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Abstract

A finite element method involving Galerkin method with septic B-splines as basis functions has been solved the eighth order

boundary value problems The basis functions are redefined into a new set of basis functions which vanish at the boundary where

all types of boundary conditions are prescribed. The proposed method was applied to solve several examples of eighth order linear

and nonlinear boundary value problems. To test the efficiency of the proposed method, obtained numerical results are compared

with exact solutions available in the literature.
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1. Introduction

In this paper, we consider a general eighth order linear boundary value problem given by

a0(x)y(8)(x) + a1(x)y(7)(x) + a2(x)y(6)(x) + a3(x)y(5)(x) + a4(x)y(4)(x) + a5(x)y
′′′

(x) + a6(x)y
′′
(x)

+ a7(x)y
′
(x) + a8(x)y(x) = b(x), c < x < d (1)

subject to boundary conditions

y(c) = A0, y(d) = C0, y
′
(c) = A1, y

′
(d) = C1, y

′′
(c) = A2, y

′′
(d) = C2, y

′′′
(c) = A3, y

′′′
(d) = C3 (2)

where A0, C0, A1, C1, A2, C2, A3 and C3 are finite real constants and a0(x), a1(x), a2(x), a3(x), a4(x), a5(x) , a6(x),

a7(x) , a8(x) and b(x) are all continuous functions defined on the interval [c, d].

Generally, this type of eighth order boundary value problems arise in the study of astrophysics, hydrodynamics and

hydro magnetic stability, fluid dynamics, astronomy, beam and long wave theory, applied mathematics, engineering
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and applied physics. The boundary value problems of higher order differential equations have been investigated due

to their mathematical importance and the potential for applications in diversified applied sciences. The literature on

the numerical solutions of eight order boundary value problems is very scarce. Chandra sekhar [2] determined that

when an infinite horizontal layer of fluid is heated from below and is under the action of rotation, instability sets in,

when this instability is an ordinary convection the ordinary differential equation is sixth order, when the instability

sets in as overstability, it is modeled by an eight order ordinary differential equation.

An eighth order differential equation derived from governing bending and axial vibrations by Shen [3], Paliwal

and Pande [4] derived equations for the equilibrium in terms of displacement components for an orthotropic thin

circular cylindrical shell subjected to a load that is not symmetric about of the shell, which resulted in eighth order

differential equations. The text book by Agarwal [1] contains theory which deals the conditions for existence and

uniqueness of solutions of eighth order boundary value problems, though no numerical methods are given for solving

such problems. Solving such boundary value problems analytically is possible only in very rare cases. So, many

numerical methods have been developed overs the years to approximate the solution for these type of boundary value

problems. An eighth order differential equation occurs in torsional vibration of uniform beams was investigated by

Bishop [5], Boutayes and Twizell [16] developed finite difference methods for the special case solution of the eighth

order boundary value problems, Twizell et. al. [15] developed numerical methods for eight, tenth, twelveth order

eigen value problems arising in thermal instability, Inc and Evans [6] presented the solution of special case of eighth

order boundary value problems using Adomain decomposition method, Siddiqi et. al. [12] presented solution of

special case of eighth order boundary value problems using variational Iterational technique, Ghazala Akram and

Hamood Ur Rehman [7] presented the solution of special case of eighth order boundary value problems using Kernel

space method there were used searching least square value method investigated for nonlinear eighth order boundary

value problems, Liu and Wu [8] presented the solution of special case of eighth order boundary value problems using

generalized Differential quadrature rule, Koonprasert and Torvattanabum [11] presented Variational iterational method

for solving eighth order boundary value problems, Javidi and Golbai [10] presented HPM for solution of eighth order

boundary value problems, Prorshouhi at. al. [9] presented Variatonal iterational method for solution of special case

of eighth order boundary value problems.

In the following, we mainly pay attention to the spline functions technique have been developed to solve these type

of boundary value problems. Siddiqi and Ghazala [13,14] presented solution of special case of eighth order bound-

ary value problems using nonic non polynomial spline functions and nonic polynomial spline methods, Siddiqi and

Twizell [17] presented the solution of special case of eighth order boundary value problems using octic splines, Kasi

Viswanadham and Showri raju [18] developed quintic B-splines Collocation method to solve a general eight order

boundary value problem. So far, a general linear eighth order boundary value problem has not been solved by using

Galerkin method with septic B-splines. This motivated us to solve a general eighth order boundary value problem by

Galerkin method with septic B-splines.

