Note

Crossing-critical graphs with large maximum degree

Zdeněk Dvořák ${ }^{1,2}$, Bojan Mohar ${ }^{3,4}$
Department of Mathematics, Simon Fraser University, Burnaby, B.C. V5A 1S6, Canada

A R TICLE I N F O

Article history:

Received 16 March 2009
Available online 11 December 2009

Keywords:

Crossing number
Critical graph
Maximum degree

Abstract

A conjecture of Richter and Salazar about graphs that are critical for a fixed crossing number k is that they have bounded bandwidth. A weaker well-known conjecture of Richter is that their maximum degree is bounded in terms of k. In this note we disprove these conjectures for every $k \geqslant 171$, by providing examples of k-crossingcritical graphs with arbitrarily large maximum degree.

© 2009 Elsevier Inc. All rights reserved.

A graph is k-crossing-critical (or simply k-critical) if its crossing number is at least k, but every proper subgraph has crossing number smaller than k. Using the Excluded Grid Theorem of Robertson and Seymour [9], it is not hard to argue that k-crossing-critical graphs have bounded tree-width [2]. However, all known constructions of crossing-critical graphs suggested that their structure is "pathlike". Salazar and Thomas conjectured (cf. [2]) that they have bounded path-width. This problem was solved by Hliněný [3], who proved that the path-width of k-critical graphs is bounded above by $2^{f(k)}$, where $f(k)=\left(432 \log _{2} k+1488\right) k^{3}+1$.

In the late 1990s, two other conjectures were proposed and made public in 2003 at the Bled'03 conference [7] (see also [8,6]).

Conjecture 1. (See Richter [7].) For every positive integer k, there exists an integer $D(k)$ such that every k -crossing-critical graph has maximum degree less than $D(k)$.

The second conjecture was proposed as an open problem in the 1990s by Carsten Thomassen and formulated as a conjecture by Richter and Salazar.

[^0]Conjecture 2. (See Richter and Salazar [7,8].) For every positive integer k, there exists an integer $B(k)$ such that every k-crossing-critical graph has bandwidth at most $B(k)$.

Conjecture 2 would be a strengthening of Hliněný's theorem about bounded path-width and would also imply Conjecture 1.

Hliněný and Salazar [5] recently made a step towards Conjecture 1 by proving that k-crossingcritical graphs cannot contain a subdivision of $K_{2, N}$ with $N=30 k^{2}+200 k$.

In this note we give examples of k-crossing-critical graphs of arbitrarily large maximum degree, thus disproving both Conjectures 1 and 2.

A special graph is a pair (G, T), where G is a graph and $T \subseteq E(G)$. The edges in the set T are called thick edges of the special graph. A drawing of a special graph (G, T) is a drawing of G such that the edges in T are not crossed. The crossing number $\operatorname{cr}(G, T)$ of a special graph is the minimum number of edge crossings in a drawing of (G, T) in the plane. (We set $\operatorname{cr}(G, T)=\infty$ if a thick edge is crossed in every drawing of G.) An edge $e \in E(G) \backslash T$ is k-critical if $\operatorname{cr}(G, T) \geqslant k$ and $\operatorname{cr}(G-e, T)<k$. Let $\operatorname{crit}_{k}(G, T)$ be the set of k-critical edges of (G, T). If $T=\emptyset$, then we write just $\operatorname{cr}(G)$ for the crossing number of G and $\operatorname{crit}_{k}(G)$ for the set of k-critical edges of G. Note that the graph G is k-critical if $\operatorname{crit}_{k}(G)=E(G)$.

A standard result (see, e.g., [1]) is that we can eliminate the thick edges by replacing them with sufficiently dense subgraphs. (In fact, one can replace every edge $x y$ by $t=\operatorname{cr}(G, T)+1$ parallel edges or by $K_{2, t}$ if multiple edges are not desired.)

Lemma 3. For every special graph (G, T) with $\operatorname{cr}(G, T)<\infty$ and for any k, there exists a graph $\tilde{G} \supseteq G$ such that $\operatorname{cr}(G, T)=\operatorname{cr}(\tilde{G})$ and $\operatorname{crit}_{k}(G, T) \subseteq \operatorname{crit}_{k}(\tilde{G})$.

Furthermore, note the following:

Lemma 4. Let k be an integer. Any graph G with $\operatorname{cr}(G) \geqslant k$ contains a k-crossing-critical subgraph H such that $\operatorname{crit}_{k}(G) \subseteq E(H)$.

