
Computer~ Math. ,4pphc. Vol. 20. No. 910. pp. 73-82, 1990 0097-4943,'90 $3.00 + 0.00 
Printed m Great Britain. All rights reser, ed Copyright ,g. 1990 Pergamon Press pie 

SUBSET-EQUATIONAL PROGRAMMING IN INTELLIGENT 
DECISION SYSTEMS 

B. JAYARAMAN 

Department of Computer Science. State University of New York at Buffalo, 
Buffalo, NY 14221, U.S.A. 

Abstract--Subset-equational programming is a paradigm of programming with subset and equality 
assertions. The underlying computational model is based on innermost reduction of expressions and 
restricted associative--commutative (a--c) matching for iteration over set-valued terms, where O is the a--c 
constructor. Subset assertions incorporate a "'collect-all'" capability, so that the different subset assertions 
matching a goal expression and the different a--c matches with each subset assertion are all considered 
in defining the resulting set of the goal expression. We provide several examples to illustrate the paradigm, 
and also describe extensions to improve programming convenience: negation by failure, relative sets and 
quantities. We also discuss the use of subset-equational programming for intelligent decision systems: the 
rule-based notation ts well-suited for expressing domain knowledge and rules; subset assertions are 
especially appropriate m backchaining systems like MYCIN, which performs an exhaustive depth-first 
consideration of subproblems before arriving at some decision; and restricted a--c matching is very 
convenient for querying attributes of objects in such systems, by relieving the concern for the next ordering 
of attributes. 

I. I N T R O D U C T I O N  

The term "'logic programming" is often taken to be synonymous with predicate-logic programming 
[I], owing to the latter's simple semantics and the efficient implementations available for Prolog 
[2, 3]. In recent years, other forms of logic programming have been proposed, most notably 
equational-logic [4], higher-order-logic programming [5], and constraint-logic programming [6]. 
This paper focuses on a logic programming paradigm based on equations and subset assertions, 
called subset-equational programming, the goal of which is orthogonal to earlier efforts in that it 
provides a rigorous basis for programming with sets. Existing approaches, such as the "setof" 
constructs of Prolog systems, are not supported by a simple underlying logic although they are very 
useful in practice. In subset-equational programming, a program is a collection of two kinds of 
assertions: 

f ( terms ) = expression; 

f (  terms ) ~_ expression. 

The declarative meaning of an equality (resp. subset) assertion is that, for all its ground instances, 
the function foperat ing on the argument ground terms is equal to (resp. superset of) the ground 
set denoted by the expression on the r.h.s. By providing subset assertions with a collect-all 
capability, the meaning of a set-valued functionfoperating on ground terms is equal to the union 
of the respective sets defined by the different subset assertions f o r f  The top-level query is of the 
form 

? expr 

where expr is a ground expression. The meaning of this query is the ground term t such that 
expr = t is a logical consequence of the completion of the program, i.e. augmenting all subset 
assertions defining some function with equality assertions that capture the collect-all capability of 
these subset assertions. 

Computation with these assertions is a process of "replacing equals by equals". Both equality 
and subset assertions are oriented left-to-right for rewriting. Because arguments to functions are 
ground terms, function application requires one-way matching, rather than unification. Actually, 
the matching operation is associative-commutative (a--c) matching because of the presence of the 
O constructor. The multiple matching substitutions arising for a--c matching effectively serve to 
iterate over the elements of sets, thus permitting many useful set operations to be stated 
non-recursively, with attendant advantages during implementation. We show how a restriction in 



74 B. JAYARAMAN 

the use of t.J in program assertions supports both clear programming as well as efficient 
75implementation. The associated matching algorithm is referred to as restricted a - c  matching. 

In this paper, we present two aspects of subset-equational programming. 

(i) Programming concepts and constructs. First, we explain the two key concepts 
underlying the paradigm: the completion and restricted a-c matching. We then 
discuss useful declarative extensions to the basic paradigm, in order to make the 
expression of programs more convenient: negation by failure, relatit'e set constructs 
and quant(/iers m'er sets. Negation by failure is more tractable in this paradigm than 
in predicate-logic programming because all arguments to functions are ground. 
Relative set constructs, which were first introduced by Turner [7], can be systemat- 
ically translated into this paradigm. The computational model of subset-equational 
programming can also be readily adapted to support universal and existential 
quantifiers over sets. With these extensions, several programs can be stated very 
concisely. Another extension, not discussed in this paper, is set closures, which are 
useful in defining the smallest set satisfying certain constraints, e.g. various transitive- 
closure operations. 

