Normal generalized selfadjoint operators in Krein spaces

Scott A. McCullough, Leiba Rodman

Department of Mathematics, University of Florida, Gainesville, FL 32611-8105, USA
The College of William and Mary, Department of Mathematics, P.O. Box 8795, Williamsburg, VA 23187-8795, USA

Received 5 February 1998; accepted 18 May 1998

Submitted by H. Schneider

Abstract

A full description is given of n-selfadjoint normal operators in Krein spaces of finite defect, as well as in general Krein spaces. Both real and complex Krein spaces are considered. © 1998 Elsevier Science Inc. All rights reserved.

AMS classification: 47B50; 15A57

1. Introduction

This note is a follow up on the papers [1,2]. Let J be a selfadjoint operator on a (complex or real, finite or infinite dimensional) Hilbert space H such that J^2 = I. Consider the sesquilinear form [.,.] induced by J:

[x, y] = ⟨Jx, y⟩, \quad x, y ∈ H,

where ⟨., .⟩ stands for the inner product in H. The corresponding quadratic form [x, x] is indefinite (unless J = I or J = −I). The space H, together with the sesquilinear form [., .] generated by some J as above, is called a Krein space.

* Corresponding author. E-mail: lxrodnm@math.wm.edu.

† The work of this author is partially supported by the NSF grant DMS 9500924.
Let \(n \) be a fixed positive integer. A (linear bounded) operator \(A \) on the Krein space \(H \) is called \(n \)-selfadjoint if

\[
\sum_{k=0}^{n} (-1)^k \binom{n}{k} A^k A^{n-k} = 0
\]

(\(A^0 \) and \(A^0 \) are interpreted as the identity operator \(I \)), where \(A^* \) stands for the Krein space adjoint: \([Ax, y] = [x, A'y]\) for all \(x, y \in H \). (Everywhere from now on the adjoint is understood in the Krein space sense.)

Some information on the structure of Krein space \(n \)-selfadjoint operators is found in [2]. In this note we describe \(n \)-selfadjoint operators \(A \), in the case \(A \) is assumed, in addition, normal. Recall that an operator \(A \) on \(H \) is called normal if \(AA^* = A'A \). In contrast with [1,2], we allow real Krein spaces as well as the complex ones.

We denote by \(P_+ = \frac{1}{2} (I + J) \) the orthogonal (with respect to the usual scalar product \((\cdot, \cdot)\)) projector on the eigenspace of \(J \) corresponding to the eigenvalue 1. The defect \(q \) of the Krein space is defined by \(q = \min (\text{rank } P_+, \text{rank } (I - P_+)) \). Thus, \(q \) is either a nonnegative integer or infinity.

The following proposition is useful:

Proposition 1.1. If \(A \) is \(n \)-selfadjoint, then \(A - \lambda I \) is \(m \)-selfadjoint for every real \(\lambda \) and every integer \(m \geq n \).

The proof goes through as in the complex Hilbert case (see [1]). \(\mathbb{R} \) and \(\mathbb{C} \) denote the fields of the real numbers and of the complex numbers, respectively.

2. Main results

We start with two simple lemmas.

Lemma 2.1. Let \(H \) be a Krein space, and let \(A \) be a normal operator on \(H \). Denote \(S = \frac{1}{2} (A - A^*) \). Then \(A \) is \(n \)-selfadjoint if and only if \(S^n = 0 \).

For the proof, simply compute, using \(A^* A = AA^* \):

\[
S^n = 2^n \sum_{k=0}^{n} (-1)^k \binom{n}{k} A^k A^{n-k}.
\]

