
doi: 10.1006/jsco.1999.0327
Available online at http://www.idealibrary.com on

J. Symbolic Computation (2000) 29, 471–480

Solving Systems of Strict Polynomial Inequalities

ADAM STRZEBOŃSKI

Wolfram Research Inc. and Jagiellonian University, 100 Trade Centre Drive,
Champaign, IL 61820, U.S.A.

We present an algorithm for finding an explicit description of solution sets of systems of
strict polynomial inequalities, correct up to lower dimensional algebraic sets. Such a de-

scription is sufficient for many practical purposes, such as volume integration, graphical
representation of solution sets, or global optimization over open sets given by polynomial
inequality constraints. Our algorithm is based on the cylindrical algebraic decomposition
algorithm. It uses a simplified projection operator, and constructs only rational sample

points.
c© 2000 Academic Press

1. Introduction

A system of polynomial equations and inequalities is a formula∨
1≤i≤l

∧
1≤j≤m

fi,j(x1, . . . , xn)ρi,j0 (1)

where fi,j ∈ R[x1, . . . , xn], and each ρi,j is one of <,≤,≥, >,=, or 6=.
A subset of Rn is semialgebraic if it is a solution set of a system of polynomial equations

and inequalities.
Every semialgebraic set can be represented as a finite union of disjoint cells (see

 Lojasiewicz, 1964), defined recursively as follows.

(1) A cell in R is a point or an open interval.
(2) A cell in Rk+1 has one of the two forms

{(a1, . . . , ak, ak+1) : (a1, . . . , ak) ∈ Ck ∧ ak+1 = r(a1, . . . , ak)}
{(a1, . . . , ak, ak+1) : (a1, . . . , ak) ∈ Ck ∧ r1(a1, . . . , ak) < ak+1 < r2(a1, . . . , ak)}

where Ck is a cell in Rk, r is a continuous algebraic function, and r1 and r2 are
continuous algebraic functions, −∞, or ∞, and

r1(a1, . . . , ak) < r2(a1, . . . , ak)

for all (a1, . . . , ak) ∈ Ck. By an algebraic function we mean a function r : Ck → R

for which there is a polynomial

f = c0x
m
k+1 + c1x

m−1
k+1 + · · ·+ cm ∈ lR[x1, · · · , xk, xk+1]

such that
c0(a1, . . . , ak) 6= 0 ∧ f(a1, . . . , ak, r(a1, . . . , ak)) = 0

for all (a1, . . . , ak) ∈ Ck.

0747–7171/00/030471 + 10 $35.00/0 c© 2000 Academic Press

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/82649664?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

472 A. Strzeboński

The cylindrical algebraic decomposition (CAD) algorithm (see Collins, 1975; Caviness
and Johnson, 1998) allows us to compute decomposition of semialgebraic sets into finite
unions of cells. In this paper we present a faster algorithm which allows us to compute a
somewhat weaker result for open solution sets of systems of strict polynomial inequalities
(i.e. systems of inequalities (1) with ρi,j being one of <, >, or 6=).

Let S be a system of strict polynomial inequalities. Without loss of generality we can
write S in the form

S =
∨

1≤i≤l

∧
1≤j≤m

fi,j(x1, . . . , xn) < 0.

Our algorithm gives subsets A and B of Rn, such that A is an open set represented as a
finite union of open cells, B is an at most (n− 1)-dimensional algebraic set represented
by a list of polynomials whose product is zero on B, and the solution set X(S) of S
satisfies

A \B ⊆ X(S) ⊆ A ∪B.

Note, that for many practical applications finding A instead of X(S) may be enough.
For instance, since A and X(S) differ by a set of measure zero,∫

X(S)

fdm =
∫
A

fdm

where dm denotes the n-dimensional Lebesgue measure, and f is a Lebesgue integrable
function. Therefore one can use our algorithm to compute integrals over sets described
by means of inequalities. The form in which open cells are represented (described in more
detail in the following section) is convenient for multiple integration: if an open cell is
given by

C = r1 < x1 < s1 ∧ r2(x1) < x2 < s2(x1) ∧ · · ·
∧rn(x1, . . . , xn−1) < xn < sn(x1, . . . , xn−1),

then ∫
A

fdm =
∫ sn(x1,...,xn−1)

rn(x1,...,xn−1)

. . .