(ii) Use in intelligent decision systems. There are several aspects of subset-equa- 
tional programming that lend themselves to the design of intelligent decision systems. 
Like other logic languages, the rule-oriented notation of subset-equational program- 
ming is appropriate for expressing domain knowledge. An important facet of 
decision making is the consideration of a set of alternative solutions, Towards this 
end, the collect-all capability of subset assertions and the provision of matching are 
particularly well-suited. These capabilities are especially appropriate in backchaining 
systems like MYCIN [8], which performs an exhaustive depth-first consideration of 
subgoals before arriving at some decision. In problems where exhaustive search can 
be expensive, it is possible to prune potentially unproductive lines of search by simply 
returning the empty set as the solution for these cases. Restricted a-c matching is 
also useful in querying attributes of objects: by viewing the attributes as an unordered 
set, the programmer is freed from keeping track of the positions of various attributes 
in the object. 

Subset-logic programming is also applicable to the design forward-chaining 
production systems. The efficiency of production systems like OPS5 [9] is consider- 
abl.~ enhanced because its underlying implementation remembers partial matches 
across consecutive production applications--a capability not directly provided in our 
paradigm. Thus, subset-equational programming is appropriate where the number 
of cases tend to be small. Because the rules of expert systems can usually be 
partitioned so that the system operates in several phases [8, 10], we expect this 
restriction ma.~ not be too severe in practice. One potential advantage of subset-equa- 
tional programming compared with production system languages is that it provides 
greater flexibility in control, because of the provision of function composition, 
conditionals, recursion, etc. 

We note that subset-equational programming does not support unification, and is not meant to 
be an alternative to predicate-logic or constraint-logic programming. A unified language with both 
capabilities can be designed, but this issue is beyond the scope of this paper. Indeed, we see logic 
programming ultimately as a combination of programming with relational, equality and subset 
assertions--this idea has been developed in another paper [I I]. In this paper, we explicate the uses 
of the latter two features. An experimental language called SEL (set-equation language) embodying 
most of these ideas has been implemented. We have also developed the formal semantics of these 
ideas [I i]. This paper concentrates on programming issues, and only briefly addresses implemen- 
tation issues. We illustrate the application of subset-equational programming to intelligent decision 
systems by showing aspects of some typical systems can be encoded in this paradigm. 

The rest of this paper is organized as follows: Section 2 explains the completion and restricted 
a--c matching: extensions to the basic paradigm and examples are presented in Section 3: Section 



Subset-equational programming in intelligent decision systems 75 

4 illustrates the use of  the paradigm for specifying search and other aspects in programming 
76intelligent decision systems; Section 5 is devoted to conclusions and areas of  further work. 

2. S U B S E T - E Q U A T I O N A L  P R O G R A M M I N G :  C O N S T R U C T S  A N D  C O N C E P T S  

We first specify the syntactic structure of  term and expression. 

term :: = atom lPariable Iq5 I{ term } lterm Uterm lconstructor( terms ) 

terms :: = term Iterm, terms 

expr :: = terml{expr }lexprUexprlconstructor(exprs )lfunction(exprs ) 

exprs :: = expr lexpr, exprs. 

We will refer to a term as a set if it has one of  the set constructors, ~b, { } or 13, at its outermost 
level--these are the only set constructors--otherwise,  we will refer to the term as an element. The 
constructor ~b is the empty set. and { } is the singleton-set constructor. The constructor 13 is stands 
for set-union, and has its usual properties, such as associativity, commutativity,  etc. A ground term 
is a term without any variables in it. Informally, terms correspond to data objects, and we consider 
only finite terms in this paper. 

We next discuss the two key concepts in subset-equational programming: the completion, and 
restricted a--c matching. 

2. I. Completion 

We "complete"  all subset assertions defining some operation with an equality assertion that 
captures the collect-all capability of  subset assertions. There are two aspects to the completion: 

(i) The collect-all assumption. If  a set-valued expression e is such that 
e_~sl . . . . .  e~_s,, and it is determined that there are no other known subsets for e 
according to the given program, then the collect-all assumption allows us to infer 
e = U,= ]., s,. 

(ii) The emptiness-as-failure assumption. This assumption effectively allows us to 
discard all failing reductions when collecting the different subsets of  a set. There are 
two aspects to the emptiness-as-failure assumption: (a) the value of  {expr} is q~ if expr 
reduces to an expression with non-constructors, and (b) applying a (non-constructor) 
set valued function f~ to terms that don ' t  match any of  the l.h.s, of  assertions for f~ 
yields ~b. 