Lemma 2.2. Let \(H \) be a Krein space of finite defect \(q \) (Pontryagin space). If a nilpotent operator \(T \) on \(H \) is either selfadjoint or skew-adjoint, i.e., \(T^* = \pm T \), then \(T^{2q+1} = 0 \); moreover, \(T^{2q} = 0 \) if the smallest nonnegative integer \(n \) such that \(T^n = 0 \) is even.
Proof. Since H has defect q, we have

$$J = \pm (I - P),$$

(2.1)

where P has rank q. Without loss of generality, we assume that the plus sign holds in Eq. (2.1); otherwise replace J by $-J$. Let m denote n if n is even and $n + 1$ if n is odd, where n is the smallest nonnegative integer such that $T^n = 0$. Denote $Y = T^{m/2}$ and let Y' be the $\langle \cdot, \cdot \rangle$-adjoint of Y. We have:

$$0 = JT^m = \pm JY'Y = \pm Y'JY = \pm (Y'Y - Y'PY).$$

Since P has rank q, the rank of $Y'PY$ is at most q. Consequently, $Y'Y$ has rank at most q, and since Y' is one-to-one on the range of Y, the rank of $Y = T^{m/2}$ is at most q. It follows that, as T is nilpotent, $T^{(m/2)+q} = 0$. So $\frac{1}{2}m + q \geq n$. Thus, if $m = n$, then $2q \geq n$, and if $m = n + 1$, then $2q + 1 \geq n$. \qed

We now state one of the main results of this note.

Theorem 2.3. Let H be a Krein space of defect $q \leq \infty$. An operator A on H is normal and n-selfadjoint if and only if A has the form $A = T + N$, where the operators T and N are such that $T = T^*$, $N = -N^*$, $TN = NT$, and $N^m = 0$, where $m = \min(2q + 1, n)$.

Proof. If A is normal and n-selfadjoint, let $T = \frac{1}{2}(A + A^*)$ and $N = \frac{1}{2}(A - A^*)$, and use Lemmas 2.1 and 2.2 to verify the required properties of T and N. Conversely, if $A = T + N$, where T and N have the properties described in the theorem, then clearly A is normal. Now, since $\frac{1}{2}(A - A^*) = N$, by Lemma 2.1 A is n-selfadjoint as well. \qed

A particular case of Theorem 2.3 (for 2-selfadjoint operators in complex Krein spaces) is presented in [2], Theorem 4.1(i). We use this opportunity to point out that the equality $NN^* = 0$ is missing in the formulation of Theorem 4.1(i) in [2].

When $q = 0$, Theorem 2.3 says that every normal n-selfadjoint operator on a Hilbert space is in fact selfadjoint. This is an immediate consequence of the fact (see [3–5]) that n-selfadjoint operators in Hilbert spaces have real spectrum.

Denote by \mathcal{S}_n the class of normal n-selfadjoint operators.

Theorem 2.4. Assume the Krein space H has finite defect q. Then

$$\mathcal{S}_1 \subseteq \mathcal{S}_2 \subseteq \cdots \subseteq \mathcal{S}_{2q+1} = \mathcal{S}_p$$

for every $p \geq 2q + 1$. If, in addition, the (possibly infinite) dimension of H exceeds $2q$, then the classes $\mathcal{S}_1, \ldots, \mathcal{S}_{2q+1}$ are all distinct in the complex case, and $\mathcal{S}_2 \neq \mathcal{S}_3, \mathcal{S}_4 \neq \mathcal{S}_5, \ldots, \mathcal{S}_{2q} \neq \mathcal{S}_{2q+1}$ in the real case.
Proof. The first part of Theorem 2.4 follows from Proposition 1.1 and Theorem 2.3. For the second part, we use induction on \(q \). It will be convenient to consider the complex case first. Start with the basis of induction, i.e., \(q = 1 \). It suffices to assume that \(H = \mathbb{C}^3 \) with the standard Hilbert space structure, and

\[
J = \begin{bmatrix}
0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 0
\end{bmatrix}
\]

Let

\[
B_1 = \begin{bmatrix}
0 & 1 & 0 \\
0 & 0 & -1 \\
0 & 0 & 0
\end{bmatrix}, \quad B_2 = \begin{bmatrix}
0 & 0 & i \\
0 & 0 & 0 \\
0 & 0 & 0
\end{bmatrix}.
\] (2.2)

