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1. INTRODUCTION 

The equation 

5 = A(t) x(Xt) + B(t) x(t) (1) 

has been studied, under special hypothesis, in many papers, for theoretical 
reasons as well as for some applications. For references on this see [l]. The 
paper [I] is devoted to relating the asymptotic properties of solutions of Eq. (1) 
to the behaviour of solutions of the equation 

s = B(t) x(t) (2) 

when A, B are n x n constant matrices and B is diagonalizable. In this paper we 
are going to generalize the results obtained in [l] to the case that A(t), B(t) are 

n x n bounded and measurable matrices for t E [to , +co), t, >, 0. In particular 
we do not make any assumption on the structure of the matrix B(t). The tech- 
nique that we shall use is, with minor modifications, the same used in [I]. 

This paper is organized in this way: 

The remaining part of this section is devoted to recall some properties of Eq. 
(1) and the definition and some properties of the characteristic exponents of 
Eq. (2). Section (2) contains the main results of this paper, which generalize 
analogous results proved in [l] for the case 0 < h < 1. In Section 3 the case that 
X > 1 is considered. The results of this section are given without proofs. 

Now we consider Eq. (1) with X E (0, 1). If q(t) is a continuous function on 
[At, , toI, Eq. (1) has a unique solution x(t; v) which is continuous on [At, , $- w). 
absolutely continuous on [to , + co) and such that x(t; y) = p(t) for t E [At,, , t,]. 
When t, == 0, we assume that [Ato, t,] = {0} and that p)(t) is a vector p(O). 
The existence and uniqueness result just asserted is proved, for example, in 
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12, Theorems 2.5, 2.61. Let f(t) b e a continuous n-vector valued function on 
[to , + co). The characteristic exponent off is 

x(f) = lim suP{log If(t) 
t++m 

([3,4]. 1 . 1 is the norm in P). 
The characteristic exponents of solutions of Eq. (2) are called the charac- 

teristic exponents of Eq. (2). Their number is at most n, so that we can denote 
them as x1 ,..., x,. , r < n, and we intend that xi < xi+1 . We shall consider also 
the adjoint equation of Eq. (2) 

j = -B*(t)y(t) (3) 

the characteristic exponents of Eq. (3) will be denoted xi ,..., xi , ordered so that 
xi > xi+r . Observe that they are exactly r, as those of (2). It may be useful to 
recall that x8 + xi 2 0 for any i. xi + xi = 0 for any i means that Eq. (2), (3) 
are regular, and this happens in particular if B is a constant matrix (and in this 
case the x1’s are the distinct real parts of eigenvalues of B). 

2. THE CASE 0 -C h < 1 

In this section we generalize Theorems 2, 3 in [l] to the case that A(t) and 
B(t) are bounded measurable functions. 

THEOREM 1. Assume that 0 < x1 -=c .‘. < xr , and that Xx, + xi -CC 0. Let 
G(t, s) be the evolution matrix of Eq. (2). Then for every solution x(t) of Eq. (1) 
there exists v, E Rn such that 

/jym G(t,, , t) x(t) = v, . 

Proof. It will be useful to consider the following situation: Assume that it is 
possible to find a decomposition of R”, R” = & 9& such that B(t) = gI(t) + 
... + LB,(t), gi(t) x = 0 if x E SVj , i # i, Bi(t) x E 9I?< for any t if x E Wi (i.e. 
the matrix B(t) may be diagonalized. Of course, in general, it will be k = 1). 

If x is an n-vector, xi denotes the projection of x on the space %“i , so that we 
can consider the k equations 

aqt) =&xi(t). (4) 

Of course, if x is a characteristic exponent of one of the Equations (4) x is also 
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a characteristic exponent of Eq. (2). Write A(t) == (Azj(t)) in the obvious way. 
If x(t) is a solution of Eq. (1) its i-th component x,(t) is a solution of the equation 

L&(t) = i A,,(t) x,(ht) -t qq x,(t). 
11 

If G,(t, S) is the evolution matrix of the i-th of the Eq. (4) 

Gj(t, , t) x<(t) = G,(to , T) X%(T) + jt G,(h, , s) -J(s) G&k to) G(h, , As) +) h. 
5 

(5) 

Let I, = [to + l/P, t, + l/,V+l] and Mkz = sup / G,(t,, t) .x(t)1 on I,. . If 
7 = t, + 1 /iv, t E Ik 

I G& , t) x,(t)1 < M,% [ 1 + II A !I I’ 
to+llhL 

I G,(to 9 41 I G&k Gl ds] 

1~ A II = sup I A(t)I t > t, . 