We illustrate both aspects of  the completion by a simple example. Note that our lexical 
convention in this paper is to begin atoms with an uppercase letter and variables with a lowercase 
letter. 

f(Bob) = Mark, re(Bob) = Mary, 
f(Ann) =Mark, m(Ann) = Mary, 
f (Mark)=Joe, m(Mark)=Jane, 
p(x)_={f(x)} 
p(x) ~ {re(x)}. 

The collect-all assumption effectively supplements p by the assertion p(x)={ f (x) }U{m(x)} .  
Thus, for example, p(Bob) = { f(Bob)}U{m(Bob)} = {Mark}U{Mary} = {Mark, Mary}. 

By the emptiness-as-failure assumption, we have, for example, p(Mary)={ f (Mary)}U{m- 
(Mary)} =~bU~b =~b, because f(Mary) and m(Mary) are irreducible and f and m are not 
constructors. 

2.2. Restricted a-c  matching 

The a-c  matching problem may be stated as follows: given two terms t~ (possibly non-ground) 
and t_, (ground), some constructors of  which may be a-c  commutative,  is there a substitution 0 such 
that t~ 0 = act., (where =,~ means "'equality modulo the associative and commutative equations")? 



76 B. JAYARAMAN 

This problem was first posed by Plotkin [12] and has since been studied extensively in the literature 
(see Ref. [9] and references therein). For example, if t, = uUt, and t, - {Mark, Mary, Joe,  Jane}, 
we will obtain 16 different substitutions for 0 such that t, 0 = ~t , ,  corresponding to the different 
ways of splitting the four-element set into two subsets--a typical match would be {u,---{Mary, 
Jane}, v~{Mark ,  Joe}}. On the other hand, if t. = .~tx}t3t and t~ = {Mark, Mary, Joe ,  Jane}, we 
will obtain four different substitutions, corresponding to the different ways of selecting one element 
from the set and its corresponding remainder--a typical match would be {x,--Joe, t~{Mark,  
Mary,Jane's. }. 

We will use the notation ~xlt } to refer to a non-empty set, one of whose elements is x and the 
remainder of the set is t. That is. {xlt} is syntactic sugar for {x}Ut. The case when all set patterns 
are restricted to the form f, t e r m l t e r m  }, where term does not use t3 explicitly, is of special interest, 
because it is amenable to a more efficient implementation. Henceforth in this paper, we disallow 
explici t  use of the U constructor in program assertions--we show in Section 3 how set union can 
be defined using program assertions. Basically. this restriction permits iteration over the elements 
of a set, rather than iteration over the subsets of a set. While some expressive convenience is 
sacrificed by this restriction, most practical cases are unaffected. We refer to the associated 
matching operation as res tr ic ted  a - c  matching ,  which are discussed in greater detail in Ref. [13]. 

We should note that the equality ==~ is based only on the associative and commutative 
properties, but not the idempoten t  property. Thus, for example, matching {xlt } with {Mark, Mary} 
cannot yield the substitution { x , -  Mark, t,--- { Mark, Mary~j, }.The reason for disallowing the idempo- 
tent property during matching is to avoid a potential infinite loop in recursive definitions where 
t appears, on the r.h.s, of  the rule (see, for example, the perms definition in Section 3). Furthermore, 
because a singleton set such as lMark} is represented internally as {Mark}U~b, it can match 
{x[t} yielding {x,--Mark, t,--~',, thus the ident i ty  property is not explicitly required during 
matching. 

The multiple a-c matches arising from the use of patterns such as ',xlt} provide a convenient and 
efficient way of iterating over the elements of a set. Continuing the example from the previous 
subsection, we may define the set of ancestors of some individual as follows: 

anc(x) = al lanc(p(x)) ,  
allanc(s) _Ds, 
allanc(.Ixltl. ) _~anc(x). 

