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Abstract In this paper, we propose a powerful modification of the homotopy perturbation method

that will accelerate the rapid convergence of series solution. The modified method is employed to

solve the MHD boundary-layer equations. The viscous fluid is electrically conducting in the pres-

ence of a uniform applied magnetic field and the induced magnetic field is neglected for small mag-

netic Reynolds number. Similarity solutions of ordinary differential equation resulting from the

momentum equation are obtained. Finally, some numerical comparisons among the new modified

homotopy perturbation method, the standard homotopy perturbation, the Exact Solution and the

Shooting method have been made, which manifest that the modified method is a very accurate and

effective algorithm to solve the two-dimensional MHD viscous flow over a stretching sheet.
ª 2011 King Saud University. Production and hosting by Elsevier B.V. All rights reserved.
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1. Introduction

The steady two-dimensional laminar flow of an incompress-

ible, viscous fluid past a stretching sheet has become a classical
problem in fluid dynamics as it admits an unusually simple
closed form solution, first discovered by Crane (1970). Gupta

and Gupta (1977) added surface suction (and injection) which
models condensation (and evaporation), a uniform transverse
magnetic field, when the fluid is electrically conducting, by

Andersson (1992). The uniqueness of Crane’s solution is also
shown (Mcleod and Rajagopal, 1987; Troy et al., 1987). For
general values of the parameter the solution was derived by

Ariel (1995), though these solutions have been shown to be
unstable. The joint effect of viscoelasticity and magnetic field
on Crane’s problem has been investigated by Ariel (1994).
The flow past a stretching sheet need not be necessarily
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two-dimensional because the stretching of the sheet can take

place in a variety of ways. It can be three-dimensional, axisym-
metric when the stretching is radial and for this problem there is
no closed form exact analytical solution. The three-dimensional
case was solved byWang (1984). The effects of viscoelasticity on

the axisymmetric flowpast a stretching sheet have been analyzed
by Ariel for an elastico-viscous fluid (Ariel, 1992) and a second
grade fluid (Ariel, 2001). A non-iterative solution for the MHD

flow has been given by Ariel (2004) using the technique of Sam-
uel and Hall (1973), Ariel et al. (2006) and Ariel (2009) applied
HPMand extendedHPM to derive the analytical solution to the

axisymmetric flow past a stretching sheet.
Magnetohydrodynamics (MHD) is the study of the interac-

tion of conducting fluids with electromagnetic phenomena.

The flow of an electrically conducting fluid in the presence of a
magnetic field is of importance in various areas of technology
and engineering such as MHD power generation, MHD flow
meters, MHD pumps, etc. Most boundary-layer models can

be reduced to systems of nonlinear ordinary differential equa-
tions which are usually solved by numerical methods. It is how-
ever interesting to find approximate analytical solutions to

boundary layer problems. Analytical methods have significant
advantages over numerical methods in providing analytic, veri-
fiable, rapidly convergent approximation. Various powerful

analytical techniques such as Similarity solutions (Banks,
1983; Chaim, 1995), Adomian decomposition method (Waz-
waz, 1997, 2006; Awang Kechil and Hashim, 2007, 2008; Hayat
et al., 2009; Noor et al., 2010; Ganji and Ganji, 2010), Laplace

decomposition method (Khan, 2009; Khan and Faraz, 2010,
2011; Khan and Austin, 2010), homotopy analysis method (Sa-
jid and Hayat, 2009; Sajid et al., 2008), differential transform

method (Rashidi, 2009) and variational iteration method (Mir-
golbabaei et al., 2009; Noor and Mohyud-Din, 2009; Mohyud-
Din et al., 2010; Ganji et al., 2010b) have been proposed for

obtaining exact and approximate analytic solutions.. Most of
these techniques encounter the inbuilt deficiencies and involve
huge computational work. He (He, 1999, 2000, 2004, 2006a,

