image factorization, so by Theorem 6.5 and Proposition 6.4 f is a

cover.
(b): Let f : A // B be a cover. By (Fct) take a factorization A e // I i // B of f where e is onto and i is mono. Now since f is

a cover, i is an isomorphism. Hence f is onto as well. �

In standard category-theoretic terms [7] various combinations of the CETCS axioms can be characterized by the following
theorems. First recall that a regular category is a category with finite limits, which has image factorization and where covers
are preserved by pullbacks.

Theorem 6.7. Let C be a cartesian category satisfying (G). Then C satisfies (Fct) if, and only if, C is a regular category where the
terminal object is projective.

Proof. (⇒) According to Theorem 6.5 C has image factorizations. By Lemma 6.6 onto morphisms are the same as covers.
Thus by Lemma 6.1 covers are preserved by pullbacks. This shows that C is regular. If A // 1 is a cover then it is onto, and
hence 1 is a choice object. Since the category is regular, it follows that 1 is projective.

(⇐) Suppose 1 is projective. Hence any cover is onto. Thus by regularity, any morphism can be factored as an onto
morphism followed by a mono. This gives (Fct). �

Theorem 6.8. Let C be a cartesian category satisfying (G). Then C is locally cartesian closed if and only if C satisfies the axiom
(5).

Proof. See Section 7. �

Lemma 6.9. In a CETCS category C every epi is onto; consequently C is balanced.

Proof. Let f : A // B be an epi. Form the sum 1 i // S oo j
B. Letm : M // // B be a subobject so that y ϵm iff (∃x ∈ A)fx = y.

Then form the sum 1 r // K oo s M and let k : K // S be the unique mapping so that kr = i and ks = jm. Define, using
Section 5.1, an equivalence relation (r1, r2) : R // (S, S) by

(u, z) ϵ (r1, r2) ⇐⇒ ((∃w ∈ K)kw = u ⇔ (∃w ∈ K)kw = z).

By Proposition 5.1 let q : S // Q be such that

(u, z) ϵ (r1, r2) ⇐⇒ qu = qz.

Let g : B // S be given by g = i◦!B and h = j : B // S. It is straightforward to check that for all x ∈ A, qgfx = qhfx. Thus
qg f = qhf , and since f is epi, qg = qh. For each y ∈ Bwe have, since (∃w ∈ K)kw = gy is true, that

(∃w ∈ K)kw = hy.

By (DP) and disjointness of sums we must havew = st for some t ∈ M . Hence jmt = kst = kw = hy = jy. Since j is mono,
mt = y. Thus y ϵm, that is (∃x ∈ A)fx = y.

The last statement follows by Axiom (G). �
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Theorem 6.10. Let C be a category. Then C satisfies CETCS if, and only if, C has the following properties

(i) it is locally cartesian closed,
(ii) it is a pretopos,
(iii) it has NNO,
(iv) its terminal object is projective and generates C,
(v) 0 ≁= 1,
(vi) it satisfies the disjunction property,
(vii) it has enough projectives.

Proof. (⇒): (i) follows from Theorem 6.8. Properties (iii), (vi), (vii) are axioms of CETCS. (iv) follows from Theorem 6.7.
(v) is clear by (I). By (Lemma 1.5.13–14, [7]) every locally cartesian closed which is cocartesian and balanced (Lemma 6.9) is
a pretopos.

(⇐) It is known that in a locally cartesian closed pretopos with NNO has all coequalizers (Remark 2.8, [18]). Using
Theorem 6.8 we get axiom (5). Axioms (G), (NNO), (PA) and (DP) are given. (I) follows easily from (v) using uniqueness

of mappings. In a pretopos the pullback object of x and y in a sum diagram 1 x // S oo y
1will be 0, so (NT) follows from (I).