For example, to find the ancestors of Bob, we evaluate anc(Bob), which reduces to allanc(p(- 
Bob)) .  The evaluation of nested expressions occurs innermost-first; hence the above expression 
effectively reduces to allanc({Mark, Mary}). Because allanc is defined by two subset assertions, 
both these assertions are considered in reducing allanc({Mark, Mary}). The result from the first 
assertion is '~Mark, Mary}. When matching allanc({Mark, Mary}) with the I.h.s. of  the second 
assertion defining allanc, both a-c matches are considered, namely, {x,--Mark, to{Mary}} and 
~tx,--Mary, t,,--~LMark}}. The r.h.s, of  this assertion is then separately evaluated for each of these 
matches, and the union of these sets (along with that from the first assertion) is defined as the 
value for allanc(~Mark, Mary}). Thus allanc({Mark, Mary}) effectively reduces to .IMark, Mary, 
Joe,  Jane}. The following points should not noted in the above process: 

(i) In general, duplicates must be eliminated when taking the above union, but 
we showed in Ref. [13] how this check can be deferred for a particular 
argument when the function distr ibutes oz'er union in this argument. 

(ii) The case when the argument set to allanc is empty is correctly handled, i.e. 
al lanc(¢) = ¢. We clearly have allanc(ch )~_¢, by the first assertion for allanc. 
We also have allanc(q~ )_~ ¢ by the second assertion for allanc, because of case 
(b) of the emptiness-as-failure assumption. 

(iii) With reference to the second rule for allanc, because the variable t is not used 
on the r.h.s., considerable space and time can be saved by not constructing 
the remainder-set for it. We provide the notation_to refer to the "don't-care 
variable", as in Prolog, so that the programmer can indicate such cases 
explicitly. 



Subset-equational programming in intelligent decision systems 77 

Before proceeding to extensions of the basic paradigm, we briefly address the confluence of 
program assertions. Of special interest is the case where the a-c constructor U appears (implicitly) 
on the I.h.s. of such assertions, as illustrated by the definition of the function below: 

s i z e ( ~ )  = O, 
s ize ( {x l t  }) = 1 + s ize( t ) .  

Stated as a syntactic condition, we require that: 

(i) the l.h.s, of each equality assertion not overlap with any other assertion 
and 

(ii) when set patterns of the form {t, It.,} occur in equality assertions, the result 
should be independent of which one of the potentially many a--c matches is 
selected. 

Other less restrictive conditions are possible, but we shall assume the above conditions, for the 
sake of specificity. Note that a subset assertion may overlap with other subset assertions. Thus, 
the definition of the size function is legal; its result is independent of which particular match is 
selected in the second assertion. However, the definition below for set-to-list conversion is not legal, 
because the resulting list does in general depend on which particular match is chosen at each 
recursive call 

set21 is t (~ )  = [ ], 
se t21 is t ( {x l t } )  = [x lset21 ist ( t ) ] .  

3. EXTENSIONS 

While the basic paradigm described in the previous section has the capability of any universal 
language for expressing computation, it does not possess features needed to make practical 
programming convenient. We therefore propose in this section extensions that are compatible with 
the basic paradigm described in the previous section. 

3. i. Negation as failure 

We have seen that {e}, where e is irreducible expression, is equal to the empty set ~, by the 
emptiness-as-failure assumption. In a similar manner we can augment the primitive if then else,  
so that in addition to the two usual cases, 

if true then el else e2  = e l ,  
if false then  e l  else e2  = e2,  

a negation as failure rule can be incorporated as follows: 

if e then el else  e2  = e2, if e is irreducible and not boolean. 

Note that the negation as failure rule in the context of subset-equational is more tractable than 
in the context of predicate-logic, because all expressions that appear as arguments of an if then 
else  must be ground. In the context of predicate-logic, the negation as failure rule, to preserve 
soundness [14], can be applied only to negative goals that are ground, and hence non-ground 
negative goals would have to be deferred until they became ground--a provision not found in most 
practical systems because of its overheads in implementation. 

3.2. Relatil,e set abstraction 

It is possible to provide the notation of relative sets as a form of syntactic sugar in subset- 
equational programs. Relative sets were first introduced in functional programming by Turner in 
his languages KRC and Miranda [7]--actually, these languages supported lists without duplicates 
rather than sets. Below we present a slightly simplified form of that presented in Ref. [7]. 

{term: generators; condition }. 

The above construct defines a set of terms by first generating candidate elements using the 
generators, and eliminating those that do not satisfy the stated condition. (The condition is actually 



78 B. JAYARAMAN 

optional, and is assumed to be true when omitted.) Each generator is of  the form gen-variable e set- 
expression, where all the gen-t,ariables within a relative set construct must be distinct from one 
another. Furthermore, the set-expression of a generator may not use its defining gen-t,ariable or 
any gen-rariable to its right. However, term may use any gen-t,ariable from the relative set 
construct. Because subset-equational programs deal with finite sets, we assume that the generators 
define finite sets. 

