Note(s)

Uniqueness of large solutions

O. Costin ${ }^{\text {a }}$, L. Dupaigne ${ }^{\mathrm{b}, *}$, O. Goubet ${ }^{\mathrm{b}}$
${ }^{\text {a }}$ Department of Mathematics, The Ohio State University, 100 Math Tower, 231 West 18th Avenue, Columbus, OH 43210-1174, USA
${ }^{\text {b }}$ LAMFA, UMR CNRS 7352, Université Picardie Jules Verne 33, rue St Leu, 80039 Amiens, France

A R TICLE INFO

Article history:

Received 13 February 2012
Available online 15 June 2012
Submitted by Manuel del Pino

Keywords:

Elliptic partial differential equations
Boundary blow-up
Large solutions

Abstract

Given a nondecreasing nonlinearity f, we prove uniqueness of large solutions to Eq. (1) below, in the following two cases: the domain is the ball or the domain has nonnegative mean curvature and the nonlinearity is asymptotically convex.

© 2012 Elsevier Inc. All rights reserved.

1. Introduction

In this paper, we are interested in the so-called large solutions of a certain class of partial differential equations. Let us recall what they are: given a bounded domain Ω of $\mathbb{R}^{D}, D \geq 1$ and $f \in C^{1}(\mathbb{R})$, a large solution is a function $u \in C^{2}(\Omega)$ satisfying

$$
\begin{cases}\Delta u=f(u) & \text { in } \Omega \tag{1}\\ u=+\infty & \text { on } \partial \Omega\end{cases}
$$

where the boundary condition is understood in the sense that

$$
\lim _{x \rightarrow x_{0}, x \in \Omega} u(x)=+\infty \quad \text { for all } x_{0} \in \partial \Omega
$$

and where f is assumed to be positive at infinity, in the sense that

$$
\begin{equation*}
\exists a \in \mathbb{R} \quad \text { s.t. } \quad f(a)>0 \text { and } f(t) \geq 0 \text { for } t>a \text {. } \tag{2}
\end{equation*}
$$

When the boundary of Ω is smooth enough, the existence of a solution of (1) is equivalent to the so-called Keller-Osserman condition:

$$
\begin{equation*}
\int^{+\infty} \frac{d t}{\sqrt{F(t)}}<+\infty, \quad \text { where } F(t)=\int_{a}^{t} f(s) d s \tag{3}
\end{equation*}
$$

For a proof of this fact, see the seminal works of Keller [1] and Osserman [2] for the case of monotone f, as well as [3] for the general case. From here on, we always assume that (3) holds.

Uniqueness of solutions of (1) turns out to be delicate. As one might expect, it fails in the presence of oscillations. For example, if $f(u)=u^{2} \sin ^{2}(u)$, the equation has infinitely many solutions (see e.g. [3]). It is also known (see e.g. the remark on p. 325 in [4]) that uniqueness fails for a nonlinearity of the form $f(u)=u^{p}, p>1$, if the domain is not smooth enough.

[^0]Proposition 1.1. Assume that $\Omega=B \backslash\{0\}$ is the punctured unit ball of $\mathbb{R}^{D}, D \geq 2$. Let $p \in\left(1, \frac{D}{D-2}\right)$ if $D \geq 3$ (respectively, $p \in(1,+\infty)$ if $D=2)$ and $f(u)=u^{p}$. Then, there exist infinitely many solutions of (1).
However, one could hope that uniqueness holds under the simple assumptions that f is a nondecreasing function and that Ω has smooth boundary (see [5] for a slightly more general conjecture, due to P.J. McKenna). As of today, this question remains open. In the case where Ω is a ball, uniqueness is known (see part (c) of Corollary to Theorem 6 on p. 69 in [6] or Corollary 1.4 in [5]).

Theorem 1.2. Assume that Ω is the unit ball in $\mathbb{R}^{D}, D \geq 1$. Assume that f is a nondecreasing function such that (2) and (3) hold. Then, there exists a unique solution of (1).
In this paper, we give a shorter proof of this fact. Under extra convexity assumptions, we obtain the following answer for a more general class of domains.

