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Block Coding for Stationary Gaussian 
Sources with Memory Under a 

Square-Error Fidelity Criterion* 

HARRY H. TAN 

Department of Electrical Engineering, Princeton, University, 
Princeton, New Jersey 08540 

In this paper, we present a new version of the source coding theorem for the 
block coding of stationary Gaussian sources with memory under a square- 
error distortion criterion. For both time-discrete and time-continuous Gaussian 
sources, the average square-error distortion of the optimum block source code 
of rate R > R(D) is shown to decrease at least exponentially in block-length 
to D, where R(D) is the square-error criterion rate distortion function of the 
stationary Gaussian source with memory. In both cases, the exponent of 
convergence of average distortion is explicitly derived. 

I. INTRODUCTION 

In  1959, the foundations of rate distortion theory was established by 

Shannon (1959) when he defined the rate distortion function of an information 

source with respect to a fidelity criterion and proved the fundamental source 

coding theorems which give this function its operational significance. The  

standard source coding theorems give the existence of block codes of rate R 

and average distortion D when used to represent the information source, 

if and only if R > R(D), the rate distortion function of the source. Thus  in 

a communicat ion system, where the codewords of the source code are 

properly channel coded for reliable transmission over the channel, R(D) 
represents an absolute lower bound on the channel capacity required to 

achieve an overall system average distortion D. However, it is known that as 

the available channel capacity of the communication system approaches R(D), 
the source code required to achieve this level of performance must have 

increasing blocklength. Since the complexity of the source encoder which 
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implements the source code will necessarily increase with code blocklength, 
a reduction in channel capacity requirement entails a higher source encoder 
complexity. Thus,  in the selection of source codes for a communication system, 
the trade-off between channel capacity requirement and the source encoder 
complexity required to implement the source code should be considered. 
To  resolve this problem, a study of the rate at which the average distortion 
of the optimum source code of rate R ~ R(D) approaches D as its blocklength 
approaches infinity, is necessary. 

Recently source coding theorems in the above context have been proved 
by Blahut (1972), Omura (1973), King (1973), and Marton (1974) for finite- 
alphabet discrete-time memoryless sources under bounded distortion 
measures. These works showed the exponential rate of convergence of 
average distortion to D in blocklength n for optimum source codes of rate 
R > R(D). In this paper source coding theorems for stationary Gaussian 
sources with memory under a square-error distortion criterion are proved 
which gives an upper bound to the rate of convergence of average distortion. 
This is a class of sources and distortion measure which play a fundamental 
role in many theoretical and practical problems. 

The  main results of this paper are stated in Theorems 1 and 3 of 
Section II .  Theorem 1 gives the source coding theorem for time-discrete 
stationary Gaussian sources and Theorem 3 the corresponding result 
for the time-continuous case. In  both cases the average distortion of an 
optimum source code of rate R > R(D) is shown to decrease at least exponen- 
tially in blocklength to D. The  proof of Theorem 1 is contained in 
Section I I I  of this paper and the proof of Theorem 3 in Section IV. The  
techniques we use are motivated by the methods developed by Omura (1973) 
and have some similarity to the derivation of the random channel coding bound 
for additive Gaussian noise channels (Gallager, 1968). We note that a source 
coding theorem for time-continuous Gaussian sources under square-error 
distortion criterion has been given by Gallager (1968, p. 486). In  the proof of 
Theorem 3 here, a few of our steps follow Gallager's approach except that 
rigorous proofs are supplied for these steps which were only formal manipula- 
tions before in Gallager (1968, p. 487). 

I I .  THE SOURCE CODING THEOREM 

We first consider a time-discrete stationary zero mean Gaussian source 
{Xt: t = 0, ±1,...}, where the random n-vector X = ( X  1 , X 2 ,..., Xn) r has 
covariance matrix ¢I,~ z {~0i_3. } and where qoi_ j = E[XIXj].  We want to 



BLOCK CODING FOR GAUSSIAN SOURCES 13 

represent  the source output  with a sequence of reproduced letters from the 

real line according to an accuracy prescribed by a single-letter fidelity criteria 
generated by the mean square-error  distortion criterion. Tha t  is, if a block 
of n source letters x T =  (x 1 ..... x~) in ~ is represented by a block of 
reproduced letters y r  = (Yl ,..., Y~) in ~n ,  a distortion p~(x, y) given by 

