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Abstract

We show that the fixed alphabet shortest common supersequence (SCS) and the fixed alphabet longest
common subsequence (LCS) problems parameterized in the number of strings are W ½1�-hard. Unless
W ½1� ¼ FPT; this rules out the existence of algorithms with time complexity of Oð f ðkÞnaÞ for those
problems. Here n is the size of the problem instance, a is constant, k is the number of strings and f is any
function of k: The fixed alphabet version of the LCS problem is of particular interest considering the
importance of sequence comparison (e.g. multiple sequence alignment) in the fixed length alphabet world of
DNA and protein sequences.
r 2003 Elsevier Inc. All rights reserved.
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1. Introduction

The shortest common supersequence (SCS) and the longest common subsequence (LCS) are
classical problems in computer science.

Shortest common supersequence (SCS)
Instance: A set of strings R ¼ r1; r2;y; rk over an alphabet S; an integer l:
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Question: Does there exist a string sAS� of length at most l; that is a supersequence1 of each
string in R?

Longest common subsequence (LCS)
Instance: A set of strings R ¼ r1; r2;y; rk over an alphabet S; an integer l:
Question: Does there exist a string sAS� of length at least l; that is a subsequence2 of each

string in R?

The LCS and (not so much) the SCS problems have been extensively studied over the last 30
years (see [7] and references). They are both known to be NP-complete [8,9]. In particular the case
where the number of sequences is 2 has been studied in detail (see [7] and references).

1.1. Sequence comparison in bioinformatics

With the recent availability of large amounts of molecular sequence data, the LCS and related
problems received much attention due to the importance of sequence comparison problems in
bioinformatics.

(from [6]) Sequence comparison is used by biologists for several reasons. Similarity
between a set of molecular sequences may indicate significant attributes between organisms
the sequences represent. Or, from the similarity and disparity of these sequences, it may be
possible to infer phylogenetic relationships amongst the organisms. If the sequences represent
homologous genes, the comparison may be used to obtain information on molecular structure
or function.
y

Computationally, multiple sequence comparison problems are viewed as string matching
problems.

However, due to the OðnkÞ time requirements [1,5,7] of the best known algorithms
for these analyses, the number of sequences that can be examined at once is often limited to
less than six.

1.2. Parameterized complexity

The problems were also studied in the framework of parameterized complexity (see [4] for a
survey). The hope was to find algorithms that have running times exponential in only some
parameters of the problem. In [2,3,6] several parametrizations of the SCS and LCS problem were
analyzed.

Parameterized shortest common supersequence (SCS)
Instance: Alphabet S; set of strings R ¼ r1; r2;y; rkAS�; integer l:
Parameter: k (SCS-1).
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1A string a is a supersequence of a string b if we can delete some characters in a such that the remaining string is equal

to b; e.g. ‘‘1234’’ is a supersequence of ‘‘13’’.
2A string a is a subsequence of a string b if b is a supersequence of a; e.g. ‘‘13’’ is a subsequence of ‘‘1234’’.
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Parameter: l (SCS-2).
Parameter: k; l (SCS-3).
Parameter: k; jSj (SCS-4).
Question: Does there exist a string sAS� of length at most l; that is a supersequence of each

string in R?

Parameterized longest common subsequence (LCS)
Instance: Alphabet S; set of strings R ¼ r1; r2;y; rkAS�; integer l:
Parameter: k (LCS-1).
Parameter: l (LCS-2).
Parameter: k; l (LCS-3).
Parameter: k; jSj (LCS-4).
Question: Does there exist a string sAS� of length at least l; that is a subsequence of each

string in R?

The complexity of the parameterized variants of the LCS problem3 are shown in Fig. 1. Note
that all variants become fixed parameter tractable as soon as l and S are bounded (i.e. they are

either a parameter or constant), this is by the trivial algorithm that generates all jSjl possible
subsequence strings and checks them against each ri: Similar results are known for the SCS
problem (see [6]). One gets another interesting parameterization if the size of the alphabet S is a
fixed constant.