Proof. For a contradiction, suppose that G is a smallest counterexample. If G were k-critical, then we would set $H=G$, hence G contains a non- k-critical edge e. It follows that $\operatorname{cr}(G-e) \geqslant k$. Let f be a k-critical edge in G, i.e., $\operatorname{cr}(G-f)<k$. As $\operatorname{cr}((G-e)-f) \leqslant \operatorname{cr}(G-f)<k$, f is a k-critical edge in $G-e$. Therefore, $\operatorname{crit}_{k}(G) \subseteq \operatorname{crit}_{k}(G-e)$. Since G is the smallest counterexample, $G-e$ has a k-critical subgraph H with $\operatorname{crit}_{k}(G-e) \subseteq E(H)$. However, $H \subseteq G$ and $\operatorname{crit}_{k}(G) \subseteq E(H)$, which is a contradiction.

Let us now proceed with the main result. Two paths P_{1} and P_{2} in a special graph are almost edge-disjoint if all the edges in $E\left(P_{1}\right) \cap E\left(P_{2}\right)$ are thick.

Lemma 5. For any d, there exist a special graph (G, T) and a vertex $v \in V(G)$ such that $\operatorname{crit}_{171}(G, T)$ contains at least d edges incident with v.

Proof. Let (G, T) be the special graph drawn as follows: we start with $d+1$ thick cycles $C_{0}, C_{1}, \ldots, C_{d}$ intersecting in a vertex v, i.e., $C_{i} \cap C_{j}=\{v\}$ for $0 \leqslant i<j \leqslant d$. Their lengths are $\left|C_{0}\right|=28,\left|C_{d}\right|=24$ and $\left|C_{i}\right|=7$ for $1 \leqslant i<d$. They are drawn in the plane so that all their vertices are incident with the unbounded face and their clockwise order around v is $C_{0}, C_{1}, \ldots, C_{d}$. See Fig. 1 illustrating the case $d=5$. Let $C_{0}=v a_{1} a_{2} \ldots a_{19} b_{1} b_{2} b_{3} c_{1}^{0} c_{2}^{0} \ldots c_{5}^{0}, C_{d}=v t^{d} b_{3}^{\prime} b_{2}^{\prime} b_{1}^{\prime} a_{1}^{\prime} a_{2}^{\prime} \ldots a_{19}^{\prime}$ and $C_{i}=v t^{i} c_{1}^{i} c_{2}^{i} \ldots c_{5}^{i}$ for $1 \leqslant i<d$. Furthermore, add d vertices s^{1}, \ldots, s^{d} adjacent to v. The clockwise cyclic order of the neighbors of v is $a_{1}, c_{5}^{0}, s^{1}, t^{1}, c_{5}^{1}, s^{2}, t^{2}, c_{5}^{2}, \ldots, s^{d-1}, t^{d-1}, c_{5}^{d-1}, s^{d}, t^{d}, a_{19}^{\prime}$. For $1 \leqslant i \leqslant d$, add thick cycles K_{i} whose vertices in the clockwise order are t^{i}, s^{i}, and five new vertices $\tilde{c}_{5}^{i-1}, \tilde{c}_{4}^{i-1}, \ldots, \tilde{c}_{1}^{i-1}$. Finally, add the following edges: $c_{j}^{i} \tilde{c}_{j}^{i}$ for $0 \leqslant i<d$ and $1 \leqslant j \leqslant 5, a_{i} a_{i}^{\prime}$ for $1 \leqslant i \leqslant 19$ and $b_{i} b_{i}^{\prime}$ for $1 \leqslant i \leqslant 3$. As described, $T=\bigcup_{i=0}^{d} E\left(C_{i}\right) \cup \bigcup_{i=1}^{d} E\left(K_{i}\right)$. Let $M=\left\{a_{1} a_{1}^{\prime}, a_{2} a_{2}^{\prime}, \ldots, a_{19} a_{19}^{\prime}, b_{1} b_{1}^{\prime}, b_{2} b_{2}^{\prime}, b_{3} b_{3}^{\prime}\right\}$.

Fig. 1. A special graph with critical edges $v s^{i}$.
This drawing \mathcal{G} of (G, T) has $\binom{19}{2}=171$ crossings, as the edges $a_{i} a_{i}^{\prime}$ and $a_{j} a_{j}^{\prime}$ intersect for each $1 \leqslant i<j \leqslant 19$, and there are no other crossings. Let us show that $\operatorname{cr}(G, T)=171$. Let \mathcal{G}^{\prime} be an arbitrary drawing of (G, T), and for a contradiction assume that it has less than 171 crossings. Let us first observe that every thick cycle C_{i} and K_{j} is an induced nonseparating cycle of G. Therefore it bounds a face of \mathcal{G}^{\prime}. Consider the cyclic clockwise order of the neighbors of v according to the drawing \mathcal{G}^{\prime}. For each cycle $C_{i}(0 \leqslant i \leqslant d)$, the two edges of C_{i} incident with v are consecutive in this order, since C_{i} bounds a face. Without loss of generality, we assume that each cycle C_{i} bounds a face distinct from the unbounded one. If the cyclic order of the vertices around the face C_{i} is the same as in the drawing \mathcal{G}, we say that C_{i} is drawn clockwise, otherwise it is drawn anti-clockwise. We may assume that C_{0} is drawn clockwise. If C_{d} were drawn clockwise as well, then each pair of edges $a_{i} a_{i}^{\prime}$ and $a_{j} a_{j}^{\prime}$ with $1 \leqslant i<j \leqslant 19$ would intersect, and the drawing \mathcal{G}^{\prime} would have at least

Fig. 2. A drawing of the graph $G-v s^{3}$ with 170 intersections.