2008; Yıldırım and Berberler, 2010; Mustafa Inc., 2010) devel-
oped and formulated homotopy perturbation method (HPM)
by merging the standard homotopy and perturbation. The
He’s homotopy perturbation method (HPM) proved to be com-

patible with the versatile nature of the physical problems and
has been to a wide class of functional equations; see (Ganji
et al., 2009, 2010a; Fathizadeh and Rashidi, 2009; Kelleci and

Yıldırım, 2011; Raftari and Yıldırım, 2010; Ates and Yıldırım,
2010; Yıldırım and Sezer, 2010; Xu, 2007; Madani and Fathi-
zadeh, 2010) and the references therein. It is worth mentioning

that the HPM is applied without any discretization, restrictive
assumption or transformation and is free from round off errors.
Unlike themethod of separation of variables that requires initial

and boundary conditions, the homotopy perturbation method
(HPM) provides an analytical solution by using the initial con-
ditions only. The fact thatHPMsolves nonlinear problemswith-
out using Adomian’s polynomials can be considered as a clear

advantage of this technique over the decomposition method.
The basic motivation of this paper is to propose a new modifi-

cation of this reliable technique (HPM) for solving MHD bound-

ary-layer equations for stretching sheet problem. Although the
modified technique needs only a slight variation from the standard
homotopy perturbation method, but the proposed modification

will accelerate the rapid convergence of the series solution if
compared with the standard HPM, and therefore provides a
major progress. While this slight variation is rather simple, it

does demonstrate the reliability and the power of the proposed
modification. It is important to note that themodified technique
works effectively independent of other phenomena in some
cases. To the best of our knowledge no attempt has been made

to exploit this method to solve MHD boundary layer equation.
Also our aim in this article is to compare the results with solu-
tions to the standard HPM, exact and shooting method.

2. A new modified homotopy perturbation method

In order to elucidate the solution procedure of the homotopy
perturbation method, we consider the following nonlinear dif-
ferential equation:

LðuÞ þNðuÞ ¼ fðrÞ; r 2 X ð1Þ

with boundary condition

Bðu; @u=@nÞ ¼ 0; r 2 C; ð2Þ

where L is any linear integral or differential operator while N is
non-linear differential operator B, C is the boundary of the do-

main X and f(r) is a known analytic function. In view of HPM
(He, 1999, 2000, 2004, 2006a, 2008; Yıldırım and Berberler,
2010; Mustafa Inc., 2010) was introduced by He, we can con-

struct a homotopy for Eq. (1) as follows:

Hðv; pÞ ¼ ð1� pÞ½LðvÞ � Lðu0Þ� þ p½LðvÞ þNðvÞ � fðrÞ� ¼ 0; ð3Þ

or

Hðv; pÞ ¼ LðvÞ � Lðu0Þ þ pLðu0Þ þ p½NðvÞ � fðrÞ� ¼ 0; ð4Þ

where p 2 [0, 1] is an embedding parameter. If p = 0 Eqs. (3)

and (4) become

LðvÞ � Lðu0Þ ¼ 0;

and when p= 1 both Eqs. (3) and (4) turn out to be the origi-
nal nonlinear differential equation (1). The Homotopy pertur-
bation method (He, 1999, 2000, 2004, 2006a, 2008; Yıldırım

and Berberler, 2010; Mustafa Inc., 2010) admits a solution in
the form

vðx; tÞ ¼ p0v0ðtÞ þ p1v1ðtÞ þ p2v2ðtÞ þ � � � ð5Þ

The convergence of the above series is discussed in He (2006b)
and the asymptotic behavior of the series is illustrated in He
(2006c). Setting p= 1 results in the solution of Eq. (5) we get

vðx; tÞ ¼ v0ðtÞ þ v1ðtÞ þ v2ðtÞ þ � � � ð6Þ

For the nonlinear term in (1), let us set N(u) = h(u). Invoking
Eq. (5) into Eq. (4) and collecting the terms with the same
powers of p, we can obtain a series of equations of the follow-

ing form:

p0 : Lðv0Þ ¼ Lðu0Þ;
p1 : Lðv1Þ ¼ h1ðu0Þ � fðrÞ;
p2 : Lðv2Þ ¼ h1ðu0; u1Þ;
p3 : Lðv2Þ ¼ h1ðu0; u1Þ;

..