It turns out that \(B_1 \) and \(B_2 \) are normal, and \(B_1 \) is 3-selfadjoint but not 2-selfadjoint, whereas \(B_2 \) is 2-selfadjoint but not selfadjoint. We pass now to the general \(q \), still assuming the complex scalars. Let \(\dim H \geq 2q + 1 \). Using induction on \(q \) we may assume that we have proved already that the classes \(\mathcal{S}_1, \ldots, \mathcal{S}_{2q-1} \) are all distinct. It remains therefore to demonstrate that the classes \(\mathcal{S}_{2q-1}, \mathcal{S}_{2q}, \mathcal{S}_{2q+1} \) are distinct. To this end, we may restrict ourselves to the case when \(H = \mathbb{C}^{2q+1} \), with the standard Hilbert space structure on \(\mathbb{C}^{2q+1} \), and \(J = [\alpha_{jk}]_{2q+1}^{2q+1} \) is defined by \(\alpha_{jk} = 1 \) if \(j + k = 2q + 2 \) and \(\alpha_{jk} = 0 \) otherwise. Define the \((2q+1) \times (2q+1)\) matrix \(N_{2q+1} \) by the property that the \((j,k)\) entry of \(N_{2q+1} \) is equal to \(i = \sqrt{-1} \) if \(k - j = 1 \), and zero otherwise. Then \(N_{2q+1} = -N_{2q+1}^* \), and since \(N_{2q+1}^{2q+1} = 0 \neq N_{2q+1}^{2q+1} \), Theorem 2.3 shows that \(N_{2q+1} \in \mathcal{S}_{2q+1} \setminus \mathcal{S}_{2q} \). To show that \(\mathcal{S}_{2q} \neq \mathcal{S}_{2q+1} \), we consider the Krein space structure defined on \(\mathbb{C}^{2q+1} \) by \(J = [\alpha_{jk}]_{2q+1}^{2q+1} \), where \(\alpha_{jk} = 1 \) if \(j + k = 2q + 1 \) and \(\alpha_{jk} = 0 \) otherwise, then the matrix \(N_{2q+1} \) belongs to \(\mathcal{S}_{2q} \setminus \mathcal{S}_{2q+1} \).

Consider now the real case, and assume first \(q = 1 \). The matrix \(B_1 \) of Eq. (2.2) shows that \(\mathcal{S}_3 \neq \mathcal{S}_2 \) if \(\dim H \geq 3 \). Using the induction on \(q \), it remains to prove that \(\mathcal{S}_{2q} \neq \mathcal{S}_{2q+1} \) if \(\dim H \geq 2q + 1 \). It suffices to prove this for the case when \(H = \mathbb{R}^{2q+1} \) and \(J = [\alpha_{jk}]_{2q+1}^{2q+1} \), where \(\alpha_{jk} = 1 \) if \(j + k = 2q + 2 \) and \(\alpha_{jk} = 0 \) otherwise. Define a \((2q+1) \times (2q+1)\) matrix \(B \) by

\[
B = \begin{bmatrix}
0_{q \times q} & I_{q \times q} & 0_{q \times q} \\
0_{q \times q} & 0_{q \times q} & -I_{q \times q} \\
0_{1 \times q} & 0_{1 \times q} & 0_{1 \times q}
\end{bmatrix},
\]

where \(0_{r \times k} \) and \(I_{r \times k} \) stand for the \(j \times k \) zero and identity matrix, respectively. One verifies that \(B^* = -B \), and since \(B^{2q} \neq 0 \sim B^{2q+1} \), it follows that \(B \in \mathcal{S}_{2q+1} \setminus \mathcal{S}_{2q} \). \(\square \)
The fact that $\mathcal{S}_1, \mathcal{S}_2, \mathcal{S}_3$ are distinct if $q = 1$ and the dimension of H is at least three (in the complex case), was observed in Theorem 4.1 of [2].

The question whether $\mathcal{S}_{2r-1} = \mathcal{S}_{2r}$ for real Krein spaces is more involved.

Theorem 2.5. Let H be a real Krein space with defect q. Then, for a positive integer r, the equality $\mathcal{S}_{2r-1} = \mathcal{S}_{2r}$ holds if and only if $q < 2r$.