∫ s2(x1)

r2(x1)

∫ s1

r1

fdx1dx2 . . . dxn.

Similarly, open cells produced by our algorithm can be used for graphical visualization
of sets described using strict inequalities.

We propose a representation of open cells using algebraic functions. The representation
of algebraic functions and open cells used in the output of our algorithm is described in
the following section. We have implemented algebraic functions and the main algorithm as
a part of Mathematica computer algebra system. In the last section we show examples of
applications of our implementation in computation of multiple integrals and in graphical
visualization of semialgebraic sets.

The third section gives a description of the main algorithm. The algorithm is based
on the CAD algorithm, however it uses a simpler projection operator, constructs only
open cells, which allows it to use sample points with rational coordinates, and returns
the answer written in terms of algebraic functions. Simplified algorithms for deciding
existence of solutions of systems of strict polynomial inequalities using rational sample
points have been described in McCallum (1993) and Strzeboński (1994). The second
also uses a simplified projection operator. In the last section we give an example which

Solving Systems of Strict Polynomial Inequalities 473

compares our improved projection operator with McCallum’s projection operator (see
McCallum, 1998).

Finally, the last section also contains an example which compares timings of our al-
gorithm with the full CAD algorithm. (By the full CAD algorithm we mean here an
algorithm which uses McCallum’s projection operator and gives a description of the full
solution set in terms of algebraic functions.)

2. Representation of Algebraic Functions and Open Cells

Definition 2.1. A real algebraic function given by a polynomial f ∈ R[x1, . . . , xn][y]
and an integer p is the function

Rooty,pf : lRn 3 x1, . . . , xn −→ Rooty,pf(x1, . . . , xn) ∈ lR

where Rooty,pf(x1, . . . , xn) is the pth real root of f(x1, . . . , xn) ∈ R[y]. The function is
defined for those values of x1, . . . , xn for which f(x1, . . . , xn) has at least p real roots.
The real roots are ordered by the increasing value, counting multiplicities.

Remark 2.2. All the algebraic functions used in this paper are defined by single roots,
so in the above definition we could as well not require counting root mulitiplicities. In a
more general context of implementing algebraic functions in a computer algebra system it
seems more convenient to count the roots with multiplicities because algebraic functions
defined this way are more regular. For instance

Rooty,2(y − x1)(y − x2)

is defined for all x1 and x2, and equal to max(x1, x2) for real x1 and x2. Without taking
multiplicities into account the function would not be defined for x1 = x2. Also, a monic
polynomial of degree n has n algebraic function roots, which are defined for all values
of parameters (and for instance can be used for plotting the Riemann surface of the
polynomial).

Let us now describe recursively our representation of open cells.

(1) An open cell in R is represented as

r < x1 < s

where r and s are −∞, ∞, or algebraic numbers represented by Rooty,pf and
Rooty,qg for univariate polynomials f(y) and g(y).

(2) An open cell in Rk+1 is represented as

Ck ∧ r(x1, . . . , xk) < xk+1 < s(x1, . . . , xk)

where Ck is a representation of an open cell in Rk, and r and s are −∞, ∞, or
algebraic functions, defined and continuous on Ck, represented by Rooty,pf and
Rooty,qg for (k + 1)-variate polynomials f(x1, . . . , xk, y) and g(x1, . . . , xk, y), and

r(x1, . . . , xk) < s(x1, . . . , xk)

for all (x1, . . . , xk) ∈ Ck.

474 A. Strzeboński

3. The Algorithm

Algorithm 3.1. (GCAD (“Generic Cylindrical Algebraic Decomposition”))

Input: A system

S =
∨

1≤i≤l

∧
1≤j≤m

fi,j(x1, . . . , xn) < 0

of strict polynomial inequalities.
Output: An open set A ⊆ Rn represented by a finite disjunction of representations of
open cells described above, and an at most (n − 1)-dimensional algebraic set B ⊆ Rn
represented by a list of polynomials whose product is zero on B. The solution set X(S)
of S satisfies

A \B ⊆ X(S) ⊆ A ∪B.

(1) Call the subalgorithm GPROJ described below, with S as the input. Get (F1, . . . , Fn),
(pr1, . . . , prn).

(2) Compute the required representations of sets A and B by calling the recursive
subalgorithm RSFC described below, with S, (F1, . . . , Fn), (pr1, . . . , prn), k = 0,
and Φ = true as the input.