P~(~, y) = ~ ~= ( ' ,  - y,)~ (1) 

is incurred. For  any integer n >/ 1 and any R > 0, a set B n : {Yl ..... YK} 
of reproduced vectors in ~ ,  where K : [e nR] (i.e., K is an integer such 
that e ~R /> K > e "~ - -  1) is called a (n, R) source code. Such a code B ~ is 
is said to be of rate R and blocklength n. When  the code B n is used to represent 
the source output,  each source word x e . ~  is mapped into the codeword 
y a B ~ which  minimizes p~(x, y). The  average distortion incurred when the 
code B" is used to represent the source is defined to be 

p~(B ~) = E[min p~(X, y)], (2) 
y ~ B  n 

where the expectation is taken over the source ensemble. I f  p~(B n) ~ D, we 
say that  the code B n is D-admissible.  In  a communication system, the K 
codewords of a (n, R) source code B ~ may be channel coded for reliable 
transmission over a channel of capacity C if and only if R < C. Thus  the 
source coding problem is to determine for a prescribed average distortion 
level D > 0,1 the smallest rate of any D-admissible  code. The  solution to this 
problem is contained in Theorems 1 and 2 below which show that  given a 
D > 0 and any ~ > 0, a (D ~ e)-admissible (n, R) code exists for sufficiently 
large n if R > R(D) and that no D-admissible  source code has rate less than 
R(D), where R(D) is the well-known (Kolmogorov (1956)) mean-square 
error  rate distortion function of the Gaussian source {X,) and is given 
parametrically by 

D o = ~ ~ min(0, ~(h)) dA, (3) 

1 
= max log - ~ - - j  dA, (4) 

Since this is a continuous amplitude source, any finite-rate code used to represent 
the source will incur nonzero average distortion. 
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and where ~(h) is the spectral density function of the source {X,} and is 
given by 

@(3,) = ~ q~ke jTca, A ~ [---n-, rr]. (5) 

Moreover the nonzero portion of the R(D) curve is generated as the parameter  
0 in (3) and (4) traverses the interval 0 < 0 < A ~_ ess sup ~(A) and R(D) = 0 
for D ~ Dmax z~ Do [0=~ = % = E [ X t ~ ]  • 

For D ~ Dmax, the positive side of the above assertion, that is the 
existence of a (D + e)-admissible code of rate R > R(D), is trivial since the 
code B 1 = {0} is a D-admissible zero rate code. For 0 < D < Dmax, the 
following theorem holds. The  proof of this theorem is given in Section I I I .  

THEOREM 1. Consider the discrete-time stationary zero mean Gaussian 
source {X, ,  t = O, -4-1,...} with spectral density function #(A) given by (5) and 
mean square error criterion rate distortion function R(D) given by (3) and (4). 
Then for each D ~ (0, Dmax), each R ~ (R(D), ~ )  and each ~1 c (0, D) and ~ ~ O, 
there exist an integer N(D, R, El, ~2) such that for every n >/N(D, R, El, e2) , 
there exist (n, R) source codes B ~ with average distortion when used to represent 
the source bounded by 

p~(B n) ~ D + exp[--n(E(n, D -- el) -- E~)], (6) 

where for each fixed D ~ (0, Dmax), E(R, D) > 0 and is strictly convex in R for 
R > R(D). Moreover for each 0 ~ (0, A) and Dogiven by (3), E(R, Do) isgiven 
parametrically by 

~E~(p, O) 
E(R, , Do) ~- --p Op -f E~(p, 0), (7) 

Ro eEl(p, O) - e p  ' (8) 

where p ~ ( - -  1, O) and E~(p, 0) is given by 

~" 0(1 4- p) )] dA. (9) i f  max[O, p l o g ( q ) ( h ) + p  0 E~o(p, 0) - -  47r _~ 

The range of the parameter p in (7) and (8) corresponds to a range of rates 
R, c (R(Do), <~) with ~Ro/~ P < O. I 

T h e  following converse source coding theorem follows from the variational 
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definition of the rate distortion function (p. 105 of Berger, 1971) and can be 
established using an approach similar to that used by Berger (1971, p. 281). 