For the proof of Theorem 2.5, we need a canonical form for nilpotent skew-adjoint operators in finite dimensional real Krein spaces. We denote by $K_m(0)$ the (upper triangular) $m \times m$ nilpotent Jordan block. Denote also

$$F_j = \begin{bmatrix} 0 & 0 & \ldots & 0 & 1 \\ 0 & 0 & \ldots & -1 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & (-1)^{j-2} & \ldots & 0 & 0 \\ (-1)^{j-1} & 0 & \ldots & 0 & 0 \end{bmatrix},$$

so F_j is a $j \times j$ matrix which is symmetric if j is odd and skew-symmetric if j is even. X^T will denote the transpose of a matrix X.

Lemma 2.6. Let J be an invertible real symmetric $n \times n$ matrix, and let N be a nilpotent real matrix such that $N^* = -N$, where the adjoint is taken with respect to the Krein space structure in \mathbb{R}^n determined by J. Then there exists a real invertible matrix S such that $S^{-1}NS$ and S^TJS have the following forms:

$$S^{-1}NS = \bigoplus_{j=1}^{p} K_{2n_j+1}(0) \oplus \bigoplus_{j=1}^{k} (K_{n_j+1}(0) \oplus -(K_{n_j+1}(0))^T), \quad (2.3)$$

$$S^TJS = \bigoplus_{j=1}^{p} \kappa_j F_{2n_j+1} \oplus \bigoplus_{j=1}^{k} \left[\begin{array}{cc} 0 & I_{n_j} \\ I_{n_j} & 0 \end{array} \right]. \quad (2.4)$$

In Eqs. (2.3) and (2.4), n_1, \ldots, n_p are nonnegative integers, n_{p+1}, \ldots, n_{p+s} are even integers, and $\kappa_1, \ldots, \kappa_p$ are signs ± 1.

Of course, the cases when $p = 0$ (i.e., the blocks with $K_{2n_j+1}(0)$ and F_{2n_j+1} are absent) or $s = 0$ are not excluded in Eqs. (2.3) and (2.4).

Lemma 2.6 follows immediately from the canonical forms of pairs of real symmetric or skew-symmetric matrices (see [6]); in the form presented here, Lemma 2.6 can be found in [7], for example.

Proof of Theorem 2.5. In the proof we will use repeatedly the following fact: If H is a real (or complex) Krein space with finite defect q, then no J-neutral subspace is of dimension greater than q. (Recall that a subspace \mathcal{M} of H is
called J-neutral if $[x, y] = 0$ for every $x, y \in \mathcal{H}$.) For the proof see, for example, Lemma 1.2 of [5], or Theorem 1.5 of [3]; the latter reference concerns finite dimensional spaces only.

We consider first the case when H is finite dimensional. Assume first $q < 2r$. By Lemma 2.6, a skew-adjoint nilpotent operator N on H cannot have Jordan blocks of size $2r \times 2r$, since this would violate the condition $q < 2r$. Therefore, the every such N, if $N^{2r} = 0$, then also $N^{2r-1} = 0$. By Theorem 2.3, we have $\mathcal{S}_{2r} \subseteq \mathcal{S}_{2r-1}$, and the equality of these sets follows. Conversely, if $q \geq 2r$, then by Lemma 2.6 there exists a skew-adjoint nilpotent operator N on H such that $N^{2r} = 0 \neq N^{2r-1}$. By Theorem 2.3, $N \in \mathcal{S}_{2r} \setminus \mathcal{S}_{2r-1}$.

Now let H be infinite dimensional. If $q \geq 2r$, then there exists a $4r$-dimensional subspace H_0 of H on which J is given by

\[
J = \begin{bmatrix}
0 & I_{2r} \\
I_{2r} & 0
\end{bmatrix},
\]

with respect to some basis in H_0. Then the operator N given by $K_{2r}(0) \oplus - (K_{2r}(0))^\top$ on H_0 and by zero on the J-orthogonal complement of H_0 has the properties that N is skew-adjoint and $N^{2r} = 0 \neq N^{2r-1}$. Thus, $\mathcal{S}_{2r} \neq \mathcal{S}_{2r-1}$.