Fixed alphabet shortest common supersequence parameterized in the number of strings (FSCS)
Instance: A fixed size alphabet S; set of strings R ¼ r1; r2;y; rkAS�; integer l:
Parameter: k:
Question: Does there exist a string sAS� of length at most l that is a supersequence of each

string in R?

Fixed alphabet longest common subsequence parameterized in the number of strings (FLCS)
Instance: A fixed size alphabet S; set of strings R ¼ r1; r2;y; rkAS�; integer l:

ARTICLE IN PRESS

Fig. 1. The fixed parameter complexity of the LCS problem.

3FLCS is named LCS-5 in [3].
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Parameter: k:
Question: Does there exist a string sAS� of length at least l that is a subsequence of each

string in R?

(from [2]) The most compelling of these problems (LCS-1, LCS-2, LCS-3 and FLCS) is FLCS,
since the alphabet for biological sequences is often of fixed constant size, e.g. DNA and protein
sequences have alphabets of size 4 and 20, respectively.
y

Our failure to find a hardness result for FLCS invites hope that it could be fixed-parameter
tractable.

We will show that this is unfortunately not the case, namely that

Theorem 1. The fixed alphabet shortest common supersequence problem parameterized in the
number of strings is W ½1� hard.

and

Theorem 2. The fixed alphabet longest common subsequence problem parameterized in the number

of strings is W ½1� hard.

We will prove Theorems 1 and 2 by first showing the W ½1� completeness for a problem
we call Partitioned Clique. Then a parameterized reduction from Partitioned Clique to
FSCS is shown; finally we show how this reduction can be changed to get a reduction to FLCS
instead.

2. W ½1� completeness for Partitioned Clique

The Clique and the Partitioned Clique problem are defined as follows.

Clique
Instance: A simple graph G ¼ ðV ;EÞ; and integer k:
Parameter: k:
Question: Is there a subset V 0DV of cardinality k such that 8u; vAV 0; ðu; vÞAE?

Partitioned Clique (pClique)
Instance: A simple graph G ¼ ðV ;EÞ; an integer k; a partition
fU1;y;Ukg of V into k sets of equal size.4

Parameter: k:
Question: Is there a subset V 0DV of cardinality k such that 8u; vAV 0; ðu; vÞAE and

8iAf1;y; kg: jV 0-Uij ¼ 1?

ARTICLE IN PRESS
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Theorem 3. Partitioned Clique is W ½1� complete.

We first show W ½1�-hardness of pClique reducing to it the W ½1�-complete problem Clique (see
e.g. [4]). Then we show that pClique is in W ½1� by a reduction in the other direction (for the
following we actually only need W ½1� hardness, we will prove completeness anyway because it is
easy).

Theorem 4. Partitioned Clique is W ½1� hard.

Proof. Given an instance ðG ¼ ðV ¼ fv1;y; vng;EÞ; kÞ of the Clique problem we construct an

instance ðG0 ¼ ðV 0;E0Þ; k; fU 0
1;y;U 0

kgÞ for the pClique problem as follows. Every set U 0
j ¼

fu
j
1 ;y; u j

ng consists of n ¼ jV j vertices, we will say that a vertex u
j

i AU 0
j corresponds to vertex

viAV : There is an edge ðui
x; u

j
yÞAE0 iff ðvx; vyÞAE: To see that this a correct reduction we must

show that

ðG ¼ ðV ;EÞ; kÞAClique 3 ðG0 ¼ ðV 0;E0Þ; k; fU1;y;UkgÞApClique

) If G has a Clique C of size k; we can assign every vertex from C to the corresponding vertex in
a different set U 0

i : By the construction, these vertices form a pClique in G0:
( If we are given a pClique C0; then all vertices in C0 correspond to a different vertices in G