THEOREM 2. There are no D-admissible codes of rate R < R(D). | 

Thus  Theorem 1 has demonstrated the existence of (n, R) source codes B n 
of rate R > R(D) and average distortion pn(B n) which decreases at least 
exponentially in blocklength n to D when used to represent a discrete-time 
Gaussian source under square-error distortion criterion. We note that this 
contrasts with the previous work of Bunin and Wolf (1971) where the rate of 
convergence of average distortion of block codes of rate R : R(D) was 
shown to be algebraic in blocklength for a time-discrete stationary first-order 
Gauss-Markov source under square-error distortion criterion. I t  is interesting 
to speculate whether this is the fastest possible rate of convergence in block 
coding of Gaussian sources under square-error distortion criterion. We would 
tend to conjecture that this is the fastest rate of convergence possible when 
D > Derit, where Deri, = Do ]0=~ and ~ = essinfq~(A). For D ~< Derit , 
there is less confidence in such a conjecture in view of the double exponential 
rate of convergence demonstrated by Goblick (1962) and Omura and Shohara 
(1973) in the block coding of certain symmetric finite-alphabet memoryless 
sources. 

We now consider a time-continuous zero-mean stationary Gaussian 
process {X(t): - - ~  < t < or}, where E[X2(t)] < ~ and where 

r(~) = E[X( t )  X(t + ~)], ~ e - ~  (10) 

is the autocorrelation function of {X(t)}. We will also assume that {X(t)} is a 
mean-square continuous process which implies that r(~-) is a continuous real- 
valued function of ~-. Let  (£2, o~, ~ )  be the probability space over which 
the random variables {X(t): - -oo < t < oo} are defined. That  is, for each 
t ~ (-- o% or), X(t,  co) is a o~--measurable function on D. Since the process 
{X(t)} is assumed to be mean-square continuous, therefore continuous in 
probability, we can assume without loss of generality that the process 
{X(t): - -oo < t < co} has been replaced by a standard measurable modifica- 
tion (p. 66 of Doob, 1953). That  is, X(t, co) is a real-valued (t, w) function 
which is (Se × 5)-measurable ,  where ~o is the a-algebra of Lebesgue 
measurable subsets of ~ .  The  necessity of this assumption is measure- 
theoretic in nature and will be apparent later. We also note that the assumption 
of mean-square continuity of the process {X(t)} is used here. 

We are interested in block coding of the source {X(t): --Go < t < oo}, 
that is, we wish to successiveIy code the sequence of finite sections X~.  +l)r 

643/z9/I-2 
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{X(t): k T  ~ t ~ (k + 1)T}, k = --', --1,  O, 1 .... of the source. Due to the 
stationarity of the source, it is sufficient to only consider the problem of 
coding the finite section Xo T. That  is, we can envision a source encoder 
which maps the set of sample paths of Xo T into a finite set of codewords, say 
labeled from 1 to K, and a source decoder which associates with each integer 
from 1 to K a certain real-valued function on [0, T]. ~ The  output of the 
source decoder is regarded as a representation of the finite section Xo T. 
Obviously, successive blocks y(k+l)T ~ kr are treated similarly with appropriate 
shifting of the time variable t. 

Thus  the problem of coding the finite section X0 T of the source is the 
problem of representing the sample paths of X0 r by one of a finite set of 
real-valued functions on [0, T]. By considering a standard measurable 
modification of the process {X(t): - -oo < t < oo}, we have ensured that the 
sample paths of Xo T are in L210 , T] with probability one, where L210 , T] is 
the space of all square-integrable real-valued functions on [0, T]. Specifically 

• . . T 2 * smce X(t, w) is (~q~ × o~)-measurable and since J'0 E[X (t, o))] dt < oo, it 
• . . T 2 follows from the Fublm Theorem (p. 140 of Rudln, 1966) that fo X (t, o~) dt 

is a well-defined random variable on (f2, ~-,  ~ )  which is finite with probability 
one. Thus  it is reasonable to attempt to represent sample paths of Xo r by 
elements in L210, T]. Here our prescribed measure of accuracy will be 
assumed to be the mean-square error per second distortion measure. Tha t  is, 
if a sample path x(') of Xo r is represented by a function y( ' )  in L~[O, T], 
a distortion Or(X, y) given by 

lf0r pr(x,y)  = ~ [x(t) - -y ( t ) ]  ~ dt (11) 

is incurred• 
For any T > 0 and R > 0, a set B r = {YI .... , YK} of elements inL2[0, T], 

where K = [e rR] will be called a (T, R) source code. Such a code B r is said 
to be of rate R and blocklength T. When the code B r is used to represent the 
finite section X0 r of the source, each sample path x(') is mapped into the 
codeword y ( ' ) E  B r which minimizes pr(x, y) and the average distortion 
incurred is denoted by pT(B r) and given by 

pr(B r) = E[min pr(Xo r, y)], (12) 
y ~ B  T 

where pT(Xo T, y) = 1/T f r [X(t, ") - -y ( t ) ]  2 dt. We note that pT(Xo T, y) is a 