Theorem 1.3. Assume that $\partial \Omega$ is of class C^{3} and that its mean curvature is nonnegative. Assume that f is a nondecreasing function such that (2) and (3) hold. Assume in addition that there exists $M \in \mathbb{R}$ such that \sqrt{F} is convex in $(M,+\infty)$. Then, there exists a unique solution of (1).

Remark 1.4. For arbitrary smoothly bounded domains, the best known results that we are aware of are contained in $[7,8]$.
Remark 1.5. If f is asymptotically convex, then so is \sqrt{F}.
Let us turn to the proofs.

2. Proof of Theorem 1.2

Step 1. Reduction to the radial case.
Assume Ω is the ball. It is well-known (see e.g. Lemma 2.4 in [5]) that the equation has a minimal and a maximal solution, each of which is radial. That is, there exist two large radial solutions U_{1}, U_{2} such that any large solution u satisfies $U_{1} \leq u \leq U_{2}$. In particular, it suffices to prove that $U_{1} \geq U_{2}$.
Step 2. Let u be a large radial solution. There exists $r_{0} \in(0,1)$ such that in $\left(r_{0}, 1\right), u$ is strictly increasing and

$$
\begin{equation*}
\frac{1}{2 D} F(u) \leq\left(\frac{d u}{d r}\right)^{2} \leq 4 F(u) \tag{4}
\end{equation*}
$$

This is essentially Keller's classical argument (see [1]): let u be a large radial solution. Using (2), it follows that for r close to 1 ,

$$
\begin{equation*}
r^{1-D} \frac{d}{d r}\left(r^{D-1} \frac{d u}{d r}\right)=\Delta u=f(u) \geq 0 \tag{5}
\end{equation*}
$$

Since u is unbounded, there exists r_{1} close to 1 such that $d u / d r\left(r_{1}\right)>0$. By (5), $d u / d r>0$ in $\left[r_{1}, 1\right)$. Integrating (5), we also have for $r \in\left(r_{1}, 1\right)$,

$$
\begin{aligned}
r^{D-1} \frac{d u}{d r} & =r_{1}^{D-1} \frac{d u}{d r}\left(r_{0}\right)+\int_{r_{1}}^{r} s^{D-1} f(u(s)) d s \\
& \leq r_{1}^{D-1} \frac{d u}{d r}\left(r_{1}\right)+f(u(r)) \frac{r^{D}}{D}
\end{aligned}
$$

Since f is nondecreasing and satisfies the Keller-Osserman condition (3), $\lim _{+\infty} f=+\infty$. Using this in the above, given $\epsilon>0$, we find $r_{2} \in\left[r_{1}, 1\right)$ such that for $r \in\left(r_{2}, 1\right)$,

$$
\frac{1}{r} \frac{d u}{d r} \leq\left(\frac{1}{D}+\epsilon\right) f(u)
$$

Taking $\epsilon=\frac{1}{2 D(D-1)}$ and recalling that

$$
\frac{d^{2} u}{d r^{2}}+\frac{D-1}{r} \frac{d u}{d r}=f(u)
$$

we deduce that

$$
\frac{1}{2 D} f(u) \leq \frac{d^{2} u}{d r^{2}} \leq f(u) \quad \text { in }\left[r_{2}, 1\right)
$$

Multiplying by $2 d u / d r$, integrating and letting $c=d u / d r\left(r_{2}\right)^{2}-F\left(u\left(r_{2}\right)\right)$, we obtain

$$
\frac{1}{D} F(u)+c \leq\left(\frac{d u}{d r}\right)^{2} \leq 2 F(u)+c \quad \text { for } r \in\left[r_{2}, 1\right)
$$

and so we find $r_{0} \in\left[r_{2}, 1\right)$ such that (4) holds in $\left[r_{0}, 1\right)$.