It is quite straightforward to translate these relative set expressions into subset-equational 
programs. However, the transformation of subset assertions into the relative set notation is not 
as direct because set-patterns can have repeated occurrences of  variables on the I.h.s., as in the 
definition of set intersection, and also may refer to remainders of  sets, as in the definition of the 
permutations of  the elements of  a set (see Section 4 for their definitions). These capabilities of  
subset-equational programs offer more expressive convenience than the relative set notation. 

3.3. Quantifiers ol,er sets 

It turns out that there is a simple extension of subset-equational programming to include 
quantifiers. Observe that a subset assertion is basically taking the union of the respective sets 
returned by the expression on its r.h.s., for each match on its I.h.s. By replacing the subset assertion 
by an ifall assertion, union by logical-and, and sets by booleans, we simulate a universal quantifier. 
Similarly, replacing the subset assertion by an if  one assertion, union by logical-or, and sets by 
booleans, ~e simulate a existential quantifier. We therefore provide the ifall and ifone constructs 
as extensions to the basic paradigm. For example, the predicate p(s)  = (Vx e s)q(x)  can be defined 
as  

p(.',xl_})ifall q (x ) .  

Similarly, the predicate p(s) = (:Ix e s )q (x )  can be defined as 

p( {x ]_ } ) i fone q(x) .  

Operat ional ly,  the ifall rule defines the predicate p to be true i f  for all a-c matches of  the head, 
the r.h.s, o f  p reduces to true. I f  there are no matches, the result returned is true, The ifone rule, 
on the other hand, defines the predicate p to be true i f  for an)' one match the r.h.s, of p reduces 
to true. I f  there are no matches, the result returned is false. Because of  our negation as failure rule, 
an irreducible expression that is not a boolean is taken to be false. 

In general, an operation can be defined by mult iple ifall assertions (the reduction of the r.h.s.'s 
for all matches in all assertions must yield true), or mult iple i fone assertions (the reduction of  the 
r.h.s.'s for an~. one match in any one assertion must yield true). However, a combinat ion of the 
two assertions may not be used in defining some operation. This restriction is placed to avoid a 
potential ambiguity.: for example, i f  p were defined by one ifall and one ifone assertion and there 
were no match for some argument, the result should be true by the ifall assertion, but false b2r the 
i fone assertion. 

3.4. Set operations 

We conclude this section by illustrating the succintness provided by subset assertions, restricted 
a-c matching, as well as the foregoing extensions in defining familiar operations on sets: 

member(h,  { hl_',,) = true, 
c rossproduc t (s l ,  s2) = { [x ly ] :  x E s l ,  yE s2], 
intersect({xL_],, [x l_])  _D [x]., 
un ion(s1,  s2) ~ s l ,  
un ion(s1,  s2) _~s2, 
d i f f ( {x l t ] ,  s2) _~if member(x,  s2) then ~ else{x]  
subset ( {x l_  }, s2) ifall member(x,  s2), 
perms(qS) = {[]]., 
perms({x ] t } )  ~_distr(x, perms(t ) ) ,  
distr(x,  {h i t } )  _~ I, [x lh]  }, 
powerset((t) ) = [~ }, 



Subset-equational programming in intelligent decision systems 79 

powerset({xlt}) = distr2(x, powerset(t)),  
distr2(x, s) Ds, 
distr2(x, {Yl-}) ~- {{xlY}}. 

Note that the first six operations shown above are all stated non-recursively. It is possible to 
compile these definitions so that no recursive calls occur even during execution. Note that the if 
then else in the diff function makes use of negation by failure: so also does the subset predicate. 
The perms and powerset examples illustrate recursion in conjunction with a-c matching. In the 
second assertion for powerset, the result is independent of the particular a-c match chosen. The 
latter two examples show the expressiveness of subset-equational programs over the relative set 
constructs. 

4. A P P L I C A T I O N S  IN D E C I S I O N - M A K I N G  

We begin with an example illustrating the use of subset-equational programming in specifying 
search, which is an important aspect of problem solving. We then show how subset assertions and 
the restricted a-c matching are used in formulating forward-chaining and backward-chaining 
expert systems. 