In considering only the source coding problem, the channel can be assumed to be 
noiseless. 
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well-defined random variable since the process {X(t)} is measurable. If 
pr(B r) ~ D, we say that the code B T is D-admissible. The well-known 
mean-square error rate distortion function R(D) of the time-continuous 
Gaussian process {X(t)} is given parametrically by (Kolmogorov, 1956) 

1 mini0, S(A)] dA (13) 
Do = ~ -  -co 

1 
R(Do) = ~ f-o max [0, l o g - - ~ - ]  dA, (14) 

where S(A) is the power spectral density of the process {X(t)} and is given by 

~ao 

S(A) = J r(r) e -ja" dr, h a ( - - ~ ,  ~) .  (15) 

Here, the nonzero portion of the R(D) curve is generated as the parameter 0 
in (13) and (14) traverses the region 0 < 0 < A = ess sup S(A) and R(D) = 0 
for D ~ Dmax = r(0) = E[X2(t)]. In Section IV, we will prove the following 
theorem which is the continuous-time version of Theorem 2. 

THEOREM 3. Consider the continuous-time stationary zero mean Gaussian 
process {X(t),--oo < t < co} with continuous autocorrelation function r(r), 
spectral density function S(A) given by (15) and mean square error rate distortion 
function R(D) given by (13) and (14). Then for each D ~ (0, Dmax), each 
R ~ (R(D), oo) and each q ~ (0, D) and % > O, there exist a To(D , R, e I , %) 
such that for every T >~ To(D , R, q ,  %), there exist (T, R) source codes B T 
with average distortion pT(B T) when used to represent the finite segment of the 
source Xo T bounded by 

pr(B T) <~ O 4- exp[-- T(F(R, O -- q) -- %)], (16) 

where for each fixed D ~ (0, Dmax), F(R, D) > 0 and is strictly convex in R for 
R > R(D). Moreover for each 0 e (0, A) and Do given by (13), F(R, Do) is given 
parametrically by 

~F~(p, o) 
F(R° ' D°) = --P ep 4- F®(O, 0), (17) 

Ro = OF~(o, O) ~p , (18) 

where p ~ (-- 1, 0) and F~(p, O) is given by 

1 f ~  max[O, plog(-0(1 4-p) F~o(p, O) -- &r _~ S(A) 4- pO )] dA. (19) 
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The range of the parameter p in (17) and (18) corresponds to a range of rates 
R o ~ (R(Do), oo) with 8Ro/Sp < O. | 

For 0 < D < Dmax and any e > 0, Theorem 3 gives the existence of a 
(D + e)-admissible (T, R) code of rate R > R(D) if T is sufficiently large. 
As in the discrete-time case, the existence of a D-admissible code of rate 
R = R(D) is trivial when D ~> Dmax • The  continuous-time version of the 
converse source coding theorem, Theorem 2, also carries over easily. Thus  
the correct operational significance of the rate distortion function R(D) given 
by 03 )  and (14) has been established. Moreover, Theorem 3 shows that the 
rate of convergence of average distortion pT(B r) to D for opt imum source 
codes B r of rate R > R(D) is at least exponential in blocklength T in the 
block coding of continuous-time mean-square continuous stationary Gaussian 
sources under square-error distortion criterion. 

I I I .  PROOF OF THEOREM 1 

The  proof of Theorem 1 is based on a random coding argument. For each D 
in (0, Dmax) and R in (R(D), ~ )  we will exhibit a sequence of ensembles of 
(n, R) codes B n for which the code ensemble average distortion satisfies the 
inequality (6) for sufficiently large n. The  proof of the theorem then follows 
since there must  be at least one sequence of codes B n in this sequence of code 
ensembles with average distortion pn(B n) satisfying (6) for sufficiently large n. 

For n ~ 1, let {~(2): k = 1, 2,..., n} be the positive eigenvalues of O~ and 
let I'~ be the unitary matrix of orthonormal eigenvectors of ¢I, n so that 
¢I,~ = r~A~I ' .  T, where An is the diagonal matrix {A~n) 8ij). For 0 ~ (0, A) and 
R ~ (R(Do), ~ )  consider an ensemble of (n, R) source codes B n = {Ya ,..-, YK}, 

= { V , & = l  where gk  r n v  ~ for 1 ~< k ~< K (K = [e"R]). Here VK = 0 and g-1 
are mutually independent identically distributed random vectors independent 

n 

of the source, each having joint probability distribution Q,~(v) = 1-Ik=1 Q ~ ( % )  
given by 

Q . ~ ( v ~ )  = f •  3(t) dt if ~(2 ) ~ O. 

f_~ (2rr(Z~ (") 0))-1/~ exp = (~) - -  ( - - t / 2 ( 1 k  - -  0 ) )  dt 
(20) 

if ~(2 ) > O. 

