TCT-630

Impact of Calcified Plaque on Stent Strut Distribution of Bioresorbable Vascular Scaffolds Versus Metallic Everolimus-eluting Stents: An Optical Coherence Tomography Analysis

Katsumasa Sato1, Azem Latibi2, Vasilios F. Panoulas2, Hiroyoshi Kawamoto3, Tadashi Miyazaki4, Tora Nagamun2, Antonio Colombo4

1EMO GVM Centro Cuore Columbus, Milan, Italy

Background: Non-uniform strut distribution (NSD) is an important factor predisposing to intimal hyperplasia through decreased local drug delivery and increased scaffold recoil after BVS implantation. The aim of this study was to evaluate, using optical coherence tomography (OCT), the impact of underlying plaque morphology on strut distribution of bioresorbable vascular scaffolds (BVS 1.1) versus metallic everolimus eluting stents (EES).

Methods: Among 39 patients who underwent elective percutaneous coronary intervention (PCI) (n=20 in BVS group, n=19 in EES group), a total of 1200 post-PCI OCT frames (BVS: 590 frames; EES: 610 frames) were analyzed. NSD was defined as a frame with maximum inter-strut angle >120°.

Results: The percentage of frames with NSD was significantly higher in the BVS group (26.1% [154/590] vs. 19.0% [116/610], p<0.003). In the EES group the calcium arc in frames with NSD was not significantly different compared to that in frames with uniform strut distribution (USD) (34.6±44.4° vs. 35.6±47.1°, p=0.83). However, in the BVS group the arc of calcium was significantly greater in frames with NSD as compared to those with USD (85.2±162.6° vs. 21.0±41.7°, pc<0.0001). In multivariable analysis, after adjustment for post-dilatation balloon size and maximum inflation pressure, a calcium arc >75° was identified as an independent predictor of NSD after BVS implantation (odds ratio: 12.1, 95% confidence interval: 7.9-18.8, p<0.001).

Conclusions: The presence of calcified plaque behind BVS struts appears to be an independent predictor for NSD. For calcified lesions, meticulous lesion preparation, including use of dedicated devices, may help prevent NSD after BVS stent implantation.

TCT-631

Clinical Outcome of Patients With Complex Lesion Treated With Bioresorbable Vascular Scaffold; Single Center Experience

Katsumasa Sato1, Azem Latibi2, Vasilios F. Panoulas2, Hiroyoshi Kawamoto3, Tadashi Miyazaki4, Tora Nagamun2, Antonio Colombo4

1EMO GVM Centro Cuore Columbus, Milan, Italy

Background: There are limited data regarding clinical outcomes of patients with complex lesions treated with bioresorbable vascular scaffolds (BVS) compared to new generation drug eluting stents (DES).

Methods: We analyzed 1-year clinical outcome data of 432 consecutive patients treated with either new-generation DES or BVS between May 2008 and May 2014. We analyzed 1-year clinical outcome data of 432 consecutive patients treated with either new-generation DES or BVS between May 2008 and May 2014. Lesion characteristics were similar between two groups. Primary outcome was major adverse cardiac events (MACE) which was defined as all-cause death, follow-up myocardial infarction (MI) and target-vessel revascularization (TVR).

Results: A total of 432 patients were included in this study. After PS matching, 96 patients treated with BVS (BVS group) and 96 patients treated with DES (DES group) were selected. Lesion characteristics were similar between two groups. Over 80% of lesions in both cohorts were ACC/AHA lesion classification type B2 and C (83.3% in BVS vs. 85.2% in DES, p=0.06). Pre and post-dilatation balloon size and maximum inflation pressure were similar between groups (BVS 21.1±5.1 mm vs. 19.4±5.1 mm, p=0.01). There was no significant difference in the 1-year cumulative MACE incidence between the BVS and the DES group (10.8% vs. 12.7%, p=0.33). Similarly there was no significant differences in the composite endpoint of all-cause death and MI (3.6% vs. 4.5%, p=0.30), TVR (10.8% vs. 9.6%, p=0.68) or target lesion revascularization (9.2% vs. 5.6%, p=0.51). There was 1 episode of definite stent thrombosis in BVS group and 1 in DES group.