4. I. Specifying search 

The formulation of the N Queens program in subset-equational illustrates how a search may be 
specified and the multiple solutions gathered into a set. The algorithm below basically places a 
queen on each successive column, beginning from column 1, as long as each new queen placed is 
safe with respect to all queens in preceding columns. A solution is found if a queen can thus be 
placed on all columns. 

solve(n) = queens(I ,  ¢, n) 
queens(col, safeset, n) = 

if eq(col, n + 1 ) then {safeset I. 
else placequeen(col, .11 . . . .  n}, safeset, n) 

placequeen(col, {row]_ }, safeset, n)_~ 
if safe([col lrow], safeset) 
then queens(col + 1, { [collrow]lsafeset }, n) 
else (~ 

safe([cl  Jr1 ], { [c2lr2]l_}) i fal l(r l  # r2) and (abs(cl - c2) # abs(rl - r2)). 

The second argument in the call to placequeen, viz. the set {1 . . .  n}, enumerates the row positions 
in each column, l fa  particular row-column position is not safe, placequeen returns the empty set, 
thereby pruning this line of search. The function safe specifies the safety condition, and makes use 
of  the universal quantifier ifall--note that ifall would return true in case there is no match on the 
I.h.s., as would be the case if the second argument were the empty set. We assume the language 
has the usual complement of arithmetic operations. 

4.Z Quer.ving attrib,aes and Jorward-chaining expert systems 

To illustrate the role of  subset-equational programming in forward-chaining expert systems, we 
illustrate how to encode a typical rule from the graduate course advisor (GCA), a multi-phase 
expert system for advising graduate students in computer science on schedule and course selection 
[10]. This system has four phases (each with its own rule base): schedule-length determining phase, 
course-planning phase, course-evaluation phase, and schedule-evaluation phase. For simplicity, 
suppose that there are three types of elements, Student, Course, and Suggestion, with attributes 
as shown below: 

Student : CareerGoal, LanguageSkills, Recreation, 
Course : Number, Skill, Recreation, Prerequisite, 
Suggestion : MightPass, MightEnjoy. 



80 B. JAYARAMAN 

If we assume an OPS5-1ike forward-chaining system, we can encode the working memo O' as a set 
of pairs of the form 

Element :: AttributeSet, 

where :: is a binary infix constructor, and the attributes of each element also as a set of pairs of 
the form 

Attribute :: Value. 

A typical rule in the course-planning phase might be as follows: 

"'If a student has recreation x and there is a course with recreation x and number 
y then the student might enjoy course v.'" 

The above rule might be encoded as follows: 

course_plan ({ Student :: { Recreation :: x[_ }, 
Course :: {Recreation :: x, Number :: yl_~j 

I-}) 
~_ { Suggestion :: { MightEnjoy :: y} }. 

We use the notation {x, Yl-} analogous to the fist notation of Prolog to refer to a set which has 
, i ,  ~ The rule elements x, v and possibly others. This notation is just a short-hand for ~.~1,O I - i } .  

course_plan takes one argument, the working memory, inspects it for the presence of a Student 
element and Recreation element with certain properties, and, i f  successful, returns a singleton-set 
containing a Suggestion element. Several such course_plan rules could be defined using subset 
assertions, so that several suggestions could be obtained in a single inference step. The module that 
invokes the course_plan function would be responsible for combining the Suggestion elements 
into the new working memory-- the  details of which we don't  present here. 

The convenience offered by set patterns here is that it effectively relieves the programmer from 
worrying about the positions of various attributes in an element, and also from the locations of 
elements in working memory. Obviously, if there were large numbers of rules and working 
elements, the cost of matching can become prohibitive if performed na;vely. Our point here is 
simply that the matching and collection of  results can be expressed quite easily with set patterns, 
and the process can be tolerable for partitioned rules bases and partitioned working memories--an 
assumption that seems to be valid in many practical instances. In general, conditions in production 
rules could use matching operations other than equality. Such conditions would have to be placed 
in the body of  a subset assertion. 

4.3. All solutions and backchaining expert systems 

It turns out that sets and the collect-all capability of subset-equational programming are 
bell-suited to backchaining systems such as MYCIN. There are several areas in the MYCIN system 
where the paradigm is applicable. For example, a context can be viewed as a set of at- 
tribute :: hypotheses pairs, where hypotheses itself is a set of value :: certainty-factor pairs. Taken 
from Ref. [8]. a simple rule such as, 

"'IF the gram stain of the organism is gramneg, and the morphology of the organism 
is rod, and the aerobicity of  the organism is anaerobic, TH EN  there is suggestive 
evidence (0.6) that the identity of  the organism is bacteroides.'" 

can be encoded as a subset-equational assertion as follows. 

identi ty( { Gram :: Gramneg, Morph :: Rod, Air :: Anaerobicl_}) 
_D { Bacteroides :: 0.6}. 