(two vertices that correspond to the same vertex in G are not adjacent in G0), and those vertices
build a Clique in G by the construction. &

Theorem 5. Partitioned Clique is in W ½1�:

Proof. Given an instance ðG0;V 0; fU 0
1;y;U 0

kgÞ for pClique, construct an instance ðG;VÞ
for Clique by removing all edges from G0 between vertices that are in the same set U 0

i :
This does not change the size of pClique. Now every Clique of G is also a pClique
in G0: &

3. W ½1� hardness for fixed alphabet shortest common supersequence

In this section we show a reduction from an instance of pClique to an instance of FSCS.

3.1. Notation and definitions

We reduce from the instance

G ¼ ðG ¼ ðV ;EÞ; k; fU1;y;UkgÞ ð1Þ
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of pClique to the instance

S ¼ ðS ¼ fs1;y; sk; stg; lÞ ð2Þ

of FSCS.
The fixed size alphabet S for FSCS is the binary alphabet f0; 1g: We define n and m as

n ¼ jV j; ð3Þ

m ¼ jUij ¼
n

k
: ð4Þ

We denote the vertices V by fv1; v2;y; vng: W.l.o.g. we assume that the set U1 contains the first m

vertices fv1;y; vmg; U2 the next m vertices fvmþ1;y; v2mg and so on. We will also write vi
j for

vði�1Þmþj; the jth vertex in the set Ui and vi to denote any vertex in Ui: We write q½i� for the ith

character in a string q and q½iyj� for the substring5 of q starting at the ith and ending at the jth
character.

Definition 1 (Alignment, optimal alignment). Let s be a supersequence for a set of strings S: An
alignment of S for s is a map f : ðqAfS,sg; iANÞ-jAN: It assigns to the i’th character in a
string qAfS,sg6 an index j ¼ fðq; iÞ : 1pjpjsj such that q½i� ¼ s½ j� and 8i : fðq; iÞofðq; i þ 1Þ:
We say that two characters q½i� and q0½i0� from two different strings fq; q0gAfS,sg align if
fðq; iÞ ¼ fðq0; i0Þ: We say that an alignment is optimal if every supersequence for S has length at
least jsj:

Definition 2 (Map, overlap). Given an alignment f of S for s; we say that a substring q0 of
qAfS,sg maps on a substring r0 of rAfS,sg if 8i(j : fðq0½i�Þ ¼ fðr0½ j�Þ: Note that if q0 maps on
r0; q0 must be a subsequence of r0 and that every q0 maps on s: We say that q0 overlaps with r0 if
(i(j : fðq0½i�Þ ¼ fðr0½ j�Þ:

We give a small example for the above definitions. Let s ¼ 010011 and S ¼ fa ¼ 1011;
b ¼ 101; c ¼ 001g: Let f be the alignment of S for s shown below (fða; 1Þ ¼ 2;fða; 2Þ ¼ 4;y).

s ¼ 0 1 0 0 1 1

a ¼ 1 0 1 1

b ¼ 1 0 1

c ¼ 0 0 1

Here b maps on a: c overlaps with, but does not map on a: The substring c½2y3� of c maps on a:
b½2� aligns with c½2�:

ARTICLE IN PRESS

5A string a is a substring of a string b if b ¼ uav for some strings u and v; e.g. ‘‘34’’ is substring of ‘‘1234’’.
6 If q ¼ s we simply have fðs; iÞ ¼ i; the definition of f for s is redundant, we do it as to avoid a special treatment for s

in the definition of ‘‘align’’ and ‘‘map’’ below.
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3.2. The FSCS instance

We define the following strings from which we will construct our instance for FSCS (
Qn

j¼1 aj

denotes the concatenation of the strings a1yan)

I ¼ 17n3

; ð5Þ

O ¼ 07n3

; ð6Þ

EðuAV ; vAVÞ ¼
II if ðu ¼ vÞor ðuAUi; vAUjÞAE : iaj;