In this paper, we try to present a simple finite element method which involves Gelerkin approach with septic B-

splines as basis functions to solve the eighth order two point boundary value problems of the type (1)-(2). This paper

is organized as follows. Section 2, deals with the justification for using Galerkin Method. In Section 3, a description

of Galerkin method with septic B-splines as basis functions is explained. In particular we first introduce the basic

concept of septic B-splines and followed by the proposed method. In Section 4, the procedure to solve the nodal

parameters has been presented. In section 5, the proposed method is tested on several linear and nonlinear boundary

value problems. The solution to a nonlinear problem has been obtained as the limit of a sequence of solution of linear

problems generated by the quasilinearization technique [19]. Finally, in the last section, the conclusions are presented.

2. Justification for using Galerkin Method

For the few decades, the finite element method has become very powerful, useful tool to solve the boundary value

problems in the complex geometry. In finite element method (FEM) the approximate solution can be written as a

linear combination of basis functions which constitute a basis for the approximation space under consideration. In

Galerkin method, the residual of approximation is made orthogonal to the basis functions. When one uses Galerkin
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method, a weak form of approximation solution for a given differential equation exists and is unique under appropriate

conditions [23,25] irrespective of properties of a given differential operator. Further, a weak solution also tends to a

classical solution of given differential equation, provided sufficient attention is given to boundary conditions [24].

That means the basis functions should vanish on the boundary where the Dirichlet type of boundary conditions are

prescribed. Hence in this paper we employed the use of Galerkin method with septic B-splines as basis functions to

approximate the solution of eighth order boundary value problem.

3. Description of the method

Definition of septic B-splines:

The septic B-splines are defined in [20–22]. The existence of septic spline interpolate s(x) to a function in a closed

interval [c, d] for spaced knots (need not be evenly spaced) of a partition c = x0 < x1 < x2 < .... < xn−1 < xn = d is

established by constructing it. The construction of s(x) is done with the help of the septic B-splines. Introduce twelve

additional knots x−7, x−6, x−5, x−4, x−3, x−2, x−1, xn+1, xn+2, xn+3, xn+4, xn+5, xn+6 and xn+7 such that

x−7 < x−6 < x−5 < x−4 < x−3 < x−2 < x−1 < x0 and xn < xn+1 < xn+2 < xn+3 < xn+4 < xn+5 < xn+6 < xn+7.

Now the septic B-splines Bi(x)′s are defined by

Bi(x) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

i+4∑
r=i−4

(xr − x)7
+

π
′
(xr)

, for x ∈ [xi−4, xi+4]

0, otherwise

where (xr − x)7
+ =

⎧⎪⎪⎨⎪⎪⎩
(xr − x)7, for xr ≥ x
0, for xr ≤ x

and π(x) =

i+4∏
r=i−4

(x − xr)

where { B−3(x), B−2(x), B−1(x), B0(x), B1(x), . . ., Bn−1(x), Bn(x), Bn+1(x),Bn+2(x), Bn+3(x) } forms a basis for the space

S 7(π) of septic polynomial splines. Schoenberg [22] has proved that septic B-splines are the unique nonzero splines

of smallest compact support with the knots at

x−7 < x−6 < x−5 < x−4 < x−2 < x−1 < x0 < . . . < xn+1 < xn+2 < xn+3 < xn+4 < xn+5 < xn+6 < xn+7.

To solve the boundary value problem (1) and (2) by the Galerkin method with septic B-splines as basis functions, we

define the approximation for y(x) as

y(x) =

n+3∑
j=−3

α jB j(x) (3)

where α j’s are the nodal parameters to be determined. In Galerkin method the basis functions should vanish on the

boundary where the Dirichlet type of boundary conditions are specified. In the set of septic B-splines { B−3(x), B−2(x),

B−1(x), B0(x), B1(x), B2(x), . . . , Bn−1(x), Bn(x), Bn+1(x), Bn+2(x), Bn+3(x) }, the basis functions B−3(x),B−2(x), B−1(x),

B0(x), B1(x), B2(x), B3(x), Bn−3(x),Bn−2(x), Bn−1(x), Bn(x), Bn+1(x),Bn+2(x) and Bn+3(x) do not vanish at one of the

boundary points. So, there is a necessity of redefining the basis functions into a new set of basis functions which

vanish on the boundary where the Dirichlet type of boundary conditions are specified. Since, we are approximating

the eighth order boundary value problem by septic B-splines polynomial, we redefine the basis functions into a new

set of basis functions which vanish on the boundary where the Dirichlet boundary conditions, Neumann boundary

conditions, second order derivative boundary conditions and third order derivative types of boundary conditions are

prescribed. The procedure for redefining is as follows.