.

ð7Þ

and so on, where the function u1, u2, u3, . . ., satisfies the follow-
ing equation:

hðu0 þ pu1 þ p2u2 þ � � �Þ ¼ h1ðu0Þ þ ph2ðu0; u1Þ
þ p2h3ðu0; u1; u2Þ þ � � �
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A new modified form of the HPM can be established based on

the assumption that we decompose u0 into two parts:

u0 ¼ H0 þH1; ð8Þ

Instead of the iteration procedure, Eq. (7), we suggest the fol-
lowing modification

p0 : v0 ¼ H0;

p1 : v1 ¼ H1 þ L�1½h1ðu0Þ � fðrÞ�;
p2 : Lðv2Þ ¼ h1ðu0; u1Þ;
p3 : Lðv2Þ ¼ h1ðu0; u1; u2Þ;

..

.

ð9Þ

The solution through the new modified homotopy perturba-
tion method highly depends upon the choice of H0(x, t) and

H1(x, t). We will show how to suitably choose H0(x, t) and
H1(x, t) by example. This suggestion will facilitate the calcula-
tions of the terms u0, u1, u2, . . . and hence accelerate the rapid
convergence of the series solution.

3. Governing equations

The MHD boundary layer flow over a flat plate is governed by
the continuity and the Navier–Stokes equations for an incom-
pressible viscous fluid. The fluid is electrically conducting un-

der the influence of an applied magnetic field B(x) normal to
the stretching sheet. The induced magnetic field is neglected.
The resulting boundary-layer equations are:

@u

@x
þ @v
@y
¼ 0; ð10Þ

u
@u

@x
þ v

@u

@y
¼ m

@2u

@y2
� r

B2ðxÞ
q

u; ð11Þ

where u and v are the velocity components in the x and y direc-
tions, respectively. Also v, q and r are the kinematic viscosity,
density and electrical conductivity of the fluid. There is B(x)

equal to BðxÞ ¼ B0x
n�1=2.

The boundary conditions are given below:

uðx; 0Þ ¼ cxn; vðx; 0Þ ¼ 0; and uðx;1Þ ¼ 0: ð12Þ

To solve the problem, momentum and energy equations are

firstly nondimensionalized by introducing the following dimen-
sionless variables:

g ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cðnþ 1Þ

2m

r
x

n�1
2 y; ð13Þ

u ¼ cxnf0ðgÞ; ð14Þ

v ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cmðnþ 1Þ

2

r
x

n�1
2 fðgÞ þ g� 1

gþ 1
gf0ðgÞ

� �
: ð15Þ

Using Eqs. (13)–(15), the governing equations can be reduced
to non-linear differential equation where f is a function of the
similarity variable (g):

f000 þ ff00 � bf02 �Mf0 ¼ 0; fð0Þ ¼ 0; f0ð0Þ ¼ 1 and f0ð1Þ ¼ 0; ð16Þ
where

b ¼ 2n

nþ 1
; M ¼ 2rb2

0

qcð1þ nÞ : ð17Þ
4. Application

To demonstrate the effectiveness of the proposed modification
and to compare the new modification of the HPM with the
standard HPM, we have chosen MHD boundary layer equa-

tion (16). In view of the homotopy (3), we construct the
homotopy

ð1� pÞðf000 � f0000 Þ þ pðf000 þ ff00 � bf0
2 �Mf0Þ ¼ 0;

fð0Þ ¼ 0; f0ð0Þ ¼ 1; f00ð0Þ ¼ a:
ð18Þ

Substituting (5) and the initial conditions into the homotopy
(18) and equating the terms with identical powers of p we ob-
tain the following set of linear differential equations:

p0 : f0000 ¼ 0;

f0ð0Þ ¼ 0; f00ð0Þ ¼ 1; f000ð0Þ ¼ a;
ð19Þ

p1 : f0001 þ f0000 �Mf00 þ f0f
00
0 � bf020 ¼ 0;

f1ð0Þ ¼ 0; f01ð0Þ ¼ 0; f001ð0Þ ¼ 0;
ð20Þ

p2 : f0002 �Mf01 � 2bf00f
0
1 þ f1f

00
0 þ f0f

00
1 ¼ 0;

f2ð0Þ ¼ 0; f02ð0Þ ¼ 0; f002ð0Þ ¼ 0;
ð21Þ

p3 : f0003 �Mf02 � bðf021 þ 2f00f
0
2Þ þ f1f

00
1 þ f0f

00
2 þ f2f

00
0 ¼ 0;

f3ð0Þ ¼ 0; f03ð0Þ ¼ 0; f003ð0Þ ¼ 0;
ð22Þ

p4 : f0004 �Mf03 � 2bðf03f00 þ f01f
0
2Þ þ f3f

00
0 þ f0f

00
3 þ f1f

00
2 þ f2f

00
1 ¼ 0;

f4ð0Þ ¼ 0; f04ð0Þ ¼ 0; f004ð0Þ ¼ 0;

ð23Þ

by solving Eqs. (19)–(23):

f0 ¼
1

2
ag2 þ g; ð24Þ

f1 ¼
ð2b� 1Þ

120
a2g5 þ ðM� 1þ 2bÞ

24
ag4 þ ðMþ bÞ

6
g3; ð25Þ

f2 ¼
ð20b2 � 40b� 11Þ

40320
a3g8

þ ð11þ 10Mbþ 20b2 � 8M� 32bÞ
5040

a2g7

þ ð3� 12b� 8Mþ 10b2 þ 10MbþM2Þ
720

ag6

þ ðM
2 þ 2b2 � 2b� 2Mþ 3MbÞ

120
g2; ð26Þ

f3 ¼
ð600b3 � 1596b2 � 1398b� 375Þ

39916800
a4g11

þ ð4800b
3 � ð12868� 2400MÞb2 þ ð11184� 4368MÞb� 3000þ 1944MÞ

5040
a3g10

þ ð16800b
3 � ð39760� 16800MÞb2 þ ð30688� 30576Mþ 2352M2Þb� 7222þ 13608M� 2184M2Þ

20321280
a2g9

þ ð26880b
3 � ð55776� 40320MÞb2 þ ð34608� 65856Mþ 14112M2Þb� 5040 þ 26880M� 13104M2Þ

13547520
ag8

þ ð16800b
3 � ð26880� 33600MÞb2 þ ð13440� 43680Mþ 18480M2ÞbÞ

8467200
g7 ;

ð27Þ



Figure 1 The results of f obtained for employing HPM and modified HPM as well as the numerical method suggested by shooting

method.

Figure 2 The variation of f for different values of M and b = 1.5 approximated by HPM, modified HPM and shooting method.
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Figure 3 The variation of f for different values of b and

M= 50 approximated by HPM, modified HPM and shooting

method.

Fig. 4 Comparison of the solution (f0) obtained by a new

modified HPM and the standard HPM solution for different

values of M and b.