I0I otherwise;

(
ð7Þ

VðuAVÞ ¼
Yn

j¼1

Eðu; vjÞ; ð8Þ

Bi ¼ Vðvi
1Þ
Ym

j¼2

OVðvi
jÞ; ð9Þ

TI0I ¼ ðI0IÞn; ð10Þ

TII ¼ ðIIÞn; ð11Þ

T ¼ ðTI0IOÞm�1TII: ð12Þ
The Instance S ¼ fs1;y; sk; st; lg for FSCS is7

si ¼ðBiOÞ2nþ2n2

Bi;

st ¼ðTOÞ1þ2nþ2n2

ðTI0IOÞm�2TI0I:

3.3. Outline of the proof

Let sopt be a shortest common supersequence for S:8 In order to prove our main Theorem 1 we

will prove the following Lemmas:

Lemma 1. If GApClique9 then there is a string sl of length l that is a supersequence of all strings in

S (or equivalently SAFSCS).10

Lemma 2. If GepClique then jsoptj4l (or equivalently SeFSCS).
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7A concrete example will be given in Section 3.5.
8More precisely, let sopt be any string that is a supersequence of all strings in S and has minimal possible length.
9GApClique means that G has a pClique of size k and SAFSCS means that S has a shortest common supersequence

of length at most l:
10 sl is not necessarily a shortest supersequence for S:
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We will first prove Lemma 1 by showing how to construct a sequence sl of length l that is a
supersequence of all strings in S under the assumption that GApClique: sl is similar to st; only the

1þ 2n þ 2n2 occurrences of a TII substring in st are replaced by a substring M in sl: This M

differs from TII by n � k additional 0’s. We then have jslj ¼ jstj þ ð1þ 2n þ 2n2Þðn � kÞ ¼ l: To

prove Lemma 2 we first show that in an optimal alignment at least ð1þ 2n2Þ occurrences of a TII

substring in st map, for all i : 1pipk; to a VðviÞ : viAUi substring from si; we will call these TII’s

nice. Because we cannot choose those vi such that they form a pClique, we show that, for every
nice TII; we have at least n � k þ 1 0’s in sopt that do not align with a character in st: This gives a

lower bound jstj þ ð1þ 2n2Þðn � k þ 1Þ4l for jsoptj which is bigger than l:

3.4. Indices

In this section we will prove a simple claim (Claim 3) that will be useful for the following
sections.

For a string P of the form11

P ¼
Yn

j¼1

ðIXIÞj : ðIXIÞjAfII;I0Ig ð13Þ

we will say that P has a 0 at index j if ðIXIÞj ¼ I0I: Let C ¼ fv1; v2;y; vkg : viAUi and let

JC ¼ f j1; j2;y; jkg be the indices of the vertices in C (this is to say vi ¼ vji). Let J0
C be the indices

where no string VðviÞ : viAC has a 0:12

Claim 1. J0
CDJC :

Proof. Let jeJC; we will show that then jeJ0
C : For some i; vj is in the same set Ui as viAC: viavj

because the index ji is in JC but j is not. Now Eðvi; vjÞ ¼ I0I (7,8) and so VðviÞ has a 0 at index

j: &

Claim 2. C is a pClique if and only if JC � J0
C :

Proof. Case 1: Assume C is a pClique. For any viAC and any jAJC we either have vi ¼ vj or there

is an edge between vi and vj: In both cases Eðvi; vjÞ ¼ II so VðviÞ has no 0 at index j (7,8). We

have shown that JCDJ0
C and with J0

CDJC from the previous claim we have JC � J0
C :

Case 2: Assume C is not a pClique. Then there are two nonadjacent vertices fvh; vigAC: Now

Eðvh; viÞ ¼ I0I (7,8) and VðvhÞ has a 0 at index ji: So jieJ0
C ; but jiAJC from which JCcJ0