Subalgorithm GPROJ corresponds to the projection phase of the CAD algorithm. We use
a projection operator which is simpler than the projection operators used in CAD. The
projection operator was used (but not explicitely defined) in Strzeboński (1994). Subal-
gorithm RSFC is a recursive algorithm which combines the sample point construction
phase of the CAD algorithm with construction of the solution formula. In the following
we use the standard CAD terminology (see Collins, 1975; Caviness and Johnson, 1998).

Let us define the projection operator.

Definition 3.2. For a set of polynomials F , let SFRP (F) denote a set of square-free
and relatively prime polynomials multiplicatively generating F . For a set of square-free
and relatively prime polynomialsG, let PR(G, v) denote the set of the leading coefficients,
discriminants, and pairwise resultants of elements of G as polynomials in v.

Remark 3.3. SFRP (F) is not uniquely determined. For the following it does not matter
which set of square-free and relatively prime polynomials multiplicatively generating F we
use, so we just assume that we have a procedure for computing one. In our implementation
for polynomials with rational number coefficients we use the set of irreducible factors of
F , and our experience is that polynomial factorization is not a significant part of the
execution time of the whole algorithm.

Algorithm 3.4. (GPROJ (“Generic Projection”))

Input: A system

S =
∨

1≤i≤l

∧
1≤j≤m

fi,j(x1, . . . , xn) < 0

of strict polynomial inequalities.

Solving Systems of Strict Polynomial Inequalities 475

Output: Lists (F1, . . . , Fn), (pr1, . . . , prn). For 1 ≤ k ≤ n, Fk and prk are lists of
polynomials in x1, . . . , xk.

(1) Set Fn = {fi,j : 1 ≤ i ≤ l, 1 ≤ j ≤ m}, prn = SFRP (Fn).
(2) Compute Fk−1 = PR(prk, xk), prk−1 = SFRP (Fk−1), for 2 ≤ k ≤ n.

Algorithm 3.5. (RSFC (“Recursive Solution Formula Construction”))

Input:

A system S of strict polynomial inequalities.
Lists (F1, . . . , Fn), (pr1, . . . , prn) computed from S using GPROJ.
0 ≤ k ≤ n.
A formula Φ. If k > 0, Φ is a description of an open cell C ⊆ Rk, such that all
polynomials of prk have constant non-zero signs on C.
If k > 0, a sample point (a1, . . . , ak) ∈ C with all coordinates rational.

Output:

A formula ΨΦ which is a finite disjunction of representations of open cells forming
an open set AΦ ⊆ Rn. If k > 0 the projection of each cell on Rk is equal to C.
A list LΦ of polynomials. If BΦ ⊆ Rn is the set of zeros of the product of elements
of LΦ, the solution set X(Φ ∧ S) of Φ ∧ S satisfies

AΦ \BΦ ⊆ X(Φ ∧ S) ⊆ AΦ ∪BΦ. (2)

(1) Let S′ be S with (x1, . . . , xk) replaced by (a1, . . . , ak). If S′ is true return ΨΦ = Φ
and LΦ = {}. If S′ is false return ΨΦ = false and LΦ = {}. Note that this may
happen even if k < n because some of the polynomials fi,j may depend only on
(x1, . . . , xk). S′ must be true or false if k = n, so in the following steps k < n.

(2) Let prk+1 = (g1, . . . , gs). If k > 0 let (g′1, . . . , g
′
s) be the univariate polynomials in

xk+1 obtained from (g1, . . . , gs) by replacing (x1, . . . , xk) with (a1, . . . , ak). If k = 0
we set (g′1, . . . , g

′
s) = (g1, . . . , gs).

(3) Let r1 < r2 < · · · < rt denote all real roots of (g′1, . . . , g
′
s). Isolating real roots of

(g′1, . . . , g
′
s) we find rational numbers p0, . . . , pt such that

p0 < r1 < p1 < r2 < · · · < rt < pt < rt+1

and algebraic functions h1, . . . , ht such that, for 1 ≤ i ≤ t, if ri is the pth root of
g′j then

hi = Rootxk+1,pgj .