Using the septic B-splines and the Dirichlet boundary conditions of (2), we get the approximate solution at the bound-

ary points as

A0 = y(c) = y(x0) =

3∑
j=−3

α jB j(x0), C0 = y(d) = y(xn) =

n+3∑
j=n−3

α jB j(xn) (4)
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A1 = y′(c) = y′(x0) =

3∑
j=−3

α jB′j(x0), C1 = y′(d) = y′(xn) =

n+3∑
j=n−3

α jB′j(xn) (5)

A2 = y′′(c) = y′′(x0) =

3∑
j=−3

α jB′′j (x0), C2 = y′′(d) = y′′(xn) =

n+3∑
j=n−3

α jB′′j (xn) (6)

A3 = y′′′(c) = y′′′(x0) =

3∑
j=−3

α jB′′′j (x0), C3 = y′′′(d) = y′′′(xn) =

n+3∑
j=n−3

α jB′′′j (xn) (7)

Eliminating α−3,α−2, α−1, α0, αn, αn+1, αn+2 and αn+3 from the equations (3) to (7), we get the approximation for

y(x) as

y(x) = w(x) +

n−1∑
j=1

α j B̃ j(x) (8)

where

w(x) = w3(x) +
A3 − w

′′′
3 (x0)

R′′′
0

(x0)
R0(x) +

C3 − w
′′′
3 (xn)

R′′′n (xn)
Rn(x) (9)

w3(x) = w2(x) +
A2 − w

′′
2(x0)

Q′′
−1

(x0)
Q−1(x) +

C2 − w
′′
2(xn)

Q′′
n+1

(xn)
Qn+1(x) (10)

w2(x) = w1(x) +
A1 − w

′
1(x0)

P′−2
(x0)

P−2(x) +
C1 − w

′
1(xn)

P′n+2
(xn)

Pn+2(x) (11)

w1(x) =
A0

B−3(x0)
B−3(x) +

C0

Bn+3(xn)
Bn+3(x) (12)

B̃ j(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Rj(x) −
R
′′′
j (x0)

R′′′
0

(x0)
R0(x), j = 1, 2, 3

Rj(x), j = 4, . . . , n − 4

Rj(x) −
R
′′′
j (xn)

R′′′n (xn)
Rn(x), j = n − 3, n − 2, n − 1

(13)

Rj(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Qj(x) −
Q
′′
j (x0)

Q′′
−1

(x0)
Q−1(x), j = 0, 1, 2, 3

Qj(x), j = 4, . . . , n − 4

Q j(x) −
Q
′′
j (xn)

Q′′
n+1

(xn)
Qn+1(x), j = n − 3, n − 2, n − 1, n

(14)

Qj(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Pj(x) −
P
′
j(x0)

P′−2
(x0)

P−2(x), j = −1, 0, 1, 2, 3

Pj(x), j = 4, . . . , n − 4

Pj(x) −
P
′
j(xn)

P′n+2
(xn)

Pn+2(x), j = n − 3, n − 2, n − 1, n, n + 1

(15)

Pj(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

Bj(x) − Bj(x0)

B−3(x0)
B−3(x), j = −2,−1, 0, 1, 2, 3

Bj(x), j = 4, . . . , n − 4

Bj(x) − Bj(xn)

Bn+3(xn)
Bn+3(x), j = n − 3, n − 2, n − 1, n, n + 1, n + 2

(16)
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Now the new set of basis functions for the approximation y(x) is { B̃ j(x), j = 1, 2, . . . , n − 1 }. Applying the Galerkin

method to (1) with the new set of basis functions, we get

∫ xn

x0

[
a0(x)y(8)(x) + a1(x)y(7)(x) + a2(x)y(6)(x) + a3(x)y(5)(x) + a4(x)y(4)(x) + a5(x)y

′′′
(x) + a6(x)y

′′
(x)

+ a7(x)y
′
(x) + a8(x)y(x)

]
B̃i(x) dx =

∫ xn

x0

b(x)B̃i(x)dx for i = 1, 2, 3, . . . , n − 1. (17)

Integrating by parts terms the first two terms on the left hand side of (17), we get term after applying the boundary

conditions prescribed in (2), and using the approximation for y(x) given in (8) and after rearranging the terms for

resulting equations, we get a system of equations in the matrix form as

Aα = B (18)

where A = [ai j]; B = [bi];

ai j =

∫ xn

x0

{[
a2(x)B̃i(x) − d

dx

[
a1(x)B̃i(x)