Here 8(0 is the Dirac delta function. The  expectation over the code ensemble 
of the average distortion incurred by codes in this ensemble when used to 
represent the source is called the code ensemble average distortion and is 
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denoted by fi~. We want to show that fin satisfied the inequality (6) for 
sufficiently large n. Since r n is a Euclidean distance preserving transformation, 
0n(X, Yk) = 1In [[ X - -  Yk l] 2 = 1/n [I r,~r( X - -  Yk)l[ 2 = 1/n l[ U - -  V~ 1[ z = 
p~(U, Vk), where U = r n r u  is a Gaussian random vector with joint proba- 
bility density/3~(u) = I7I~=1 j~7~(uk) and fi~k(uz~) is a N(O, h~: ~)) probability 
density for each k. Thus  we can carry out our analysis in the transformed U, 
Vk spaces. Accordingly 

fin = E[ min p~(X, Y~)] 
1 < k < K  

= E[ min On(U, Vk)], 
1 < _ k ~ K  

(21) 

where the expectation in (21) is over both source and code ensembles. 
Now define the joint conditional probabili ty distribution 

k = l  

by 

ff_~ 8(t) dt if h(k ~) ~< 0, (22) 

Q'~,~(% ] uk) = { £~  (2rrfi(2)O)-~/2 exp(--( t ~(n) ,z/.~(.)~, ~(~) -- Pk uk) ,Zpk ~)dt if , ,~ > 0 ,  

where fi~n) = 1 -- O/A~ ). Define the joint conditional probability density 
p , ( u  ] v) = l~=lP.,~(u,~ ]vk) by 

t 

}(27r)t(~n)) -1/z exp(--ue2/2,~(~ '0) if 2,(2 ) ~ O, 

(2rrO) -~/2 exp(--(u1~ - -  %)2/20) if A(k n) > O. 
(23) 

I t  follows that 

pn(U I V) dQ.(v) at, = £,(U) aQn'(V t u) aU. (24) 

Define the functions d~: ~ K  __> ~ and g~: ~(x+l~  __~ ~ by 

dn(u, Vl .... , vK_:,) = min{p~(u, v:t) ..... p~(u, VK-1), pn(U, 0)}, (25) 
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g , (u ,  v o .... , vK_~) = tl0 if p~(u, Vo) < d~(u, v 1 ,..., vK-1), (26) 
otherwise, 

where u,  v o ..... v,:_ 1 e N~. N o w  since j ' ~  dQ~'(v o [ u)  = 1 for every u e ~ "  
and since (1 --g,~) 47 gn = 1, it follows f rom (21), (24), (25), and (26) that  

K--1 

t~ = f~odu/~(u)f~(K_l)dn(u, V 1 .... .  VK_I) [k~____l dQn(vk) ] 

: ~.ndUpn(u)~nK dn(u' v l  ' " "  V K - 1 ) [ 1 -  gn(u '  VO ' " "  VK-1)] 

K 

 Qo(v 4 

K--1 

K-1 

K--1 
× pn(U ] Vo) [k~[=odQ~(Vk) ]. (27) 

Since d. (u ,  v 1 ,..., VK_I)[1 - -  g~(u, V o .... , VK_~) ] ~< #~(U, Vo), the first integral 
in (27) can be bounded  f rom above by  the following expression 

_ 1 ~ man(0, A(Z)). (28) 
- -  nk=l 
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Note that d.(u, V 1 . . . . .  VK_I)  ~ 10n(U, 0)  n 2 = 1/n3~z~=l u~ . Thus in order to upper 
bound the second integral in (27), consider for a fixed (v I .... , VK-1) e ~n(K-1) 
and an arbitrary A > 0 the integral 

f~,~ du f~ a~(u, Vl ..... vK_~) g~(u, Vo ,..., v/,_~) p~(u i Vo) dQ~(Vo) 
n 

l ~=l f ~ e uk2gn(U, Vo ,'", vr-1) Pn(U l Vo) dQ¢~(Vo) du 

- 1- ~ If u~go(u, vo v~_l),~(U,Vo)dO#o)dU 

"( uk2> A} 3 

<~ A f~og.(u, Vo ..... vK_l) pn(u / Vo) aO.(vo) au 

1 '~ f( Uk2~,,~(Uk) dun (29) 
+ n ~1 ~>A~ 

By using tile inequality e r fc (u )~  (1/2)exp(--u2/2), where erfc(-) is the 
complementary error function, the integral terms in (29) can be shown to 
satisfy the following inequality 

f{ U2~nk(U) du <~ (A + (2AA/rr)~/2) exp(--A/2A). (30) 
u2>A} 

Combining (27), (28), (29), and (30), we have for any A > 0, 

1 ~ min(O, ~('~)) 4- (A + (2AA/Tr) ~/~) exp(--A/2A) 