Step 3. Change of independent variable.
Thanks to Step 2, for r close to 1 , given $i \in\{1,2\}$, we may perform the change of variable $u=U_{i}(r)$. Let $r=r_{i}(u)$ denote the inverse mapping of U_{i} and $V_{i}=\frac{d U_{i}}{d r} \circ r_{i}$. By the chain rule,

$$
\begin{equation*}
V_{i} \frac{d V_{i}}{d u}+\frac{D-1}{r_{i}} V_{i}=f, \tag{6}
\end{equation*}
$$

while $d r_{i} / d u=1 / V_{i}$, so that

$$
\begin{equation*}
1-r_{i}=\int_{u}^{+\infty} \frac{1}{V_{i}} d u^{\prime} \tag{7}
\end{equation*}
$$

Step 4. There exists $u_{0}>0$ such that $r_{1} \geq r_{2}$ and $V_{1} \geq V_{2}$ in $\left[u_{0},+\infty\right)$.
Since r_{i} is the inverse mapping of U_{i} and $U_{1} \leq U_{2}$, we have $r_{1} \geq r_{2}$. By (6), the function $z=V_{2}-V_{1}$ satisfies

$$
\frac{d z}{d u}+(D-1)\left\{\frac{1}{r_{2}}-\frac{1}{r_{1}}\right\}=\left(\frac{1}{V_{2}}-\frac{1}{V_{1}}\right) f=-\frac{f}{V_{1} V_{2}} z
$$

Since $r_{1} \geq r_{2}$, we deduce that z satisfies the differential inequality

$$
\begin{equation*}
\frac{d z}{d u}+a z \leq 0 \tag{8}
\end{equation*}
$$

where $a=\frac{f}{V_{1} V_{2}} \geq 0$ for large u. By (7), we also have

$$
\int_{u}^{+\infty} \frac{1}{V_{2}} d u^{\prime} \geq \int_{u}^{+\infty} \frac{1}{V_{1}} d u^{\prime}
$$

So, there must exist u_{0} such that $1 / V_{2}\left(u_{0}\right) \geq 1 / V_{1}\left(u_{0}\right)$ i.e. $w\left(u_{0}\right) \leq 0$. Using this together with (8), we deduce that $z \leq 0$ in [$u_{0},+\infty$), as desired.
Step 5. The function $w=r_{1}^{2 D-2} V_{1}^{2}-r_{2}^{2 D-2} V_{2}^{2}$ is bounded.
To see this, observe first that

$$
\begin{equation*}
\frac{d w}{d u}=2\left(r_{1}^{2 D-2}-r_{2}^{2 D-2}\right) f \tag{9}
\end{equation*}
$$

Hence, w is a nonnegative nondecreasing function and

$$
\frac{d w}{d u} \leq 4(D-1)\left(r_{1}-r_{2}\right) f=4(D-1)\left(\int_{u}^{+\infty}\left(\frac{1}{V_{2}}-\frac{1}{V_{1}}\right) d u^{\prime}\right) f
$$

Now, if u_{0} is chosen so large that $\frac{1}{2} \leq r_{2}$ in $\left[u_{0},+\infty\right)$,

$$
\begin{equation*}
\frac{1}{V_{2}}-\frac{1}{V_{1}}=\frac{V_{1}^{2}-V_{2}^{2}}{V_{1} V_{2}\left(V_{1}+V_{2}\right)} \leq \frac{2^{2 D-2} w}{V_{1} V_{2}\left(V_{1}+V_{2}\right)} \tag{10}
\end{equation*}
$$

Integrating (9) and using (4), it follows that for $u \geq u_{0}$,

$$
w(u) \leq w\left(u_{0}\right)+C(D) \int_{u_{0}}^{u}\left(\int_{u^{\prime}}^{+\infty} \frac{w}{F^{\frac{3}{2}}} d u^{\prime \prime}\right) f d u^{\prime}
$$

Integrating by parts

$$
w(u) \leq w\left(u_{0}\right)+C(D)\left(F(u) \int_{u}^{+\infty} \frac{w}{F^{\frac{3}{2}}} d u^{\prime}+\int_{u_{0}}^{u} \frac{w}{F^{\frac{1}{2}}} d u^{\prime}\right) .
$$

Thanks to the Keller-Osserman condition (3), if u_{0} is chosen large enough,

$$
\int_{u_{0}}^{u} \frac{w}{F^{\frac{1}{2}}} d u^{\prime} \leq w(u) \int_{u_{0}}^{+\infty} \frac{1}{\sqrt{F}} \leq \frac{1}{2 C(D)} w(u)
$$