Table 1 Comparison of the values of f00(0) obtained by HPM,

the modified HPM and the exact solution.

b M HPM M-HPM Exact solution

1 0 �1 �1 �1
1 �1.41421 �1.41421 �1.41421
5 �2.44948 �2.44948 �2.44948
10 �3.31662 �3.31662 �3.31662
50 �7.14142 �7.14142 �7.14142
100 �10.0499 �10.0499 �10.04987
500 �22.383 �22.383 �22.38302
1000 �31.6386 �31.6386 �31.63858
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f ¼ f0 þ f1 þ f2 þ f3 þ � � � ;
p! 1:

ð28Þ

To select f00ð0Þ ¼ a and g1, we begin with some initial
guess value of a and draw f0. The solution process is repeated

with another value of a until f0 receive to zero. Also, g1 is
obtained from highest value of g in f0. According to the new
modified homotopy perturbation method, we first set

f0 ¼
1

2
ag2 þ g: ð29Þ

As suggested before we split zeroth iteration f0 into two parts

H0ðgÞ ¼ g ð30Þ

and

H1ðgÞ ¼
1

2
ag2: ð31Þ

According to the iteration algorithm, Eq. (9), we obtain

f0 ¼ g; ð32Þ

f1 ¼
1

2
ag2 þ 1

6
ðMþ bÞg3; ð33Þ

f2 ¼
1

120
ðM2 þ 3Mbþ 2b2 � 2M� 2bÞg5 þ 1

48
ð2M� 2þ 4bÞag4; ð34Þ

f2 ¼
M3

5040
�M2

504
� M

630
� 13Mb

2520
þ 11M2b

5040
þMb2

252
� b2

315
þ b
630

� �
g7

þ M2

720
�M

90
þMb

72
þ b2

72
� b
60
þ 1

240

� �
ag6 þ b

60
� 1

120

� �
a2g5; ð35Þ
f ¼ f0 þ f1 þ f2 þ f3 þ � � � ;
p! 1:

ð36Þ
5. Results and discussion

Eq. (16) were solved analytically using the new modified HPM,
standard HPM and numerically using the shooting method. It

was shown in Figs. 1–3 the analytical, the exact solution and
the numerical solution of f for different values of M and b.
Furthermore, the comparison between the MHPM and the

standard HPM solutions of f0 was performed (Fig. 4). A very



Table 2 Variation in f00(0) at the different values of b and M obtained by HPM, modified HPM and shooting method.

b M HPM M-HPM Shooting method b M HPM M-HPM Shooting method

1.5 0 �1.1486 �1.1547 �1.1547 5 0 �1.9025 �1.9098 �1.9098
1 �1.5252 �1.5252 �1.5252 1 �2.1529 �2.1528 �2.1528
5 �2.5161 �2.5161 �2.5161 5 �2.9414 �2.9414 �2.9414
10 �3.3663 �3.3663 �3.3663 10 �3.6956 �3.6956 �3.6956
50 �7.1647 �7.1647 �7.1647 50 �7.3256 �7.3256 �7.3256
100 �10.0664 �10.0776 �10.0776 100 �10.1816 �10.1816
500 �22.3901 �22.3904 �22.3904 500 �22.4425 �22.4425
1000 �31.6432 �31.6438 �31.6438 1000 �31.6806 �31.6806
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good agreement was illustrated between the results obtained by
the new modified HPM, HPM, exact solution and the numer-

ical results for all values of g. The result of modified HPM has
better than HPM in large amount of M.

Tables 1 and 2 clearly elucidate that present solution meth-
od namely modified HPM shows excellent agreement with the

exact solution, standard HPM and numerical method and
more convergent as compared with standard HPM. This anal-
ysis shows that MHPM suits for MHD viscous flow problems.

6. Concluding remarks

In this work, we carefully proposed an efficient modification of
the HPM that accelerate the rapid convergence of series solu-
tion. A newly modified HPM was used to find analytical solu-

tions of magnetohydrodynamics boundary-layer equation.
Comparison of the present solution is made with the HPM, ex-
act and shooting method solutions. An excellent agreement is

achieved. The proposed method is employed without using lin-
earization, discretization or transformation. It may be con-
cluded that the MHPM is very powerful and efficient in
finding the analytical solutions for a wide class of boundary

value problems. The method gives more realistic series solu-
tions that converge very rapidly in physical problems.
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