K--1 

Now using an argument due to Omura (Lemma 1 of Omura, 1973), the 
integral term in (31) can be shown to satisfy the following inequality 

K--1 

L ~ f j ~ ( ~ , v o  ..... v_),~(~ ~ vo) [E~o.(v~) ] 

~exp[--n(--pR+E~(p,O)-+-01(1))] ,  (32) 
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for any p e (--1, 0) where O~(1/n) = 1In log(1 -- e -mR) and where 

E,~(p, O) = --1-1°gn lf~. du [ f ~  Pn(ul v) x/l+" dQn(v)]l+° l 

n 

1 ~ max [0, Plog ( 0(1 + p ) ) ] .  (33) 

Setting A = n 2 in (31) and using (32) and the fact that En(p, O) ~ 0 we have, 
for any p e (--1, 0), 

1 ~ min(0, h(k ~)) [--n [ 0) 02 \ [ lOgn n ]]J'~] (34) 

where 

(log ) = 03 , , -~ - - /  1 log[n 2 + (A -k (2A/rr) 1/~n) exp(--n~(1/2 A -- R/n))]. 

Now using the well-known Toeplitz Distribution Theorem (p. 64 of 
Grenander and Szego, 1958), we have in the limit as n --~ ~ ,  

1 ~ min(0, A(n)) __+ Do (35) 
n k=l  

and 

E~(p, e) ~ E~(p, e), (36) 

where Do is given by (3) and E~(p, 0) by (9). Thus from (34), (35), and (36) 
we conclude that for each 0 E (0, A), p ~ (--1, 0), R ~ (R(Do), oo) and each 
e 1 > 0, e 2 > 0 there exists an integer NI(O, p, R, e 1 , e2) such that for all 
n >~ N1, we have 

~ <~ Do + el + exp[--n(--oR + E~(p, O) -- e~)]. (37) 

For fixed 0 and R we can minimize the bound by maximizing the exponent 
--pR-¢-Eo~(p, O) over the parameter p e (--1, 0). Thus define for each 
0 e (0, A) and R ~ (R(Do), oo) 

E(R, Do) = sup [--oR + E~(p, 0)]. (38) 
oe(-1,O) 

The following lemma gives some useful properties of E~(p, 0). The proof 
of this lemma is immediate and will be omitted here. 
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LEMMA 1. For each 0 ~ (0, A), we have 

(1) Fo~ each O ~ (--1 0), aE.(p, O) O~Eo~(p, O) ' gO >~ 0 and ~p~ 

OE~(p, O) 
(2) lim -- R(Do) 

o~o ~p 

lim ~E~(p, O) _ oo. 
o-~-1 c?p 

< 0 .  

Since E~(p, O) is strictly concave in p for each 0, the maximization in (38) 
can be performed by differentiating --pR 4- E~(p, O) with respect to p and 
setting to zero whenever R(Do)< R < oo. Thus  we have shown that 
E(R, Do) is given parametrically in p by (7) and (8). F rom Lemma  1, it is clear 
that the range of the parameter p ~ (--1,  0) corresponds to a range of rates 
Rp ~ (R(Do), oo) in (7) and (8). The  strict convexity of E(R, Do) in R for 
R ~ (R(Do), 0o) is also immediate. We have thus shown that given any 
O c(O,A),R~(R(Do),  oo), e I > 0 and e 2 > 0, there exists an integer 
N(Do, R, ~ ,  e~) such that for all n >~ N(Do, R, ca, e2). 

fi,, <~ D o + e 1 + exp[--n(E(R, Do) -- e2)]. (39) 

Finally the inequality (39) may be written in the form of (6) by setting 
D = Do + el and appropriately restricting the range of e 1 . The  proof of 
Theorem 1 is now complete since there must exist at least one sequence of 
codes B n in the sequence of code ensembles whose average distortion pn(B ~) 
satisfies the inequality (39) when n >~ N(Do , R, q ,  ~2). 