Set h0 = −∞ and ht+1 =∞.
(4) For 0 ≤ i ≤ t, call RSFC recursively with ki = k + 1,

Φi = Φ ∧ hi(x1, . . . , xk) < xk+1 < hi+1(x1, . . . , xk)

and a sample point (a1, . . . , ak, pi), obtaining formulas Ψ0, . . . ,Ψt and lists of poly-
nomials L0, . . . , Lt.

(5) Let L be a list of those elements gj of prk+1, for which there exist 1 ≤ i ≤ t, such
that hi = Rootxk+1,pgj and both Ψi−1 and Ψi are not false.

476 A. Strzeboński

(6) Return ΨΦ = Ψ0 ∨ · · · ∨Ψt and LΦ = L ∪ L0 ∪ · · · ∪ Lt.

To show correctness of GCAD it suffices to show the correctness of RSFC.
It easily follows from the definition of PR and SFRP that all elements of Fn which

depend only on the first k variables are multiplicatively generated by prk. This proves
the correctness of step 1, since we assume that the elements of prk have constant signs
on C.

To complete the proof of correctness of RSFC we will use the following lemma.

Lemma 3.6. Let f ∈ R[x1, . . . , xn, y], and let X ⊆ Rn be a connected open set on which
the leading coefficient and the discriminant of f , as a polynomial in y, have constant
non-zero signs. Then there is a constant m, such that f has m real roots on X, and
Rooty,kf is a continuous function on X for all 1 ≤ k ≤ m.

Proof. Let Ak be the set of elements of X for which f has at least k non-real roots,
and let Bl be the set of elements of X for which f has at least l real roots. Ak is open by
the implicit function theorem applied to f treated as a function Cn × C → C. (For any
a = (a1, . . . , an) ∈ Ak let b1, . . . , bk be k different non-real roots of f(a1, . . . , an, y), and let
U1, . . . , Uk be disjoint neighborhoods of b1, . . . , bk in C\R. There is a neighborhood U of
a in Cn such that f(c1, . . . , cn, y) has a root in each of U1, . . . , Uk for any (c1, . . . , cn) ∈ U .
Then U

⋂
R
n is an open neighborhood of a contained in Ak.) Bl is open by the implicit

function theorem applied to f treated as a function Rn × R → R. Let Ck be the set of
elements of X for which f has exactly k real roots. Then

Ck = Ad−k ∩Bk
where d is the degree of f in y. Sets Ck for 0 ≤ k ≤ d are disjoint, open, and they cover
X, so there is 0 ≤ m ≤ d such that Cm = X. Then functions Rooty,kf , for 1 ≤ k ≤ m,
are defined on X and they are continuous by the implicit function theorem.2

The leading coefficients, discriminants, and the pairwise resultants of elements of prk+1

(as polynomials in xk+1) are elements of Fk, so they are multiplicatively generated by
elements of prk and hence have constant non-zero signs on C. By Lemma 3.6, the elements
of prk+1 have a constant number of real roots each, and the real roots are continuous
functions. This means that the algebraic functions h1, . . . , ht are defined and continuous
on C, so Φ0, . . . ,Φt are valid representations of open cells C0, . . . , Ct in Rk+1. The graphs
of the roots do not intersect, because the pairwise resultants of elements of prk+1 have
constant non-zero signs. Therefore the elements of prk+1 have constant non-zero signs
on each of C0, . . . , Ct.

The correctness of (2) follows from the asserted correctness of recursive calls, and the
facts that

(C × lRn−k) \ (C0 ∪ · · · ∪ Ct) = graph(h1) ∪ · · · ∪ graph(ht)
and that, since the set X(Φ∧S) is open, graph(hi) may intersect X(Φ∧S) only if both
Ci−1 × Rn−k−1 ∩X(S) = X(Ψi−1 ∧ S) and Ci × Rn−k−1 ∩X(S) = X(Ψi ∧ S) are not
empty.

Remark 3.7. We can reduce the size of the description of the set A returned by GCAD
by making RSFC join some of the adjacent cells. If subsequent formulas Ψi, . . . ,Ψj

Solving Systems of Strict Polynomial Inequalities 477

obtained in step 4 all have a form

Φ ∧ hi(x1, . . . , xk) < xk+1 < hi+1(x1, . . . , xk) ∧ Ξ
Φ ∧ hi+1(x1, . . . , xk) < xk+1 < hi+2(x1, . . . , xk) ∧ Ξ

. . .