We have then obtained

$$
\begin{equation*}
w(u) \leq 2 w\left(u_{0}\right)+2 C(D) F(u) \int_{u}^{+\infty} \frac{w}{F^{\frac{3}{2}}} d u^{\prime} \tag{11}
\end{equation*}
$$

Introduce $G(u)=\int_{u}^{+\infty} \frac{w}{F^{\frac{3}{2}}} d u^{\prime}$. Thanks to (4) and (3), we have $G(+\infty)=0$. In addition, letting $c=2 C(D)$, (11) can be rewritten as

$$
-\frac{d G}{d u} \leq \frac{2 w\left(u_{0}\right)}{F^{\frac{3}{2}}}+\frac{c}{F^{\frac{1}{2}}} G .
$$

That is,

$$
-\frac{d}{d u}\left(G \exp \left(-c \int_{u}^{+\infty} \frac{1}{\sqrt{F}} d u^{\prime}\right)\right) \leq \frac{2 w\left(u_{0}\right)}{F^{\frac{3}{2}}} \exp \left(-c \int_{u}^{+\infty} \frac{1}{\sqrt{F}} d u^{\prime}\right) \leq \frac{2 w\left(u_{0}\right)}{F^{\frac{3}{2}}} .
$$

Integrating between u and $+\infty$, we then obtain, using once again (3),

$$
G(u) \leq C \int_{u}^{+\infty} \frac{1}{F^{\frac{3}{2}}}=o\left(\frac{1}{F}\right)
$$

Going back to (11), we deduce that w is bounded above.
Step 6. The difference $U_{2}(r)-U_{1}(r)$ converges to 0 as $r \rightarrow 1$.
Given r close to 1 and $i \in\{1,2\}$, let $u_{i}=U_{i}(r)$. Then,

$$
\int_{u_{1}}^{+\infty} \frac{1}{V_{1}} d u=1-r=\int_{u_{2}}^{+\infty} \frac{1}{V_{2}} d u
$$

That is,

$$
\int_{u_{1}}^{u_{2}} \frac{1}{V_{1}} d u=\int_{u_{2}}^{+\infty}\left(\frac{1}{V_{2}}-\frac{1}{V_{1}}\right) d u .
$$

Using (10), (4), and the previous step, we deduce that

$$
\int_{u_{1}}^{u_{2}} \frac{1}{\sqrt{F}} d u \leq C \int_{u_{2}}^{+\infty} \frac{1}{F^{3 / 2}} d u
$$

It follows that

$$
0 \leq \frac{u_{2}-u_{1}}{\sqrt{F\left(u_{2}\right)}} \leq \frac{C}{\sqrt{F\left(u_{2}\right)}} \int_{u_{2}}^{+\infty} \frac{1}{F} d u
$$

and the claim follows promptly.
Step 7. End of proof.
Let $w=U_{2}-U_{1}$. Since $U_{2} \geq U_{1}$ and f is nondecreasing, we see from the previous step that

$$
\begin{cases}\Delta w=f\left(U_{2}\right)-f\left(U_{1}\right) \geq 0 & \text { in } B, \\ w=0 & \text { on } \partial B .\end{cases}
$$

By the maximum principle, $w \leq 0$ in B, as desired.

3. Proof of Theorem 1.3

Take a solution u to (1) and a real number b such that $u>b$. Without loss of generality, we may assume that $f(b)=0$ (otherwise, replace f by any C^{1} function g that agrees with f on the range of u and such that $g(b)=0$). Let \underline{u} denote the minimal large solution of (1) relative to b (see [3] for the existence of such a solution). In particular, $\underline{u} \leq u$ and there exists a nondecreasing sequence of solutions to

$$
\begin{cases}\Delta \underline{u}_{N}=f\left(\underline{u}_{N}\right) & \text { in } \Omega, \tag{12}\\ \underline{u}_{N}=N & \text { on } \partial \Omega,\end{cases}
$$

converging to \underline{u}.
Let a be the constant appearing in (2), M the constant beyond which \sqrt{F} is convex, and fix $\tilde{M}>\max (0, a, M)$. Fix $\varepsilon>0$ so small that $\underline{u}>\tilde{M}$ in $\Omega_{\varepsilon}=\{x \in \Omega: \operatorname{dist}(x, \partial \Omega)<\varepsilon\}$.
Step 1. We begin by proving that there exists a sequence of functions $\left(u_{N}\right)_{N \in \mathbb{N}}$ solving