Now consider that x(Gi(t, , t)) < xi so that 

I W, , t>l < 01, exp[(xi + c) 4 for any E > 0 and some (Y<. 

Analogously, 

so that 

I G(t, , t) x,(t)1 < figi [l + II A II v: I’ exp{o(i 
to+l;A” 

i AX,) s i- E(1 + h) S} ds] 

d Mkz(l + H exp(rllW 

with H = -{ii A /I a,a: exp[(x; + hxn + ~(1 + X)) ts]J/[x; f hxn i ~(1 + h)], at 
least if 7 = xi + hx, + ~(1 + X) < 0, (’ 1.e. for small l ). From this we have 

ML,, < M,, fi [l + H exp(T/h’)] = M. 
1T 

Now we look again at (5). We have that 

1 Gi(t, , t) xi(t) - Gi(t, , T) xi(~)\ < 11 A i/ MH Jt exp(vs) ds 
7 

so that lim,,,, G,(t, , t) x,(t) exists and is a ozi E 9, because the integral on 
the left is convergent. The theorem is proved with z’, = & wd. 
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COROLLARY 1. Under the hypothesis of Theorem 1, if there is 

x = ~~$log I W, t,)l)lt (6) 

then x(x) < x for my solution x(t) of Eq. (1). 

Proof. We have already seen in the proof of Theorem 1 that for any solution 
x of (I), I G(t, > t) 44 is b ounded. G(t, , t) is an invertible matrix, G-‘(t,, , t) = 
G(t, t,,) so that 

I G(t, t,Y I x(t)1 < I G@, , t) x(t)1 d M. 

Condition (6) implies ([4, page 4571) ~(1 G(t, t&l) = -x and that 
~(1 G(t, t,,)j-l j x(t)/) = -x + ~(1 x(t)l). This last number is not positive, 
because / G(t, t,)j-l I x(t)1 is bounded. This proves the corollary. 

In particular, if B is a constant matrix, we can assume that it is written in 
Jordan form. Then condition (6) holds not only for G(t, t,,) but also for every 
Gi(t, t,) and x is in this case the real part of the eigenvalue of the i-th block, 
say xci) , so that ~(1 xi(t)l) < xti) . Furthermore we have 

COROLLARY 2. If B is a constant matrix which satisJies the hypothesis of 
Theorem 1, every solution of Eq. (1) satisfies 

and for every x8 there is a vector 01~ such that 

J$ exp(--xit) 4x(t) 

exists for at least one solution of Eq. (I). 

Proof. The first assertion is obvious because 

x(4 < max xi = xr 

from the observation at the end of Corollary 1. 
If B is in Jordan form, then Gi(tO , t) = Pi(t) exp(--h(t - to)), where h is an 

eigenvalue of B, say of real part x, and Pi(t) is a triangular matrix which is a 
polynomial in t, with diagonal entries equal to 1. Let xl(t) = (xii(t),..., xi”(t))* 
be a solution of (1). The last component of G,(t, , t) xi(t) is xi”(t) exp (-A(t - to)) 
and this function has a limit for t - + co (from Theorem 1). So the corollary 
is proved if B is in Jordan form and, after a change of coordinates, in the general 
case. 

Observe that if r = n (i.e. B is diagonalizable) this corollary is Theorem 2 in 
[l]. Now we look for a generalization of Theorem 3 in [l] to the Equation (1). 
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First of all observe that if x(t) is a solution of (2), then y(t) = x(e’) exp(-at) is a 
solution of 

j = (B(et) e* - 011) y(t) (7) 

(I is the n x n identity matrix). Then 

1 y(t)1 < K exp{--cLt + /Jet> if 1 x(t)1 < K. exp{@j. 

Now we can prove the following theorem 

THEOREM 2. Assume that Eq. (2) is exponentially stable, i.e. 