171 crossings. Therefore, C_{d} is drawn anti-clockwise. It follows that the edges $a_{i} a_{i}^{\prime}$ and $b_{j} b_{j}^{\prime}$ intersect for $1 \leqslant i \leqslant 19$ and $1 \leqslant j \leqslant 3$, and the edges $b_{i} b_{i}^{\prime}$ and $b_{j} b_{j}^{\prime}$ intersect for $1 \leqslant i<j \leqslant 3$, giving 60 crossings. For $1 \leqslant i \leqslant 5$, let P_{i} be the path $c_{i}^{0} \tilde{c}_{i}^{0} \tilde{c}_{i-1}^{0} \ldots \tilde{c}_{1}^{0} t^{1} c_{1}^{1} c_{2}^{1} \ldots c_{i}^{1} \tilde{c}_{i}^{1} \ldots \tilde{c}_{1}^{1} t^{2} \ldots t^{d}$. These paths are mutually almost edge-disjoint and each of them intersects all edges of M in the drawing \mathcal{G}^{\prime}, thus contributing at least 110 crossings all together. Therefore, the drawing \mathcal{G}^{\prime} has at least 170 crossings. Since we assume that this drawing has fewer than 171 crossings, we conclude that there are no other crossings.

The cycle $v a_{1} a_{1}^{\prime} a_{2}^{\prime} \ldots a_{19}^{\prime} v$ splits the plane into two regions R_{1} and R_{2}, such that R_{1} contains the face bounded by C_{0} and R_{2} contains the face bounded by C_{d}. For $j=1,2$, let A_{j} be the set of cycles $C_{i}(0 \leqslant i \leqslant d)$ such that the face bounded by C_{i} lies in the region R_{j}. As P_{1} intersects the edge $a_{1} a_{1}^{\prime}$ only once, $A_{1}=\left\{C_{0}, C_{1}, \ldots, C_{k-1}\right\}$ and $A_{2}=\left\{C_{k}, C_{k+1}, \ldots, C_{d}\right\}$ for some n with $1 \leqslant n \leqslant d$. As the path P_{1} does not intersect itself, all cycles in A_{1} are drawn clockwise and their clockwise order around v is $C_{0}, C_{1}, \ldots, C_{n-1}$. Similarly, all cycles in A_{2} are drawn anti-clockwise and their clockwise order around v is $C_{d}, C_{d-1}, \ldots, C_{n}$.

Let us now consider the cycle K_{n}. Since the edges $c_{4}^{n-1} \tilde{c}_{4}^{n-1}$ and $c_{5}^{n-1} \tilde{c}_{5}^{n-1}$ do not intersect, the thick path $c_{5}^{n-1} v t^{k} s^{n} \tilde{c}_{5}^{n-1}$ is not intersected, and C_{n-1} is drawn clockwise, K_{n} is drawn clockwise as well. Since C_{n} lies in the region R_{2}, the vertex t^{n} and thus the whole thick cycle K_{n} lie in R_{2}. However, that means that the edge $s^{k} v$ intersects either the path P_{1} or the edge $a_{1} a_{1}^{\prime}$, which is a contradiction. We conclude that $\operatorname{cr}(G, T)=171$.

On the other hand, $\operatorname{cr}\left(G-v s^{n}, T\right)<171$, for $1 \leqslant n \leqslant d$ (in fact, $\operatorname{cr}\left(G-v s^{n}, T\right)=170$). To see that, consider the drawing of $\left(G-v s^{n}, T\right)$ in which the cycles $C_{0}, C_{1}, \ldots, C_{n-1}$ are drawn clockwise, the cycles $C_{n}, C_{n+1}, \ldots, C_{d}$ are drawn anti-clockwise, and the cyclic order of the neighbors of v is $a_{1} c_{5}^{0} s^{1} t^{1} c_{5}^{1} \ldots s^{n-1} t^{n-1} c_{5}^{n-1} a_{19}^{\prime} t^{d} c_{5}^{d-1} s^{d-1} t^{d-1} \ldots c_{5}^{n} t^{n}$, see Fig. 2. The intersections of this drawing are of edges $a_{i} a_{i}^{\prime}$ with $b_{j} b_{j}^{\prime}$ for $1 \leqslant i \leqslant 19$ and $1 \leqslant j \leqslant 3$, the edges $b_{i} b_{i}^{\prime}$ with $b_{j} b_{j}^{\prime}$ for $1 \leqslant i<j \leqslant 3$, and the edges $c_{i}^{n-1} \tilde{c}_{i}^{n-1}$ with all edges of M for $1 \leqslant i \leqslant 5$. Therefore, the edge $v s^{n}$ is 171 -critical for each n, so v is incident with d critical edges.