It remains to consider the case when H is infinite dimensional and $q < 2r$. In view of Theorem 2.3, we have to show that if $N^* = -N$ and $N^m = 0$, where $m = \min(2q + 1, 2r)$, then also $N^{\min(2q + 1, 2r - 1)} = 0$. If $2q + 1 < 2r$ this is obvious. So let $2q + 1 \geq 2r$. Arguing by contradiction, assume there exists an operator N on H with the properties $N^{2r} = 0 \neq N^{2r-1}$ and $N^* = -N$. Select $x \in H$ such that $N^{2r-1}x \neq 0$. Then clearly the vectors $x, Nx, \ldots, N^{2r-1}x$ are linearly independent. Choose $y \in H$ such that $[y, N^{2r-1}x] = 1$. It is easy to see that y exists because $N^{2r-1}x \neq 0$, say $y = (1/(N^{2r-1}x, N^{2r-1}x)) J N^{2r-1}x$. Since N is skew-adjoint, we have $[N^{2r-1}x, y] = -[y, N^{2r-1}x] = -1$, in particular, $N^{2r-1}y \neq 0$. Next, we show that the vectors

\[
x, Nx, \ldots, N^{2r-1}x, y, Ny, \ldots, N^{2r-1}y
\]

are linearly independent. Indeed, suppose that some $N^p y, (p = 0, \ldots, 2r - 1)$ is a linear combination of $x, Nx, \ldots, N^{2r-1}x, N^{p+1}y, \ldots, N^{2r-1}y$. Applying N^{2r-1-p} to this linear combination, we see that $N^{2r-1}y$ is a linear combination of $x, Nx, \ldots, N^{2r-1}x$:

\[
N^{2r-1}y = \sum_{j=0}^{2r-1} a_j N^j x.
\]

Applying N to both sides of Eq. (2.6) we obtain a contradiction with the linear independence of $x, Nx, \ldots, N^{2r-1}x$, unless a_{2r-1} is the only nonzero coefficient in Eq. (2.6). But then, using the skew-adjointness of N.
\[-1 = [N^{2r-1}y, x] = [x_{2r-1}N^{2r-1}x, x] = x_{2r-1}[N^{2r-1}x, x] = -x_{2r-1}[x, N^{2r-1}x], \] (2.7)

a contradiction with the symmetry of the bilinear form \([\cdot, \cdot]\). Thus, Eq. (2.5) are linear independent, and the 4r-dimensional subspace \(H_1\) spanned by the vectors Eq. (2.5) is obviously \(N\)-invariant. The subspace \(H_1\) also turns out to be \(J\)-regular, i.e., zero is the only vector in \(H_1\) which is \(J\)-orthogonal to every vector in \(H_1\). Indeed, let \(w = \sum_{j=0}^{3r-1} \alpha_j N^j x + \sum_{k=1}^{2r-1} \beta_k N^k y\), where at least one of the scalars \(\alpha_u, \beta_r\) is nonzero, be such that \([w, z] = 0\) for every \(z \in H_1\). Using this equality with \(z = N^s x\) and \(z = N^s y\) for an appropriate \(s\), we obtain that at least one of the following three sets of conditions is valid, in correspondence with the possible relations \(u = v, u < v\) or \(u > v\):

\[x_u N^{2r-1} x + \beta_r N^{2r-1} y \perp x, y; \] (2.8)

\[x_u N^{2r-1} x \perp x, y; \quad x_u \neq 0; \] (2.9)

\[\beta_r N^{2r-1} y \perp x, y; \quad \beta_r \neq 0. \] (2.10)

(The orthogonality here is understood with respect to \([\cdot, \cdot]\)). However, each one of Eqs. (2.8)–(2.10) results in a contradiction, by using the equalities \([N^{2r-1}x, x] = [N^{2r-1}y, y] = 0\) (which in turn are consequence of the skew-adjointness of \(N\)). Once we have shown that \(H_1\) is \(N\)-invariant and \(J\)-regular, Lemma 2.6 is applicable to the restrictions of \(N\) and \(J\) to \(H_1\). Since the restriction of \(N\) to \(H_1\) has a Jordan block of size \(2r \times 2r\), Lemma 2.6 shows that there exists a \(2r\)-dimensional \(J\)-neutral subspace of \(H_1\). This contradicts the inequality \(q < 2r\).

\[\square \]

References