That is, we can associate assertions for each different kind of clinical parameter, such as identity. 
The argument to identity is the current context in MYCIN. Note that several such subset assertions 
can be used to provide different hypotheses on the identity of the organism; all these rules will be 
invoked to obtain the collective set of  hypotheses, In general, premises in MYCIN might make 
use special functions and many require the values of other clinical parameters to be determined in 



Subset-equational programming in intelligent decision systems 81 

a goal-directed manner. Such premises would be incorporated in the body of  a subset assertion 
rather than in the head. 

We give below a simplified sketch of  the overall control cycle of  MYCIN. We assume that all 
functions not shown, e.g. ask_user, lab_data, etc. are primitive for the purpose of  this exposition. 
The function evaluate is responsible for invoking assertions such as the one shown above for 
identity. 

monitor(rule_no) = evaluate(rule_no, find_all (clinic_pars(rule_no))) 
fi nd_all ({cparl_}) _~ findone(cpar) 
findone(cpar) = if lab_data(cpar) then ask_user(cpar) 

else monitor_all (rules_for(cpar)) 
monitor_all ({ rule_nol_}) _D monitor(rule_no). 

This program illustrates the use of  subset assertions in defining the collect-all behavior of  the 
MYCIN inference system. Finally, we should not that most of  MYCIN's special functions, such 
as same2, notsame2, etc. can be directly expressed in terms of relative sets and the quantifiers. 

5. C O N C L U S I O N S  

This paper has presented an informal description of  subset-equational programming. This 
paradigm is not meant as an alternative to predicate-logic [I] or other forms of  logic programming 
[4-6], but instead a complementary approach whose goal is to deal with sets in a logically rigorous 
way. The two main concepts of  subset-equational programming are the completion and restricted 
a-c matching. The former incorporates a collect-all assumption, for taking the union of all sets 
from different subset assertions defining an operation, as well as an emptiness-as-failure assump- 
tion, for discarding unsuccessful reductions. Restricted a-c matching provides an efficient way of  
iterating over set elements. We also showed how this paradigm can be extended with useful, yet 
declarative, features to make programming even more convenient. The three extensions discussed 
in this paper were negation by failure, relative sets and quantifiers. 

Besides providing an introduction to this novel paradigm, this paper also shows its relevance for 
the design of intelligent decision-making systems. Basically, decision making consists of  evaluating 
sets of  alternatives. Although the premises-conclusion format works well for encoding domain 
knowledge, the collection of multiple results is generally handled in an adhoc manner in most expert 
systems. It is here that subset assertions play a useful role. Its use is especially appropriate in 
MYCIN-Iike systems that exhaustively collect all hypotheses in a depth-first manner. Another 
observation is that many expert systems do not make use of  the full power of  unification: in other 
words, (one-way) matching seems to suffice in many cases. In fact, we have found set matching 
to be more useful than we had first anticipated, as we have illustrated through our examples. 

While finalizing this paper, we became aware of an interesting use of sets in intelligent 
decision-making based on a set-covering inference model [15]. This model has been used in medical 
diagnosis, and differs from other expert system models in that it is not rule-based. Its knowledge- 
base consists of  a set of disorders (e.g. diseases), each of which has a set of known manifestations 
(e.g. symptoms). A manifestation may be caused by more than one disorder, so that an m-to-n 

"'causes" relation exists between these two sets. Given a set of input manifestations, the diagnosis 
problem is to find the smallest set of  disorders whose collective manifestations include the input 
set. Its inference mechanism is a hypothesize-and-test process, in which each input manifestation 
is used to refine the set of disorders that are hypothesized as the final diagnosis. This paradigm 
for expert systems also appears to be well-suited for subset-equational programming. 

In order to show its practicality, we have developed a working implementation of subset-equa- 
tional programming [13, 16]. In this implementation restricted a-c matching and the control 
strategy are compiled along the lines of  the WAM [3]. Important optimizations that were 
incorporated were last-call optimization, avoiding checks for duplicates through the knowledge of 
functions that distribute over union in particular argument positions, and avoiding unnecessary 
copying during restricted a-c matching. This implementation includes all the features mentioned 
in this paper, except relative sets, and is available free of cost from the author. 