We are ready for our main result.

Theorem 6. For every $k \geqslant 171$ and every d, there exists a k-crossing-critical graph H containing a vertex of degree at least d.

Proof. Let (G, T) be the special graph constructed in Lemma 5. By Lemma 3, there exists a graph $H^{\prime} \supseteq G$ such that $\operatorname{cr}\left(H^{\prime}\right)=\operatorname{cr}(G, T) \geqslant 171$ and $\operatorname{crit}_{171}(G, T) \subseteq \operatorname{crit}_{171}\left(H^{\prime}\right)$. Let H be the 171-critical subgraph of H^{\prime} obtained by Lemma 4. As $\operatorname{crit}_{171}(G, T) \subseteq \operatorname{crit}_{171}\left(H^{\prime}\right) \subseteq E(H), H$ contains at least d edges incident with one vertex, hence $\Delta(H) \geqslant d$. For $k>171$ we add to $H k-171$ disjoint copies of K_{5} in order to get a k-crossing-critical graph.

Actually, in the proof of Theorem 6 , we can take $t=\left\lfloor\frac{k}{171}\right\rfloor$ copies of the graph H and $k-171 t$ copies of K_{5}. This gives rise to a k-critical graph with $t=\Omega(k)$ vertices of (arbitrarily) large degree. We conjecture that this is best possible in the following sense:

Conjecture 7. For every positive integer k there exists an integer $D=D(k)$ such that every k-crossing-critical graph contains at most k vertices whose degree is larger than D.

It is not even obvious that there exist k-crossing-critical graphs with arbitrarily many vertices of degree more than 6 . Surprisingly, such examples have been constructed recently by Hliněný [4]. His examples may contain arbitrarily many vertices of any even degree smaller than $2 k-1$.

Let us also remark that the use of Lemma 4 means that we do not present an explicit counterexample to Conjecture 1, but only its supergraph. Consequently, we cannot ensure that the counterexample has some particular properties, e.g., we cannot prove that Conjecture 1 fails for 3 -connected simple graphs. It might be of interest to rectify this problem by carrying out the construction explicitly, replacing the cycles of thick edges by some suitable planar graphs.

References

[1] M. DeVos, B. Mohar, R. Šámal, Unexpected behaviour of crossing sequences, Electron. Notes Discrete Math. 31 (2008) 259264.
[2] J.F. Geelen, R.B. Richter, G. Salazar, Embedding grids in surfaces, European J. Combin. 25 (2004) 785-792.
[3] P. Hliněný, Crossing-number critical graphs have bounded path-width, J. Combin. Theory Ser. B 88 (2003) 347-367.
[4] P. Hliněný, New infinite families of almost-planar crossing-critical graphs, Electron. J. Combin. 15 (2008) \#R102.
[5] P. Hliněný, G. Salazar, Stars and bonds in crossing-critical graphs, preprint, 2008.
[6] B. Mohar, J. Pach, B. Richter, R. Thomas, C. Thomassen, Topological graph theory and crossing numbers, Report on the BIRS 5-Day Workshop, 2007, 18 pages, http://www.birs.ca/workshops/2006/06w5067/report06w5067.pdf.
[7] R.B. Richter, Problem 437, in: Research Problems from the 5th Slovenian Conference, Bled, 2003, Discrete Math. 207 (2007) 650-658.
[8] R.B. Richter, G. Salazar, A survey of good crossing number theorems and questions, in press.
[9] N. Robertson, P.D. Seymour, Graph minors. V. Excluding a planar graph, J. Combin. Theory Ser. B 41 (1986) 92-114.

[^0]: E-mail addresses: rakdver@kam.mff.cuni.cz (Z. Dvořák), mohar@sfu.ca (B. Mohar).
 ${ }^{1}$ Supported in part through a postdoctoral position at Simon Fraser University.
 2 On leave from: Institute of Theoretical Informatics, Charles University, Prague, Czech Republic.
 ${ }^{3}$ Supported in part by the Research Grant P1-0297 of ARRS (Slovenia), by an NSERC Discovery Grant (Canada) and by the Canada Research Chair program.
 ${ }^{4}$ On leave from: IMFM \& FMF, Department of Mathematics, University of Ljubljana, Ljubljana, Slovenia.