C

follows. &

Claim 3. If C is a pClique jJ0
C j ¼ k otherwise jJ0

C jok:

ARTICLE IN PRESS

11 e.g. Vi;TII and TI0I are of this form.
12Or more formally 8ð jAJ0

CÞ8ðviACÞ : VðviÞ has no 0 at index j:
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Proof. The claim trivially follows from the two claims above. &

3.5. Proof of Lemma 1

For this section we will assume that GApClique. Let C ¼ fv1; v2;y; vkg : viAUi be a pClique.
In Fig. 2 we have an example where C ¼ fv2; v6; v7g: Let JC ¼ f j1; j2;y; jkg be the indices of the
vertices in C (for our example JC ¼ f2; 6; 7g). Let sl be the string st with the only distinction that

all 1þ 2n þ 2n2 occurrences of a TII substring are replaced by the substring M (defined below).

M ¼
Yn

j¼1

II if jAJC ;

I0I otherwise:

(
ð14Þ

Claim 4. For all viAC; M is a supersequence of VðviÞ:

Proof. M and VðviÞ are both of type (13). M has a 0 at all indices except JC; but at the indices JC

also no VðviÞ has a 0 (Claim 3). The claim now follows from the observation that I0I is a
supersequence of II: &

Claim 5. sl is a supersequence of all strings in S ¼ fs1;y; sk; stg:

Proof. Because M is a supersequence of TII; sl is a supersequence of st: We now must show that
for all i: 1pipk; sl is a supersequence of si: We can map si on sl

13 such that (see example below)

1. Every VðviÞ substring in si maps on a M substring in st (see Claim 4).

2. Every VðvÞ: vavi substring in si maps on a TI0I substring in st: (Note that for every vertex
vAV ; TI0I is a supersequence of VðvÞ:)

3. Every O substring in si maps on a O substring in sl:

ARTICLE IN PRESS

Fig. 2. An instance ðG; k ¼ 3; fU1 ¼ fv1; v2; v3g;U2 ¼ fv4; v5; v6g;U3 ¼ fv7; v8; v9ggÞ for pClique. The vertices

fv2; v6; v7g form a pClique of size 3:

13 If we can map si on sl then sl must be a supersequence of si:
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The reader may convince himself that by the definition of sl and si this can always be done. An
example is given below. &

In Fig. 2 an instance for the pClique problem is given. An alignment of S for sl appears as
follows:14

st ¼ TI0I O TI0I O ðTII O TI0I O TI0I OÞ2n2þ2n TII O TI0I O TI0I

s1 ¼ Vðv1Þ O ðVðv2Þ O Vðv3Þ O Vðv1Þ OÞ2n2þ2n Vðv2Þ O Vðv3Þ

s2 ¼ Vðv4Þ O Vðv5Þ O ðVðv6Þ O Vðv4Þ O Vðv5Þ OÞ2n2þ2n Vðv6Þ

s3 ¼ ðVðv7Þ O Vðv8Þ O Vðv9Þ OÞ2n2þ2n Vðv7Þ O Vðv8Þ O Vðv9Þ

sl ¼ TI0I O TI0I O ðM O TI0I O TI0I OÞ2n2þ2n M O TI0I O TI0I

The alignment of TII; the VðviÞ’s and M appears as follows:

TII ¼ I I II I I I I I I II II I I I I

Vðv2Þ ¼ I0I II I0I I I I0I II II I0I I0I

Vðv6Þ ¼ I0I II I0I I0I I0I II II I0I I0I

Vðv7Þ ¼ I0I II I0I I0I I I II II I0I I0I

M ¼ I0I II I0I I0I I0I II II I0I I0I

Proof of Lemma 1. Lemma 1 follows from Claim 5, we only have to check if sl has indeed length

pl: sl differs from st by n � k additional 0’s in every of the 1þ 2n þ 2n2 TII substrings from st
15

and so has length jstj þ ð1þ 2n þ 2n2Þðn � kÞ ¼ l: &

3.6. Proof of Lemma 2

In this section we prove that if G does not have a pClique of size k; then the shortest
common supersequence sopt of the instance FSCS constructed from G must have length larger

than l:
All claims in this section relate to an optimal alignment. To save on notation, in the sequel we

will write

TIXI for either a TII or a TI0I substring from st;