$$
\begin{cases}\Delta u_{N}=f\left(u_{N}\right) & \text { in } \Omega_{\varepsilon}, \tag{13}\\ u_{N}=N & \text { on } \partial \Omega, \\ u_{N}=u & \text { on }\{x \in \Omega: \operatorname{dist}(x, \partial \Omega)=\varepsilon\}\end{cases}
$$

such that

$$
\begin{equation*}
\underline{u}_{N} \leq u_{N} \leq u \quad \text { in } \Omega_{\varepsilon} \tag{14}
\end{equation*}
$$

Observe that \underline{u}_{N} and u are respectively a sub and a supersolution of (13) and that they are ordered. It follows that there exists a minimal solution u_{N} to (13) such that (14) holds.

By minimality, $\left(u_{N}\right)$ is a nondecreasing sequence. Thanks to (14) and elliptic regularity, we may also assert that $\left(u_{N}\right)$ converges in $C_{\text {loc }}^{2}\left(\bar{\Omega}_{\varepsilon} \backslash \partial \Omega\right)$ to a function \tilde{u} solving

$$
\begin{cases}\Delta \tilde{u}=f(\tilde{u}) & \text { in } \Omega_{\varepsilon}, \tag{15}\\ \tilde{u}=+\infty & \text { on } \partial \Omega \\ \tilde{u}=u & \text { on }\{x \in \Omega: \operatorname{dist}(x, \partial \Omega)=\varepsilon\},\end{cases}
$$

Step 2. There holds

$$
\begin{equation*}
\left|\nabla u_{N}\right|^{2}-2 F\left(u_{N}\right) \leq K_{N} \quad \text { in } \Omega_{\varepsilon}, \tag{16}
\end{equation*}
$$

where

$$
\begin{equation*}
K_{N}=\sup _{\operatorname{dist}(x, \partial \Omega)=\varepsilon}\left[\left|\nabla u_{N}\right|^{2}-2 F\left(u_{N}\right)\right] . \tag{17}
\end{equation*}
$$

The proof is a straightforward adaptation of an argument due to Bandle and Marcus [9], which uses the method of P functions. We give the full argument here for the convenience of the reader. Let

$$
P_{N}=\left|\nabla u_{N}\right|^{2}-2 F\left(u_{N}\right)
$$

By a result of Payne and Stackgold ([10], see also Chapter 5 in [11]), there exists a bounded continuous vector field A, such that

$$
\Delta P_{N}-\frac{A \cdot \nabla P_{N}}{\left|\nabla u_{N}\right|^{2}} \geq 0
$$

at every point in Ω_{ε} where $\nabla u_{N} \neq 0$. Hence, P_{N} attains its maximum over $\bar{\Omega}_{\varepsilon}$ either on $\partial \Omega$, on $\{x \in \Omega: \operatorname{dist}(x, \partial \Omega)=\varepsilon\}$, or at a critical point of u_{N}. It only remains to prove that the first case cannot occur. We claim that $\partial P_{N} / \partial n \leq 0$ on $\partial \Omega$, where n is the outward unit normal to $\partial \Omega$. The boundary-point lemma then implies that P_{N} cannot attain its maximum on $\partial \Omega$. It remains to prove our claim. Since u_{N} is a constant on $\partial \Omega$, we have

$$
\frac{\partial P_{N}}{\partial n}=2 \frac{\partial u_{N}}{\partial n} \frac{\partial^{2} u_{N}}{\partial n^{2}}-2 f(N) \frac{\partial u_{N}}{\partial n}, \quad \text { on } \partial \Omega .
$$

Furthermore, letting H denote the mean curvature of $\partial \Omega$,

$$
\Delta u_{N}=\frac{\partial^{2} u_{N}}{\partial n^{2}}+(D-1) H \frac{\partial u_{N}}{\partial n} \quad \text { on } \partial \Omega
$$

Hence,

$$
\frac{\partial P_{N}}{\partial n}=-2(D-1) H\left(\frac{\partial u_{N}}{\partial n}\right)^{2} \quad \text { on } \partial \Omega
$$