In pretopos every map can be factored as a cover followed by a mono. But using that 1 is projective we can show that covers
are onto, so (Fct) is verified. In a pretopos all equivalence relations are effective, so (Eff) follows. �

7. Functor-free formulation of LCCCs

The standard way [7] of defining a locally cartesian category C is to say that it is a cartesian category so that pullbacks
along a mapping f : X // Y induces a functor f ∗

: C/Y // C/X and that this functor has a right adjoint5f : C/X // C/Y .
These functors must, in particular, be defined on the objects of the slice categories. This means that the pullback object must
be possible to construct as a function of mappings g : A // Y and f : X // Y . This can be forced if one assumes the full
axiom of choice in the meta-theory of C, but is not possible if we only use intuitionistic logic. Makkai [17] has developed
a theory of functors – anafunctors – by which one can avoid such uses of choice. In [22] we showed how LCCCs could be
formulated replacing f ∗ and5f by the appropriate anafunctors, so that5f is the right adjoint of f ∗. We here extract what is
the existence condition for such5f and formulate it without functors. Thus a functor-free formulation of LCCC will be given
in Definition 7.1.

A5-diagram for Y
g // X

f // I is a commutative diagram of the form

Y oo evY

g

��??
??

??
??

??
?

X I
f

//

P

X

π2

��

P F
π1 // F

I

ϕ

��
(19)

where the square on the right is a pullback diagram. The object F is called the parameter object of the diagram.

If we have a second5-diagram for Y
g // X

f // I

Y oo ev′

Y

g

��??
??

??
??

??
?

X I
f

//

P ′

X

π ′
2

��

P ′ F ′
π ′
1 // F ′

I

ϕ′

��
(20)

we say that a mapping t : F ′ // F is a5-diagram morphism from the second diagram to the first diagram if ϕt ≡ ϕ′ and the
unique map s : P ′ // P such that π2s ≡ π ′

2 and π1s ≡ tπ ′

1 also satisfies evs ≡ ev′.

P ′ //

xxqqqqqqqqqqqqq

��/
//

//
//

//
//

//
/

''

F ′

��.
..

..
..

..
..

..
.

''
Y

))TTTTTTTTTTTTTTTTTTTT P //oo

����
��

��
��

F

����
��

��
��

X // I

(21)

It is easily seen that the5-diagrams and5-diagram morphisms over fixed mappings Y
g // X

f // I forms a category.
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A universal5-diagram for Y
g // X

f // I: is a5-diagram

Y oo evY

g

��??
??

??
??

??
?

X I
f

//

P

X

π2

��

P F
π1 // F

I

ϕ

��
(22)

which is such that for any other5-diagram

Y oo ev′

Y

g

��??
??

??
??

??
?

X I
f

//

P ′

X

π ′
2

��

P ′ F ′
π ′
1 // F ′

I

ϕ′

��
(23)

there is a unique mapping n : F ′ // F so that ϕ′
≡ ϕn and that the unique mapping m : P ′ // P , with nπ ′

1 ≡ π1m and
π ′

2 ≡ π2m, satisfies ev′
≡ evm.

Definition 7.1. A cartesian category is locally cartesian closed, if it satisfies the generalized exponential axiom or the5-axiom:

for every composable pair of maps Y
g // X

f // I there is an universal exponential diagram as in (22). That is, the category of

5-diagrams over Y
g // X

f // I has a terminal object.

7.1. Characterization of universal5-diagrams

We have the following characterization of5-diagrams where the parameter object is F = 1.

Lemma 7.2. Consider a cartesian category satisfying (G). Let Y
g // X

f // I be morphisms and let i ∈ I be an element. For a pair
of morphisms ψ = (r1, r2) : R // (X, Y ) the diagram

Y oo r2Y

g

��??
??

??
??

??
?

X I
f

//

R

X

r1

��

R 1// 1

I

i

��
(24)

is a5-diagram if and only if

(A1) ψ is a partial function (i.e. r1 is mono)
(A2) (∀x ∈ X)[fx = i =⇒ (∃y ∈ Y )(x, y) ϵ ψ]

(A3) (∀x ∈ X)(∀y ∈ Y )[(x, y) ϵ ψ =⇒ fx = i ∧ gy = x]

Proof. (⇒) Suppose (24) is a5-diagram. Since i is mono, the pullback diagram entails that r1 is mono. Hence ψ is a partial
function. Property (A2) follows by the pullback property. (A3) follows since the whole diagram is commutative.

(⇐) Suppose that (A1)–(A3) are satisfied. By (A3) it follows that the entire diagram commutes. (A1) and (A2) together
yields that the square is a pullback. �

Lemma 7.3. Consider two5-diagrams in a cartesian category satisfying (G).