Vi for a VðviÞ substring from si:

Observation 1. By replacing every TII with TI0I in st; we get a string sup that is a supersequence

for every string in S: So jsupj is an upper bound for jsoptj: We will need the following inequalities:

jsupj ¼ jstj þ ð1þ 2n þ 2n2Þnojstj þ 7n3 � n ¼ jstj þ jOj � nojstj þ jIj

ARTICLE IN PRESS

14The alignment is not unique.
15A 0 at all n indices except at the k indices JC :
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Observation 2. sopt has less than jIj more 1’s than st; otherwise jsoptjXjstj þ jIj4jsupj:16

Observation 3. sopt has less than jOj � n more 0’s than st; otherwise jsoptjXjstj þ jOj � n4jsupj:

Claim 6. 8i : No TIXI may overlap with two different Vi’s.

Proof. Note that two Vi’s are separated by at least one O block and TIXI has either any or n 0’s.
If a TIXI is aligned to two different Vi’s at most n 0’s from O can align with a 0 from st; and we
have jsoptjXjstj þ jOj � n contradicting Observation 3. &

Claim 7. 8i : Every Vi overlaps with at least one TIXI:

Proof. If not, the 2jIj 1’s from that Vi are not aligned to any 1 from st (all 1’s in st are in the
TIXI’s). Then sopt has at least 2jIj more 1’s than st contradicting Observation 2. &

Claim 8. 8i : At most m � 1 Vi’s overlap with more than one TIXI:

Proof. Suppose more than m � 1 Vi’s do overlap with more than one TIXI; with Claim 7 and
the observation that there are only m � 1 more TIXI’s than there are Vi’s we must have that at
least one TIXI overlaps with two different Vi’s contradicting Claim 6. &

Definition 3 (Nice TIXI; good Vi). We call a Vi good if it overlaps with exactly one TIXI:
We call a TIXI nice, if, for all i: 1pipk; it overlaps with exactly one Vi; and this Vi is good

(overlaps with no other TIXI).

Claim 9. There are at least ð1þ 2n2Þ nice TII’s.

Proof. For any i we have at most ðm � 1Þ Vi’s that overlap with more than one TIXI (Claim 8),
all other Vi’s overlap with exactly one TIXI (Claim 7). With this and the observation that there
are m � 1 more TIXI’s than there are Vi’s, we see that at most 2ðm � 1Þ TIXI’s can fail to
overlap with exactly one good Vi. If we sum over all i’s ð1pipkÞ we get that at most 2ðm � 1Þk
TIXI’s can fail to overlap with exactly one good Vi for all i; or equivalently, can fail to be nice.
Because the TII’s are a subset of the TIXI’s, we also have that at most 2ðm � 1Þko2n TII’s are

not nice, and so at least ð1þ 2n þ 2n2Þ � 2n TII’s are nice. &

Let A ¼ fT0
II;V

0
1;y;V0

kg where T0
II is nice and it overlaps with V0

i for all i:

Claim 10. 8i; j: A0 from V0
i never aligns with a 0 from V0

j if the two 0’s do not have the same index.