]]
B̃(6)

j (x) + a3(x)B̃i(x)B̃(5)
j (x) +

[
a4(x)B̃i(x) +

d4

dx4

[
a0(x)B̃i(x)

]]]
B̃(4)

j (x)

+a5(x)B̃i(x)B̃
′′′
j (x) + a6(x)B̃i(x)B̃

′′
j (x) + a7(x)B̃i(x)B̃

′
j(x) + a8(x)B̃i(x)B̃ j(x)

}
dx for i, j = 1, 2, . . . , n − 1; (19)

bi =

∫ xn

x0

{
b(x)B̃i(x) +

[
−a2(x)B̃i(x) +

d
dx

[
a1(x)B̃i(x)

]]
w(6)(x) − a3(x)B̃i(x)w(5)(x) −

[
a4(x)B̃i(x)

+
d4

dx4

[
a0(x)B̃i(x)

]]
w(4)(x) − a5(x)B̃i(x)w

′′′
(x) − a6(x)B̃i(x)w

′′
(x) − a7(x)B̃i(x)w

′
(x) − a8(x)B̃i(x)w(x)

}
dx

for i = 1, 2, . . . , n − 1 (20)

and α = [α1 α2 . . . αn−1]T .

4. Procedure to find the solution for nodal parameters

A typical integral element in the matrix A is
∑n−1

m=0 Im where Im =
∫ xm+1

xm
ri(x)r j(x)Z(x) dx and ri(x), r j(x) are

the septic B-spline basis functions or their derivatives. It may be noted that Im = 0 if (xi−4, xi+4) ∩ (x j−4, x j+4) ∩
(xm, xm+1) = ∅. To evaluate each Im, we employed 8-point Gauss-Legendre quadrature formula. Thus the stiff matrix

A is a fifteen diagonal band matrix. The nodal parameter vector α has been obtained from the system Aα = B by

using a band matrix solution package. We have used FORTRAN-90 program to solve the boundary value problems

(1)-(2) by the proposed method.

5. Numerical Results

To demonstrate the applicability of the proposed method for solving the eighth order boundary value problems of

the types (1) and (2), we considered a linear boundary value problem and two nonlinear boundary value problems.

Numerical results for each problem are presented in tabular forms and compared with the exact solutions available in

the literature.

Example 1: Consider the linear boundary value problem

y(8) + y(7) + 2y(6) + 2y(5) + 2y(4) + 2xy
′′′
+ 2y

′′
+ x2y

′
+ xy = −(x4 − 2x3 + 14x − 27) cos x

− (3x3 − 13x2 + 11x + 17) sin x, 0 < x < 1 (21)
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subject to y(0) = 0, y(1) = 0, y
′
(0) = −1, y

′
(1) = 2 sin 1, y

′′
(0) = 0, y

′′
(1) = 4 cos 1 + 2 sin 1,

y
′′′

(0) = 7, y
′′′

(1) = 6 cos 1 − 6 sin 1.
The exact solution for the above problem is y = (x2 − 1) sin x.
The proposed method is tested on this problem where the domain [0, 1] is divided into 10 equal subintervals. Numer-

ical results for this problem are given in Table 1. The maximum absolute error obtained by the proposed method is

2.288818 × 10−05.
Example 2: Consider the nonlinear boundary value problem

y(8) + 3y(7) + y(6) + y
′2

e4y − 4y
′′
y2 + y

′′′2
e2x = −36e−2x, 0 < x < 1 (22)

subject to y(0) = 1, y(1) = e−2, y
′
(0) = −2, y

′
(1) = −2e−2, y

′′
(0) = 4, y

′′
(1) = 4e−2, y

′′′
(0) = −8, y

′′′
(1) = −8e−2.

The exact solution for the above problem is y = e−2x.
The nonlinear boundary value problem (22) is converted into a sequence of linear boundary value problems generated

by quasilinearization technique [19] as

y(8)
(n+1)
+ 3y(7)

(n+1)
+ y(6)

(n+1)
+ y(5)

(n+1)
+ [2e2xy

′′′
(n)]y

′′′
(n+1) − [4ey

′′
(n) y

′′
(n)

2
]y
′′
(n+1) + [2e4y(n) y

′
(n)]y

′
(n+1) + [4e4y(n) y

′
(n)

2

− 8ey
′′
(n) y(n)]y(n+1) = e2xy

′′′
(n)

2
+ 4ey

′′
(n) y(n)

2(1 − y
′′
(n)) + e4y(n) y

′
(n)

2
+ [4e4y(n) y

′
(n)

2 − 8ey
′′
(n) y(n)]y(n) − 36e−2x,

n = 0, 1, 2, 3, ... (23)

subject to y(n+1)(0) = 1, y(n+1)(1) = e−2, y
′
(n+1)(0) = −2, y

′
(n+1)(1) = −2e−2,

y
′′
(n+1)(0) = 4, y

′′
(n+1)(1) = 4e−2, y

′′′
(n+1)(0) = −8, y

′′′
(n+1)(1) = −8e−2.