Y oo ev′

Y

g

��??
??

??
??

??
?

X I
f

//

P ′

X

π ′
2

��

P ′ F ′
π ′
1 // F ′

I

ϕ′

��

Y oo evY

g

��??
??

??
??

??
?

X I
f

//

P

X

π2

��

P F
π1 // F

I

ϕ

��
(25)

Let χ : F ′ // F be such that ϕχ = ϕ′. There is a unique κ : P ′ // P so that π1κ = χπ ′

1 and π2κ = π ′

2. For this κ it holds that
evκ = ev′ if and only if for all v ∈ F ′, x ∈ X and y ∈ Y

(v, x, y) ϵ (π ′

1, π
′

2, ev
′) ⇐⇒ (χv, x, y) ϵ (π1, π2, ev).
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Proof. (⇐): Assume the equivalence. Let t ∈ P ′ be arbitrary. We prove evκt = ev′t . Clearly (π ′

1t, π
′

2t, ev
′t) ϵ (π ′

1, π
′

2, ev
′),

so by the equivalence (χπ ′

1t, π
′

2t, ev
′t) ϵ (π1, π2, ev). Thus there is a u ∈ P with χπ ′

1t = π1u, π ′

2t = π2u and ev′t = evu.
Nowwe have π1u = χπ ′

1t = π1κt and π2u = π ′

2t = π2κt . By the pullback property, π1 and π2 are jointly mono, so u = κt .
Thus ev′t = evκt .

(⇒): Assume evκ = ev′. Suppose (v, x, y) ϵ (π ′

1, π
′

2, ev
′). Thus for some t ∈ P ′, it holds that v = π ′

1t , x = π ′

2t and
y = ev′t . Hence x = π2κt , y = evκt . Finally π1κ = χπ ′

1 gives χv = π1κt , so that (χv, x, y) ϵ (π1, π2, ev). For the converse,
assume (χv, x, y) ϵ (π1, π2, ev). Thus χv = π1s, x = π2s and y = evs for some s ∈ P . Then

fπ2s = ϕπ1s = ϕχv = ϕ′v.

Thus there is a unique t ∈ P ′ with π ′

2t = π2s and π ′

1t = v. We have then π ′

2t = x, so to prove (v, x, y) ϵ (π ′

1, π
′

2, ev
′) it

suffices to show y = ev′t . Now ev′t = evκt . We have π1κt = χπ ′

1t = χv = π1s and π2κt = π ′

2t = π2s. By the pullback
property π1 and π2 are jointly mono, so κt = s. Hence y = evs = evκt = ev′t as desired. �

Theorem 7.4. Let C be a cartesian category satisfying (G). Let Y
g // X

f // I be fixed morphisms. Suppose that the5-diagram

Y oo evY

g

��??
??

??
??

??
?

X I
f

//

P

X

π2

��

P F
π1 // F

I

ϕ

��
(26)

is universal for Y
g // X

f // I . Then for every i ∈ I and for every pair of morphisms ψ = (r1, r2) : R // (X, Y ) satisfying
(A1)–(A3), there is a unique v ∈ F with ϕv = i such that for all x ∈ X and y ∈ Y

(x, y) ϵ ψ ⇐⇒ (v, x, y) ϵ α. (27)

Here α = (π1, π2, ev) : P // (F , X, Y ).

Proof. By Lemma 7.2 (24) is a5-diagram. Since (26) is a universal diagram, there is a map v : 1 // F such that ϕv = i and
for all u ∈ 1, x ∈ X and y ∈ Y ,

(u, x, y) ϵ (!, r1, r2) ⇐⇒ (vu, x, y) ϵ α

(by Lemma 7.3). But vu = v and (u, x, y) ϵ (!, r1, r2) is equivalent to (x, y) ϵ ψ , so (27) is proved. �

There is a converse.

Theorem 7.5. Let C be a cartesian category satisfying (G). Let Y
g // X

f // I be fixed morphisms. Consider the5-diagram

Y oo evY

g

��??
??

??
??

??
?