Conclusions: In swine coronary arteries, DM, atherosclerosis and inflammation do not affect BVS degradation or the vascular response to BVS. Both in DM and non-DM, the neointima was equally associated with calcification, lipid accumulation and inhomogeneous collagen deposition indicating early neo-atherosclerosis.

TCT-632

Diabetes and Atherosclerosis Do Not Affect Early Degradation of Bioresorbable Vascular Scaffolds

Mie Katada1, Nienke S. van Ditzhuijzen1, Duna Soror1, Richard W. van Duijn1, Ilona Krabbe-Peters1, Timothy Velldorf1, Patrick W. Serruys1, Felix Zijlstra1, Dirk-Jan Duncker1, Evelyn Regar1, Heleen v Beusekom1

1Department of Cardiology, ThoraxCenter, COEUR, Erasmus MC, Rotterdam, Netherlands

Background: While everolimus-eluting bioresorbable vascular scaffolds (BVS) were studied in healthy swine, effects of inflammation and atherosclerosis on degradation of BVS and vascular behaviour remain to be determined.

Methods: Of 15 farm-bred swine, 8 received streptozotocin to induce diabetes mellitus (DM), then a high cholesterol diet was given to all 15 swine. Nine months later, 32 coronary Absorb BVS (Abbott Vascular, Santa Clara, CA) were implanted under angiographic guidance. Histology, serology and polymer degradation analysis was performed. Results of degradation were compared to controls from normal, non-atherosclerotic swine (n=6 blood point).

Results: Degradation was similar in diseased and normal healthy swine and was determined only by implanted duration. It was not affected by DM, lipid accumulation in the neointima, or inflammation (Fig). Struts were completely covered at both 3 and 6 months follow-up, irrespective of DM and atherosclerosis. Likewise, DM did not affect histological scores. Importantly, all disease groups showed marked neointimal atherosclerosis, with focal lipid accumulation, irregular collagen distribution and neointimal calcifications. The latter was observed in various patterns, particularly towards the lumen.

Conclusions: In swine coronary arteries, DM, atherosclerosis and inflammation do not affect BVS degradation or the vascular response to BVS. Both in DM and non-DM, the neointima was equally associated with calcification, lipid accumulation and inhomogeneous collagen deposition indicating early neo-atherosclerosis.

TCT-633

Abstract Withdrawn

TCT-634

Is Visual Assessment of Lesion Dimensions Sufficient For Sizing Of Bioresorbable Scaffolds? Insights From THE ASSURE Registry

Detlef Mathy1, Christoph Naber1, Thomas Schmin2, Carsten Schwenke1, Norbert Frey2, Christian Busted3, Johannes Brachmann1, Maja Ingwersen1, Anna Drabik4, Sinisa Marcovic5, Jochen Wohrle6

1University Cardiovascular Center Hamburg, Hamburg, Germany, 2Contilia Heart and Vascular Centre, Elisabeth Krankenhuis Essen, Germany, Essen, Germany, 3Contilia Heart and Vascular Center Essen, Essen, Germany, 4University Medical Center Schleswig-Holstein, Campus Kiel, Kiel, Germany, 5Herzzentrum Brandenburg, Bernau, Germany, 6Klinikum Coburg, Coburg, Germany, 7University Medical Center Hamburg-Eppendorf, Hamburg, Germany, 8University of Ulm, Ulm, Germany, 9University Hospital Ulm, Ulm, Germany

Background: Compared to drug eluting stents, for bioresorbable vascular scaffolds (BVS, Abbott Vascular Inc., Santa Clara, CA) sizing may be more important in terms of malposition and fracture because of smaller expansion limits. The registry aims...