Since $H \geq 0$, this implies that $\partial P_{N} / \partial n \leq 0$, as desired. We have just proved (16).
Step 3. The function $\tilde{u}=\lim _{N \rightarrow+\infty} u_{N}$ coincides with u in Ω_{ε}.
The proof of this fact bears resemblances with a trick due to Nirenberg given in [12]. By (14), we already have $\tilde{u} \leq u$ in Ω_{ε} and it remains to prove the reverse inequality. Thanks to (14) and elliptic regularity, there exists a constant K such that

$$
2 K \geq K_{N},
$$

where K_{N} is given by (17). Now let $\tilde{F}=F+K$ and define

$$
v_{N}=\int_{u_{N}}^{+\infty} \frac{d t}{\sqrt{2 \tilde{F}(t)}}
$$

Then, (16) can be rewritten as

$$
\left|\nabla v_{N}\right| \leq 1 \quad \text { in } \Omega_{\varepsilon}
$$

from which it easily follows that

$$
\begin{equation*}
|\nabla \tilde{v}| \leq 1 \quad \text { in } \Omega_{\varepsilon} \tag{18}
\end{equation*}
$$

where we defined similarly

$$
\tilde{v}=\int_{\tilde{u}}^{+\infty} \frac{d t}{\sqrt{2 \tilde{F}(t)}}
$$

Let at last

$$
v=\int_{u}^{+\infty} \frac{d t}{\sqrt{2 \tilde{F}(t)}}
$$

It remains to prove that $u \leq \tilde{u}$, i.e. $\tilde{v} \leq v$ in Ω_{ε}. Using the equations satisfied by u and \tilde{u}, we see that $w=v-\tilde{v}$ solves

$$
\begin{aligned}
-\Delta w & =\frac{f}{\sqrt{2 \tilde{F}}}(u)\left(1-|\nabla v|^{2}\right)-\frac{f}{\sqrt{2 \tilde{F}}}(\tilde{u})\left(1-|\nabla \tilde{v}|^{2}\right) \\
& =\left[\frac{f}{\sqrt{2 \tilde{F}}}(u)-\frac{f}{\sqrt{2 \tilde{F}}}(\tilde{u})\right]\left(1-|\nabla \tilde{v}|^{2}\right)+\frac{f}{\sqrt{2 \tilde{F}}}(u)\left(|\nabla \tilde{v}|^{2}-|\nabla v|^{2}\right) .
\end{aligned}
$$

By (14), we have $M<\underline{u} \leq \tilde{u} \leq u$ in Ω_{ε}. Since $\sqrt{2 F}$ is convex in $(M,+\infty), \frac{f}{\sqrt{2 \tilde{F}}}$ is nondecreasing in the same interval. Using this and (18), we deduce that

$$
\begin{cases}-\Delta w+b(x) \cdot \nabla w \geq 0, & \text { in } \Omega_{\varepsilon} \\ w=0 & \text { on } \partial \Omega_{\varepsilon}\end{cases}
$$

where $b(x)=\frac{f}{\sqrt{2 \tilde{F}}}(u) \nabla(v+\tilde{v})$ is locally bounded in Ω. We may now apply the maximum principle to conclude that $w \geq 0$ in Ω, as desired.
Step 4. End of proof. The rest of the proof is similar to an argument due to García-Melián [8]. We take two arbitrary solutions u, \bar{u} of our Eq. (1). We let u_{N}, \bar{u}_{N} be the corresponding solutions to the approximated problem (13). In particular, $w_{N}=u_{N}-\bar{u}_{N}$ solves

$$
\begin{cases}\Delta w_{N}=f\left(u_{N}\right)-f\left(\bar{u}_{N}\right) & \text { in } \Omega_{\varepsilon}, \tag{19}\\ w_{N}=0 & \text { on } \partial \Omega, \\ w_{N}=u-\bar{u} & \text { on }\{x \in \Omega: \operatorname{dist}(x, \partial \Omega)=\varepsilon\},\end{cases}
$$