X I
f

//

P

X

π2

��

P F
π1 // F

I

ϕ

��
(28)

and let α = (π1, π2, ev) : P // (F , X, Y ).
Suppose that for every i ∈ I and for every pair of morphismsψ = (r1, r2) : R // (X, Y ) satisfying (A1)–(A3), there is a unique

v ∈ F with ϕv = i such that for all x ∈ X and y ∈ Y

(x, y) ϵ ψ ⇐⇒ (v, x, y) ϵ α.

Then (28) is universal for Y
g // X

f // I .

Proof. Let

Y oo ev′

Y

g

��??
??

??
??

??
?

X I
f

//

P ′

X

π ′
2

��

P ′ F ′
π ′
1 // F ′

I

ϕ′

��
(29)
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be an arbitrary5-diagram. For v′
∈ F ′ form the pullback

P F ′

π ′
1

//

Q

P

q

��

Q 1! // 1

F ′

v′

��
(30)

Then the composed diagram

Y oo ev′q
Y

g

��??
??

??
??

??
?

X I
f

//

Q

X

π ′
2q

��

Q 1! // 1

I

ϕ′v′

��
(31)

is, obviously, again a5-diagram. For x ∈ X and y ∈ Y we then have

(x, y) ϵ (π ′

2q, ev
′q) ⇐⇒ (v′, x, y) ϵ (π ′

1, π
′

2, ev
′).

Indeed, suppose x = π ′

2qu and y = ev′qu for some u ∈ Q . We have by (30) v′
= v′

!u = π ′

1qu. Hence (v
′, x, y) ϵ (π ′

1, π
′

2, ev
′).

Conversely, suppose v′
= π ′

1t , x = π ′

2t and y = ev′t for some t ∈ P ′. From v′
= π ′

1t it follows by (30) that there is a unique
s ∈ Q with t = qs. Thus x = π ′

2qs and y = ev′qs and hence (x, y) ϵ (π ′

2q, ev
′q).

Now (31) is a 5-diagram so ψ = (π ′

2q, ev
′q) : Q // (X, Y ) satisfies (A1)–(A3) for i = ϕ′v′ (by Lemma 7.3). Hence by

assumption we have that there is a unique v ∈ F with ϕv = ϕ′v′ and for all x ∈ X and y ∈ Y

(v, x, y) ϵ (π1, π2, ev) ⇐⇒ (x, y) ϵ ψ.

In conclusion, for every v′
∈ F ′ there is a unique v ∈ F such that ϕv = ϕ′v′ and

(∀x ∈ X)(∀y ∈ Y )[(v, x, y) ϵ (π1, π2, ev) ⇐⇒ (v′, x, y) ϵ (π ′

1, π
′

2, ev
′)]. (32)

By unique choice (Proposition 4.4) and Theorem 5.6 there is χ : F ′ // F so that for all v′
∈ F it holds that ϕχv′

= ϕ′v′

and

(∀x ∈ X)(∀y ∈ Y )[(χv′, x, y) ϵ (π1, π2, ev) ⇐⇒ (v′, x, y) ϵ (π ′

1, π
′

2, ev
′)]. (33)

Hence according to Lemma 7.3 the unique map κ : P ′ // P satisfying π1κ = χπ ′

1 and π2κ = π ′

2 also satisfies evκ = ev′.
To finish the proof we have to show that χ is unique. Suppose that θ : F ′ // F satisfies ϕθ = ϕ′ and that λ : P ′ // P is the
unique map with π1λ = θπ ′

1 and π2λ = π ′

2, and that this λ satisfies evλ = ev′. Then by Lemma 7.3, it holds for all v′
∈ F

(∀x ∈ X)(∀y ∈ Y )[(θv′, x, y) ϵ (π1, π2, ev) ⇐⇒ (v′, x, y) ϵ (π ′

1, π
′

2, ev
′)].

Thus by the uniqueness in (32) for all v′
∈ F ′, θv′

= χv′. Hence θ = χ . �

Corollary 7.6 (Theorem 6.8). Let C be a cartesian category satisfying (G). Then C is locally cartesian closed if and only if C
satisfies the axiom (5).

Proof. (⇒) This is Theorem 7.4. (⇐) Suppose axiom (5) holds. By Theorem 7.5 this says that every Y
g // X

f // I has a
universal5-diagram. �
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