IV. PROOF Or THEOREM 3 

The  proof of Theorem 3 is also based on a random coding argument.  
For each D in (0, Dmax), R in (R(D), oo) and each T > 0 we will introduce 
an ensemble of (T, R) codes B r. The  expression for code ensemble average 
distortion is then reduced to one involving only countably-infinite many  
random variables by using a Karhunen-Lo&ve expansion of the Gaussian 
source. The  results of proof  of Theorem 1 are then applied to show that the 
code ensemble distortion satisfies the inequality (16) for sufficiently large T. 

We note that Gallager (p. 486 of Gallager, 1968) has given a proof of the 
source coding theorem for t ime-continuous stationary Gaussian sources under 
mean square error fidelity criterion also using a Karhunen-Lo~ve expansion 
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to reduce the expression for the code ensemble average distortion to one 
involving countably-infinite many random variables. However the steps 
provided by Gallager in manipulating the Karhunen-Lo~ve expansion were 
only formal and were not rigorously justified. We will supply rigorous proofs 
for these steps here. 

Since . . . .  the source {X(t)} is assumed to be mean SqrUareT continuous,~ its auto- 
correlation function r(~-) is continuous and therefore J'0 f0 ] r ( t -  s)l dt ds < oo. 
Thus  there exist (pp. 131, 145-152 of Liusternik and Sobolev, 1961) a 
decreasing sequence of numbers  ;~1T >/ "" >~ ;~T >/ ... > 0 and a set of 
orthonormal functions 01 r, 02T,... in L2[0 , T] such that 

f •  ~"(t - -  8) OiT($) d$ = ~iTOi(~) Vt E [0, T] ,  (40) 

for all i = 1, 2, . . . .  F rom the well-known Karhunen-Loeve  Theorem 
(p. 478 of Lo i r e ,  1960), we have the following expansion for Xo r 

N 
X(t,  w) = 1.i.m.N_~ i~ 1"= 2i(O) ) OiT(t), (41) 

where the convergence is in the mean square sense uniformly in t for t ~ [0, T]. 
Moreover  {X-~-}~= 1 is a sequence of mutually independent Gaussian random 
variables on (f2, ~ ,  ~ )  where X-i has zero mean and variance Ai r. But since 
the convergence of the series in (41) also holds in probability for each 

2 ~ t ~ [0, T], and since the sequence of random variables { i}i=l are mutually 
independent, it follows from a theorem due to Levy (p. 114 of Chung, 1968) 
that  the convergence of the series in (41) holds with probability one for each 

N 
t ~ [0, T]. Now for each integer N, it is clear that ~i=1 Xi(°J) Oir(t) is a 
(~.qo × o~)-measurable function. Since by assumption X(t,  ~o) is ( ~  × ~-)-  
measurable,  it follows that the set 

N 
W = l(t, 09): Z Xi(¢O) OiT(t) -/~ X(t,  co) as N---~ oo I 

i=1 

is a ( ~  × o~)-measurable set. For each t c [0, T], let ~ = {oJ ~ f2:(t, co) ~Jg'} 
and for each oJ c [2, let Wo = {t ~ [0, T]: (t, oJ) ~ Jg'}. Then  ~ t  ~ ~ -  and 
J¢'~ ~ de'. Since the convergence of the series in (41) holds with probabili ty 
one for each t E [0, T], it follows that ~(Jfft) = 0 for each t E [0, T]. I f  m 
denotes Lebesgue measure, then it follows from the Fubini Theorem that 
0 ----- I ~ ( W t )  dt = (m × ~)(~4/') = j'm(~f'o,) d ~  which implies that m(Jf'~) = 0 
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for almost every co, that is, with probability one. Thus  we can conclude that 
there exists a A ~ ~ such that ~ (A)  = 0 and such that if co 6 A, then 

N 

X(t,  oJ) = l~m Z 2~(w) 0~r(t) for a.e. t e [0, T]. (42) 
i=1 

Now fix a 0 E (0, A). Since 0 is the only limit point of {~iT}~=I and A1 T ~ /J, 

it follows that there exists an integer L(T, O) such that At r > 0. Thus  for 
0 e (0, A), T > 0 and R E (R(Do), co) consider the ensemble of (T, R) codes 
B r ~- {Yl(t, co),..., YK(t, co)} such that 

L(T,O) 