By the maximum principle,

$$
w_{N} \leq \sup _{\operatorname{dist}(x, \partial \Omega)=\varepsilon}(u-\bar{u}) \quad \text { in } \Omega_{\varepsilon}
$$

with equality at some point x_{N} such that $\operatorname{dist}\left(x_{N}, \partial \Omega\right)=\varepsilon$. Extracting a sequence if necessary, we deduce that $w=u-\bar{u}$ satisfies

$$
\begin{equation*}
w \leq \sup _{\operatorname{dist}(x, \partial \Omega)=\varepsilon}(u-\bar{u}) \quad \text { in } \Omega_{\varepsilon} \tag{20}
\end{equation*}
$$

with equality at some point z such that $\operatorname{dist}(z, \partial \Omega)=\varepsilon$. Now, we also have

$$
\begin{cases}\Delta w=f(u)-f(\bar{u}) & \text { in } \Omega \backslash \Omega_{\varepsilon} \\ w=u-\bar{u} & \text { on }\{x \in \Omega: \operatorname{dist}(x, \partial \Omega)=\varepsilon\}\end{cases}
$$

By the maximum principle, we deduce that inequality (20) holds throughout Ω, with equality at the point z. The strong maximum principle implies that w is equal to a constant c. Since u, \bar{u} solve (1), we deduce that $f(u)=f(u+c)$, which is possible only if $c=0$.

4. Proof of Proposition 1.1

We thank Laurent Véron [13] for the following proof. Given $p \in(1, D /(D-2)), k \in \mathbb{N}$ and $\lambda>0$, we begin by solving

$$
\begin{cases}-\Delta u+u^{p}=\lambda \delta_{0} & \text { in } B, \tag{21}\\ u=k & \text { on } \partial B .\end{cases}
$$

Since 0 is a subsolution, while a large constant multiple of the fundamental solution is a supersolution, we deduce from the method of sub and supersolutions (see e.g. [14] for the appropriate statement) that there exists a solution $u=u_{k}$ to (21). By the maximum principle, u_{k} is the unique solution to (21), and the sequence $\left(u_{k}\right)$ is nondecreasing. Thanks to the Keller-Osserman estimate (see e.g. [1]), the sequence $\left(u_{k}\right)$ is uniformly bounded on compact subsets of the punctured ball $B \backslash\{0\}$. It follows from elliptic regularity that u_{k} converges to a solution $u=u_{\lambda}$ of

$$
\begin{cases}-\Delta u+u^{p}=\lambda \delta_{0} & \text { in } B, \\ u=+\infty & \text { on } \partial B .\end{cases}
$$

By the results of [15], u_{λ} behaves like a constant multiple of the fundamental solution near the origin. In particular, each u_{λ} is a large solution in the punctured ball.

There exists yet another large solution. Simply note that for an appropriate constant $c=c(D, p)>0$, the function $u_{1}(x)=c|x|^{-2 /(p-1)}$ solves $\Delta u=u^{p}$ in $\mathbb{R}^{D} \backslash\{0\}$. Let also u_{2} be the unique solution to

$$
\begin{cases}\Delta u=u^{p} & \text { in } B \\ u=+\infty & \text { on } \partial B,\end{cases}
$$

Then, $\underline{u}=\max \left(u_{1}, u_{2}\right)$ and $\bar{u}=u_{1}+u_{2}$ form an ordered pair of sub and supersolutions to the equation in the punctured ball. The method of sub and supersolutions implies the existence of a new large solution u_{∞} which behaves like $c|x|^{-2 /(p-1)}$ near the origin, hence distinct from u_{λ}.

Finally, observe that for the nonlinearity $f(u)=u^{p}$, if u is a large solution and $\epsilon>0$, then $(1+\epsilon) u$ is a supersolution. From this, the classification of singularities both at the origin (see [15]) and on the boundary (see e.g. [9]), and the maximum principle, it easily follows that the set of positive large solutions in the punctured ball is exactly $\left\{u_{\lambda}\right\}_{\lambda \in(0,+\infty]}$.

Acknowledgments

The authors would like to thank the anonymous referee for a careful reading of the manuscript and for pointing out reference [6], as well as L. Véron and J. García-Melián for discussing the problem with one of us.
O.C. was supported in part by NSF grants DMS-0807266 and DMS-1108794. Any opinions, findings, conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the National Science Foundation. L.D. was supported in part by ERC grant 277749 EPSILON.