Here y(n+1) is the (n+ 1)th approximation for y(x). The domain [0, 1] is divided into 10 equal subintervals and the pro-

posed method is applied to the sequence of a linear problems (23) . Numerical results for this problem are presented

in Table 2. The maximum absolute error obtained by the proposed method is 2.87294 × 10−05.

Example 3: Consider the nonlinear boundary value problem

y(8) = 7!(e−8y − 2

(1 + x)8
), 0 ≤ x ≤ e

1
2 − 1 (24)

subject to y(0) = 0, y(e
1
2 − 1) = 1

2
, y

′
(0) = 1, y

′
(e

1
2 − 1) = e

−1
2 ,

y
′′
(0) = −1,y

′′
(e

1
2 − 1) = −e−1, y

′′′
(0) = 2, y

′′′
(e

1
2 − 1) = 2e

−3
2 .

The exact solution for the above problem is y = ln(1 + x).
The nonlinear boundary value problem (24) is converted into a sequence of linear boundary value problems generated

by quasilinearization technique [19] as

y(8)
(n+1)
+ (8!e−8y(n) )y(n+1) = (8!y(n) + 7!)e−8y(n) − 2 × 7!

(1 + x)8
n = 0, 1, 2, 3, ... (25)

subject to y(n+1)(0) = 0, y(n+1)(e
1
2 − 1) = 1

2
, y

′
(n+1)(0) = 1, y

′
(n+1)(e

1
2 − 1) = e

−1
2 ,

y
′′
(n+1)(0) = −1,y

′′
(n+1)(e

1
2 − 1) = −e−1, y

′′′
(n+1)(0) = 2, y

′′′
(n+1)(e

1
2 − 1) = 2e

−3
2 .

Here y(n+1) is the (n + 1)th approximation for y(x). The domain [0, e
1
2 − 1] is divided into 10 equal subintervals and

the proposed method is applied to the sequence of a linear problems (25). Numerical results for this problem are

presented in Table 5. The maximum absolute error obtained by the proposed method is 8.508563 × 10−05.

6. Conclusions

In this paper, we have deployed a Galerkin method with septic B-splines as basis functions to solve eighth order

boundary value problems. The septic B-spline basis set has been redefined into a new set of basis functions which

vanish on the boundary where the Dirichlet boundary conditions, Neumann boundary conditions, secondary order
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Table 1. Numerical results for Example 1

x Absolute error by

proposed method

0.1 4.239380E-06

0.2 9.983778E-06

0.3 5.096197E-06

0.4 7.629395E-06

0.5 1.493096E-05

0.6 2.288818E-05

0.7 2.276897E-05

0.8 1.943111E-05

0.9 1.323223E-05

Table 2. Numerical results for Example 2

x Absolute error by

proposed method

0.1 7.987022E-06

0.2 2.175570E-05

0.3 2.086163E-05

0.4 2.872944E-05

0.5 2.685189E-05

0.6 1.692772E-05

0.7 1.153350E-05

0.8 4.798174E-06

0.9 1.817942E-06

Table 3. Numerical results for Example 3

x Absolute error by

proposed method

6.487213E-02 2.942979E-06

1.297443E-01 1.576543E-05

1.946164E-01 2.913177E-05

2.594885E-01 4.905462E-05

3.243607E-01 7.343292E-05

3.892328E-01 8.508563E-05

4.541049E-01 6.538630E-05

5.189770E-01 4.380941E-05

5.838492E-01 2.306700E-05

derivative boundary conditions and third order derivative types of boundary conditions are prescribed. The proposed

method has been tested on one linear and two nonlinear eighth order boundary value problems. The solution to

a nonlinear problem has been obtained as the limit of a sequence of solution of linear problems generated by the

quasilinearization technique [19]. The numerical results obtained by the proposed method are in good agreement with

the exact solutions available in the literature. The objective of this paper is to present a simple,efficient and accurate

method to solve eighth order boundary value problems.
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