Y,~(t, co) = ~ Vk~(oJ) Oir(t), t ~ [0, r ]  (43) 
i=1 

for 1 ~ k  ~ K  where V l c i = O  gi and where { V e i : i < ~ k ~ K - -  1, 
1 <~ i <~ L(T,  0)} are mutually independent Gaussian random variables on 

2 ~  (f2, Y ,  ~ )  independent of { i}i=l and such that Vki has mean zero and 
variance (Ai r - -  0) for 1 ~ k ~< K -  1. Since Yl~(t, w) is clearly (~qo × ~ ) _  
measurable it follows that 

I [  
pr(Xo r, Y~) = ~ [X(t, ") -- Yk(t, .)]2 dt (44) 

are well defined random variables on (~, ~ ,  ~ )  for 1 ~ k ~ K. By using (42) 
and (44) and the orthonormality of {oir}~=l we have, for 1 ~ k ~ K, 

1 );  
p~(Xo T, y~) = - f  oj(t) - E v,~oi~(t at 

= i = 1  

1 [ L 

l ( 2 , -  r ,)2 t (45) 
T • i=L+J- i=1 

with probability one. Denoting ~ = (f(i ,..., f[L) v and V~ = (Vkl ,..., V~L) r 
and using (1) and (45) the code ensemble average distortion fit can be written as 

fir = E[ min pr(Xo r, Yk)] 
1 ~ k ~ K  

1 
[ ~.~ AVTi 2] %- E[ min pL(X, V~)] E 

T i=L+I  1 ~ k  ~<~K 

1 ® 
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where the expectation is over both source and code ensembles. We can now 
use a derivation identical to the derivation of (27) to (34) of Proof of Theorem 1 
to upper bound the expectation term in (46). This results in the following 
inequality which is valid for any p ~ (--1, 0). 

where 

P~<Y Y~ ~ / + 7  0 
i=L+I i=1  

+ ( ~ ) e x p  [--T(--pR + Fr(p, 0 ) -  O a ( lo_~T__))], 

F ~ ( p ,  O) - -  

and 

1 L o(1 + p) ] 
T ~__i ~ l°g [ A~r -k p 

0(1 + o) 1 ~ max [O, Plog ( A, r +pO T ~ ~ )]' 

Oa ( lo_~T)  = 1 {log[T 2 + (A + (2A/~)l/2T)exp(-T2(1/2A- R/T))]}. 

(47) 

(48) 

where 

log T 1 

Now using the well-known Toeplitz Distribution Theorem (Theorem 4.5.4 
of Berger, 1971), we have 

1 
lim -~- ~ min(O, A~ r) = D o (50) 

i=1  

1 i min(0, A~ r) + exp [-- T (--pR @ Fr(p, O)-  0,1 (lo_~T__))], (49) 

It follows from the Theorem of Kac, Murdock, and Szego (p. 120 of Berger 
1971) that there exists a constant ~(0) < oo such that L(T, O)/T ~< q~(0) for 
all T > 0. Thus (47) may be rewritten as 
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and 

lira Fr(p, O) : F~(p, 0), (51) 
T~o0 

where D o is given by (13) and F~(p, O) by (19). The function F~(p, O) can be 
shown to possess all of the properties of E~(p, O) given in Lemma 1. We define 
the exponent F(R, D) by 

F(R, Do) -- sup [--pR +F~o(p, 0)] (52) 
os(-1,0) 

for 0 e (0, A). The proof of Theorem 3 can now be completed using an 
argument similar to the derivation of (37) and (39) in Proof of Theorem 1. 

V. CONCLUSION 

This paper has presented a new version of the source coding theorem for 
the block coding of stationary Gaussian sources with memory under a 
square-error distortion criterion. For both time-discrete and time-continuous 
Gaussian sources, the average square-error distortion of the optimum block 
source code of rate R > R(D) was shown to decrease at least exponentially 
in blocklength to D. In both cases the exponent of convergence of average 
distortion was explicitly derived. These results have application in the study 
of trade-offs between source encoder complexity and channel capacity 
requirements in a communication system designed to transmit data from a 
stationary Gaussian source. 

We note that Theorems 1 and 3 can be immediately generalized to include 
frequency or time-weighted square error distortion criterion defined analogous 
to that of Sakrison (1968) and Hopkins (1972). Theorem 3 can also be 
generalized to homogeneous Gaussian random fields under either integral 
square-error or weighted integral square-error distortion criterion defined 
by Sakrison and Algazi (1971). Finally we note that an interesting open 
problem is to determine lower bounds on the rate of convergence of average 
square-error distortion of the optimum block source code for Gaussian 
sources. 
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