82 B. JAYARAMAN 

T h e r e  are  several  fu r the r  ex t ens ions  poss ib le  to  the basic  p a r a d i g m  o f  s u b s e t - e q u a t i o n a l  

p r o g r a m m i n g :  we are  c o n s i d e r i n g  the  r e l axa t ion  o f  o u r  cu r r en t  res t r ic t ions  on  f ini te  sets, f i r s t -order  

te rms ,  a n d  i n n e r m o s t  r educ t ion .  A t  a m o r e  s t ra teg ic  level,  we have  been  e x p l o r i n g  the  i n t eg ra t ion  

o f  s u b s e t - e q u a t i o n a l  p r o g r a m m i n g  and  H o r n - l o g i c  [i !]. T h e  use o f  sets in a logic  p r o g r a m m i n g  

l a n g u a g e  is sugges t ive  o f  m e t a - p r o g r a m m i n g ,  since set t heo ry  is the m e t a - l a n g u a g e  in wh ich  the 

s eman t i c s  o f  logic  p r o g r a m s  is expressed  [14]. T h e  d e v e l o p m e n t  o f  this v iew w o u l d  p r o b a b l y  lead 

to ideas  c losely  re la ted  to those  f o u n d  in h ighe r - log ic  p r o g r a m m i n g  [5], which  p r o v i d e s  a m o r e  

r i g o r o u s  basis  for  m e t a - p r o g r a m m i n g  than  the  me ta - log i ca l  c o n s t r u c t s  f o u n d  in Pro log .  

Acknowledgement,s--I am grateful to Bruce T. Smith for suggesting the relevance of MYCIN-like systems for subset- 
equational programming, and for making a~,ailable the OPS5 code for a subset of the GCA. This research v, as supported 
b~ grant DCR-8603609 from the National Science Foundation 

R E F E R E N C E S  

I. R. A. Kowalski, Predicate logic as a programming language. Pro,. IFIP 74, pp. 556-574, North-Holland, Amsterdam 
(1974). 

2. D. H. D. Warren, F. Pereira and L. M. Pereira. Prolog: the language and its implementation compared with LISP. 
SIGPLAN Not. 12 (8). 109-115 (1977). 

3. D. H. D. Warren, An abstract prolog instruction set. Technical Note 309, SRI International, Menlo Park, Calif. (1983). 
4. M. J. O'Donnell, Equational Logic as a Programming Language. MIT Press, Cambridge, Mass. tl985). 
5. D. Mdler and G. Nadathur, Higher-order logic programming. 3rd Int. Conl~ Logic" Progmng, London, pp. 448~,62, 

Jul. (1986). 
6. J. Jaffar and J.-L. Lassez, Constraint logic programming. 14th ACM POPL, Muntch, pp. 111-119 (1987). 
7. D. A. Turner, Miranda: a non-strict functional language v, ith pol2,morphic types. Con£ Functtonal Progmng. Lang. 

Comp. Arch., Nancy. pp.l-6, Sep. (1985). 
8. B. G. Buchanan and E. H. Shortliffe, Rule-based E.~pert Systems. Addlson-Wesle2~, Reading, Mass. (1984). 
9. L. Brownston, R. Farrell, E. Kant and N. Martin Programming Expert Systems in OPS5. Addison-Wesley, Reading, 

Mass. (1985). 
10. M. Valtorta, B. T. Smith and D. W. Loveland. The graduate course advisor: a multi-phase rule-based expert system. 

IEEE Wksh Knowledge-based Systems, Denver. Colo. pp. 53-57 (19841. 
I I. B. Jayaraman and D. A. Plaisted. Programming ~,lth equations, subsets and relations. N. Am. Con/~ Logic Progmng. 

Cleveland, Ohio, Oct. (1989). 
12. G. Plotkin, Building-in Equational Theories, Machme Intelhgence (Eds D. Michie and B. Meltzer), Vol, 7, pp 73-90. 

Edinburgh Univ. Press (1972). 
13. B. Jayaraman and A. Nair, Subset-logic programming: apphcation and implementauon. 5th hu. Logic Progmng ConL, 

Seattle, Wash.. pp. 843-858. Aug. (1988). 
14 J. W. Lloyd. Foundations of Logt(" Programming, 2nd edn. Springer, Berhn 119871. 
15. J. A. Reggia. D. S. Nau and P. Y. Wang, Diagnosis expert s~stems based on a set covering model. De~'elopments m 

E.~pert Systems (Ed. M J Coombs), pp. 35-58. 
16. A. Nalr. Compilation of subset-logic programs. M S. Thesis, Uni~ers]t.~ of N. Carolina at Chapel HIll. Dec. (1988). 