ARTICLE IN PRESS

16This follows from the simple observation that if sopt has jIj more 1’s than st; at least jIj 1’s from sopt cannot align

with a character in st:
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Proof. Assume we have a 0 in V0
i and a 0 in V0

j with different indices that align. This implies that

at least 2jIj 1’s from V0
i cannot align with 1’s from V0

j and so q has at least 2jIj more 1’s than

jTIIj: This is best seen by a small example. Assume we align a 0 from Vðv2Þ at index 3 with a 0
from Vðv9Þ at index 2:

Vðv2Þ ¼ I0I II I0I II I0I I I I I I0I I0I

Vðv9Þ ¼ II I0I II I0I I0I I0I I0I I0I II

Then any supersequence q of Vðv2Þ and Vðv9Þ must have 2jIj more 1’s than jTIIj e.g.

q ¼ I0I II I0I II I0I I0I I0I I0I I0I II

TII ¼ I I II I I II I I I I I I I I I I

NowV0
i andV0

j may not overlap with anyTIXI other thanT0
II (becauseT0

II is nice), but 1’s in

st appear only in TIXI’s, so we get at least 2jIj more 1’s in sopt than in st contradicting

Observation 2. &

Claim 11. A 0 from a V0
iAA does not align with a 0 that is not from a string in A:

Proof. When a 0 from V0
i aligns with a 0 from sj that is not in V0

j; this implies that there are at

least jIj more 1’s in sopt than in st (by an argument similar to that in the previous claim)

contradicting Observation 2. &

Proof of Lemma 2. Let sopt be a shortest common supersequence of S; where S is constructed

from an instance ðG; k; fU1;y;UkgÞ which has no pClique of size k: Let T0
II be any nice TII

that overlaps with fV0ðv1Þ;y;V0ðvkÞg: viAUi: A 0 from a V0ðviÞ may align only with 0’s from

V0ðv jÞ with the same index (Claims 10 and 11). Because fv1;y; vkg cannot be a pClique, we have

fewer than k indices where no V0ðviÞ has a 0 (Claim 3), and so sopt has at least n � k þ 1 more 0’s

than st: This is the case for all of the at least 1þ 2n2 nice TII’s (Claim 9). We now get a lower
bound for sopt that is bigger than l:
jsoptj4jstj þ ð1þ 2n2Þðn � k þ 1Þ4jstj þ ð1þ 2n þ 2n2Þðn � kÞ ¼ l: &

Proof of Theorem 1. Theorem 1 follows from Lemmas 1 and 2. Note that the reduction is a
parameterized many-one reduction as required for the result (see [4] for any details). &

4. W ½1� hardness for fixed alphabet longest common subsequence

The reduction from pClique to FLCS is very similar to the reduction we constructed for FSCS.
We will only sketch it.

The definitions of alignment, map, overlap and nice can be redefined for an alignment of a
subsequence in a natural way.
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For any string X; let X denote the string we get when we replace all occurrences of II in X by
I0I and vice versa.

The instance L ¼ ðL ¼ fl1;y; lk; ltg; gÞ for FLCS is

li ¼ðBiOÞ2nþ2n2

Bi;

lt ¼TI0IðOTÞ2nþ2n2

;

g ¼ jltj � ð1þ 2n þ 2n2Þðn � kÞ:

Lemma 3. If GApClique then there is a string lg of length g that is a subsequence of all strings in L

(or equivalently LAFSCSÞ:

Proof (sketch). The proof is very similar to the proof of the Lemma 1. Let lg be the string lt where

all ð1þ 2n þ 2n2Þ occurrences of a TI0I substring are replaced by the substring M (see 14). lg is a

subsequence of all strings in L (proof omitted but similar to proof of Claim 5). For the example
from Section 3.5 an alignment appears as follows:

lt ¼ ðTI0I O TII O TII OÞ2n2þ2n TI0I

l1 ¼ Vðv1Þ O ðVðv2Þ OVðv3Þ OVðv1Þ OÞ2n2þ2n Vðv2Þ O Vðv3Þ

l2 ¼ Vðv4Þ O Vðv5Þ O ðVðv6Þ O Vðv4Þ OVðv5Þ OÞ2n2þ2n Vðv6Þ

l3 ¼ ðVðv7Þ O Vðv8Þ O Vðv9Þ OÞ2n2þ2n Vðv7Þ O Vðv8Þ O Vðv9Þ

ll ¼ ðMO TII O TII OÞ2n2þ2n M

M has length jTI0Ij � ðn � kÞ; and so lg is a subsequence of L of length g: &

Let C be defined as in Section 3.4. Let J0
C be the indices where all strings VðviÞ : viAC have a 0:

We have J0
C � J0

C
17 because by the definition the string VðviÞ has a 0 at an index j if and only if

VðviÞ has no 0 at index j: We can now restate Claim 3 by replacing J0
C with J0

C :

Claim 12. If C is a pClique jJ0
C j ¼ k otherwise jJ0

Cjok:

The proofs of Claims 13–18 below are omitted because they are similar to the proofs of Claims

6–11.18 Note that Claims 13–15 are almost identical to the Claims 6–8, only the roles of Vi (resp.
Vi) and TIXI are interchanged. Claims 17 and 18 are identical to Claims 10 and 11, only the V’s

are replaced by V’s. Claim 16 is identical to Claim 9, only TII is replaced by TI0I:

Claim 13. 8i: No Vi may overlap with two different TIXI’s.
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Claim 14. 8i: Every TIXI overlaps with at least one Vi:

Claim 15. 8i: At most m � 1 TIXI’s overlap with more than one Vi:

Claim 16. There are at least ð1þ 2n2Þ nice TI0I’s.

Let A ¼ fT0
I0I;V

0
1;y;V

0
kg where T0

I0I is nice and it overlaps with V
0
i for all i:

Claim 17. 8i; j: A 0 from V
0
i never aligns with a 0 from V

0
j if the two 0’s do not have the same index.

Claim 18. A 0 from a V
0
iAA does not align with a 0 that is not from a string in A:

Lemma 4. If GepClique then jloptjog19 (or equivalently LeFSCS).

Proof. The proof is very similar to the proof of Lemma 2. Let lopt be a longest common

subsequence of L; where L is constructed from an Instance ðG; k; fU1;y;UkgÞ which has no

pClique of size k: Let T0
I0I be any nice TI0I that overlaps with fV0ðv1Þ;y;V

0ðvkÞg : viAUi: A 0

from a V
0ðviÞ may align only with 0’s from V

0ðv jÞ with the same index (Claims 17 and 18).

Because fv1;y; vkg cannot be a pClique, we have fewer than k indices where all V0ðviÞ have a 0
(Claim 12), and so lopt has at least n � k þ 1 fewer 0’s than lt: This is the case for all of the at least

1þ 2n2 nice TI0I’s (Claim 16). We now get an upper bound for lopt that is smaller than g
jloptjojltj � ð1þ 2n2Þðn � k þ 1Þojltj � ð1þ 2n þ 2n2Þðn � kÞ ¼ g &

Proof of Theorem 2. Theorem 2 follows from Lemmas 3 and 4. Note that the reduction is a
parameterized many-one reduction as required for the result (see [4] for any details). &

5. Conclusion

We have shown that the fixed alphabet shortest common supersequence (SCS) and the fixed
alphabet longest common subsequence (LCS) problems parameterized in the number of strings
are W ½1�-hard.

Unless an unlikely collapse in the parameterized hierarchy occurs, this rules out the existence of

exact algorithms with running time f ðkÞnOð1Þ (i.e., exponential only in k) for those problems. This
does not mean that there are no algorithms with much better asymptotic time-complexity than the

known OðnkÞ algorithms based on dynamic programming, e.g. algorithms with running time n
ffiffi
k

p

are not deemed impossible by our results.
The exact classification of the FSCS and FLCS problems within the parameterized hierarchy is

left open. We have evidence20 that leads us to the conjecture that an exact classification of these
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problems (and many others) within the parameterized hierarchy is not possible, because they seem
to be not even in W ½P�; the highest (reasonable) class these problems could be complete for.
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