References

[1] J.B. Keller, On solutions of $\Delta u=f(u)$, Comm. Pure Appl. Math. 10 (1957) 503-510. MR0091407 (19,964c).
[2] Robert Osserman, On the inequality $\Delta u \geq f(u)$, Pacific J. Math. 7 (1957) 1641-1647. MR0098239 (20 \#4701).
[3] Serge Dumont, Louis Dupaigne, Olivier Goubet, Vicentiu Rădulescu, Back to the Keller-Osserman condition for boundary blow-up solutions, Adv. Nonlinear Stud. 7 (2) (2007) 271-298. MR2308040 (2008e:35062).
[4] Laurent Véron, Generalized boundary value problems for nonlinear elliptic equations, in: Proceedings of the USA-Chile Workshop on Nonlinear Analysis (Viña del Mar-Valparaiso, 2000), in: Electron. J. Differ. Equ. Conf., vol. 6, Southwest Texas State Univ., San Marcos, TX, 2001, pp. 313-342. (electronic). MR1804784 (2001j:35099).
[5] O. Costin, L. Dupaigne, Boundary blow-up solutions in the unit ball: asymptotics, uniqueness and symmetry, J. Differential Equations 249 (4) (2010) 931-964. http://dx.doi.org/10.1016/j.jde.2010.02.023. MR2652158 (2011e:35125).
[6] W. Reichel, W. Walter, Radial solutions of equations and inequalities involving the p-Laplacian, J. Inequal. Appl. 1 (1) (1997) 47-71.
[7] Moshe Marcus, Laurent Véron, Existence and uniqueness results for large solutions of general nonlinear elliptic equations, J. Evol. Equ. 3 (4) (2003) 637-652. http://dx.doi.org/10.1007/s00028-003-0122-y. Dedicated to Philippe Bénilan. MR2058055 (2005c:35103).
[8] Jorge García-Melián, Uniqueness of positive solutions for a boundary a blow-up problem, J. Math. Anal. Appl. 360 (2) (2009) $530-536$. http://dx.doi.org/10.1016/j.jmaa.2009.06.077. MR2561251 (2011a:35174).
[9] Catherine Bandle, Moshe Marcus, Large solutions of semilinear elliptic equations: existence, uniqueness and asymptotic behaviour, J. Anal. Math. 58 (1992) 9-24. http://dx.doi.org/10.1007/BF02790355. Festschrift on the occasion of the 70th birthday of Shmuel Agmon. MR1226934 (94c:35081).
[10] L.E. Payne, Ivar Stakgold, Nonlinear problems in nuclear reactor analysis, in: Nonlinear Problems in the Physical Sciences and Biology, in: Ivar Stakgold, Daniel D. Joseph, David H. Sattinger (Eds.), Lecture Notes in Mathematics, vol. 322, Springer-Verlag, Berlin, 1973, MR0371548 (51 \#7766).
[11] Renè P. Sperb, Maximum Principles and their Applications, in: Mathematics in Science and Engineering, vol. 157, Academic Press Inc., Harcourt Brace Jovanovich Publishers, New York, 1981, MR615561 (84a:35033).
[12] Haïm Brezis, Shoshana Kamin, Sublinear elliptic equations in \mathbf{R}^{n}, Manuscripta Math. 74 (1) (1992) 87-106. http://dx.doi.org/10.1007/BF02567660. MR1141779 (93f:35062).
[13] Laurent Véron, Personal communication.
[14] Marcelo Montenegro, Augusto C. Ponce, The sub-supersolution method for weak solutions, Proc. Amer. Math. Soc. 136 (7) (2008) $2429-2438$. http://dx.doi.org/10.1090/S0002-9939-08-09231-9. MR2390510 (2010h:35160).
[15] Laurent Véron, Solutions singulières d'équations elliptiques semilinéaires, C. R. Acad. Sci. Paris Sér. A-B 288 (18) (1979) A867-A869. (in French, with English summary). MR538992 (80h:35038).

[^0]: * Corresponding author.

 E-mail addresses: costin@math.ohio-state.edu (O. Costin), louis.dupaigne@u-picardie.fr, louis.dupaigne@math.cnrs.fr (L. Dupaigne), olivier.goubet@u-picardie.fr (O. Goubet).