I G(t, s)l < K exp(P(t - $1) p < 0, t, < s < t. 

If cr = -log X > 0 and if cy. satisfies 

mx > [log II 24 II - b--P)1 
there exists a positice number L such that 

1 x(t)1 < L - tb+(‘w~)M 

for every solution x(t) of (1). 

Proof. If x(t) is a solution of (1) then w(t) = x(et) exp(--olt) is a solution of 
the equation 

so that 
G(t) = (13(et) et - orI) w(t) + ete-uuA(et) w(t - u) 

w(t) = E(t, T) W(T) + It E(t, s) ese-aoiZ(es) w(s - u) ds. 
7 

Here E(t, 7) is the evolution matrix of Eq. (7) so that 

/ E(t, T)\ = 1 exp(--ol(t - T)) G(et, eT)\ < K exp{/3(et - eT) - a(t - T)> 

Let now Mk = sup ( w(t)1 for t ~1~; = [to + kcr, to + (k f 1) 01. If T = TV :-= 
t ,, $- KU and t EI, 

I w(t)1 < Mk--lK [exp{p(et - es’) - a(t - TV)} 

+ e-o% /I A jl JTl es exp(/3(et - es) - a(t - s)} ds] 

(10) 

so that from (8) and (10) 

1 w(t)l/K < n/r,-, /3(et - e’“) - a(t - TJ 

+ 1: (-/3) es exp[/3(et - es) - a(t - s)] ds] 1 t E I, . 

40916712-16 
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This is inequality 4.9 in [l] and so, as in [I] 

From this we have 

Mk/K < M,-,(l + O(e-‘*)). 

Mk < KkM,, fi (1 + O(e-‘?)). 
ot 

That is, 1 w(t)1 < NKk holds for t ~1~ because nz (1 + O(e+r)) is convergent. 
For t E Ik , k < (t - Q/a, so that 

1 w(t)1 <LIK1’“lt for t E [t, , +a~), L = NIK-to”‘]. 

From the definition of w(t) 

Observe that in [l] G(t, S) = diag(exp@,(t - s)), so that K = 1. 

3. THE CASE h > 1 

Now we consider the case A > 1. If h > 1 theorems of existence and unicity 
of solutions do not hold any more, and only for special initial conditions p)(t) 
will Eq. (1) have at least one solution ~(t; p). Every solution x(t) of (1) satisfies 

2(1/t) = -(A(l/t)/P) x(l//Lt) - (B(l/t)/t2) x(1/t) 

p = l/h < 1, at least if to > 0. 
However the asymptotic properties of x(t) cannot be obtained from this 

equation with the help of Theorems 1, 2, even if these theorems hold. The 
following theorems generalize Theorems 5, 6 in [l]. 

THEOREM 3. Assume that Eq. (3) is exponentially stable and K, @ are chosen 
so that / G(s, t)l < K exp(-/3(t - s)) t 3 s > to, /I > 0. If x(t) is a sol&m of 
Eq. (1) such that limt,+, t-&x(t) = 0 

a < (log ,3 - log 11 A 11 - log K)/log h 

then x(t) = 0 for every t. 

THEOREM 4. If x1(x2<.” < xr < 0, Axr + xi < 0, and if x(t) is a 
solution of Eq. (1) such that limt++m G(t, , t) x(t) = 0, then x(t) = 0 for every 
tE [to, -tco). 
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We omit the proofs which are obtained, with few changes, from the proofs of 
the analogous results in [I]. 

We observe only that from Theorem 3 we have the following corollary: 

COROLLARY 3. If B is a constant matrix and if G(t, s) satisjies 

j G(t, s)i & H exp(-&t - s)) t 2 s > t,, , p Y 0 

G(t, s)’ 5.; H exp(y(s - t)) s ;c t + t, 

(I11 

(14 

and if -A/3 $ y < 0, then only the null solution of Eq. (I) decays faster then 
exp( -yt). 

Proof. B is a constant matrix, so that from (I I), (12) we have x,. . . . -13, 
X; = -x1 < 7. Then Ax7 + X; < --hfl t- y < 0. If lim,,+,(eYfr(t)) = 0 then 
Em,- .,(G(t,, , t) x(t)) = 0 and x(t) must be zero from Theorem 3. 
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