Φ ∧ hj(x1, . . . , xk) < xk+1 < hj+1(x1, . . . , xk) ∧ Ξ

(with the same Ξ) RSFC can replace them with a single formula

Φ ∧ hi(x1, . . . , xk) < xk+1 < hj+1(x1, . . . , xk) ∧ Ξ.

Our experiments suggest that this situation happens very often. Note that while the sets
A and B, returned by GCAD without the reduction described above, do not intersect,
adding this reduction can make A ∩ B non-empty. This is why we use A \ B in the
specification of the output of GCAD. Another way to make the output shorter is to
factor out Φ from the formula ΨΦ. Each Ψi has a form Ψi = Φ ∧ Υi, so we can write
ΨΦ = Φ ∧ (Υ0 ∨ · · · ∨Υt).

We use a recursive algorithm which finds sample points and constructs the solution
formula at the same time, because it allows us to save memory by not storing the sample
points. We can do this because we use algebraic functions defined by the projection
polynomials to describe cells. The size of solution formula produced by GCAD (using
Remark 3.7) is often much smaller compared to the number of sample points that need
to be constructed to find it.

Example 3.8. GCAD (with Remark 3.7 implemented) applied to the system of inequal-
ities

x4 + y2 + z2 + t2 < 1 ∧ x2 + y4 + z2 + t2 < 1
∧x2 + y2 + z4 + t2 < 1 ∧ x2 + y2 + z2 + t4 < 1 ∧ x2 + y2 + z2 + t2 < 1

gives a one cell description of set A

−1 < x < 1 ∧ −
√

1− x2 < y <
√

1− x2 ∧ −
√

1− x2 − y2 < z <
√

1− x2 − y2

∧ −
√

1− x2 − y2 − z2 < t <
√

1− x2 − y2 − z2

and 244 equations describing set B. The computation constructs a total of 2 401 264
sample points, so storing all sample points would require storing 9 605 056 rational num-
ber coordinates. However, the maximal number of sample point coordinates that the
recursive algorithm needs to store at the same time is only 931.

4. Examples and Experimental Results

Example 4.1. Our implementation of GCAD in the C kernel of Mathematica has been
used in Roger Germundsson’s InequalityGraphics and MultipleIntegration packages. Fig-
ure 1 gives a graphical representation of the solution set of the inequality system

x2 + y2 + z2 < 9 ∧ y2 < x2 + z2 − 1

produced with InequalityGraphics.

478 A. Strzeboński

–2
0

2
–2

–1
0

1
2

–2

0

2

0
1

2

Figure 1. The solution set of x2 + y2 + z2 < 9 ∧ y2 < x2 + z2 − 1.

Example 4.2. Using the GCAD algorithm we can compute the volume of the set pic-
tured in Figure 1. Symbolic integration using the MultipleIntegration package gives
64π/3. Here the integration is by far more time consuming than the GCAD compu-
tation. Symbolic integration may not be able to handle the general form of algebraic
functions, but we can also use the answer from GCAD to compute integrals numerically.
Numerical approximations of values of arbitrary real algebraic functions can be computed
using polynomial root finding algorithms. In fact, Mathematica has built-in computation
with algebraic functions and algebraic numbers (see Strzeboński, 1996, 1997). We have
computed the volume of the set pictured in Figure 1 numerically and obtained 67.0206
(which agrees with the result of the exact computation).

Example 4.3. This example compares our improved projection operator SFRP ◦ PR
(see Definition 3.2) used in the GCAD algorithm with McCallum’s projection operator
(see McCallum, 1998). MGCAD denotes an algorithm which is identical to GCAD, ex-
cept that it uses McCallum’s projection operator. We have run both algorithms on the
following inequality

ax3 + (a+ b+ c)x2 + (a2 + b2 + c2)x+ a3 + b3 + c3 > 1

where the variables are ordered (a, b, c, x) (the last variable is projected first). Table 1
gives the number pr of polynomials in the r-variate projection, the maximal total degree
dr of polynomials in the r-variate projection, for r = 4, 3, 2, 1, the number call of all
four-dimensional cells the algorithms needed to construct, the number cout of cells in the
output, after combining cells using Remark 3.7, the number pB of polynomials describing
the set B (see Algorithm 3.1), and the total time t in seconds used by each algorithm.
The example was run on a Pentium II, 330 MHz computer with 128 MB of RAM. In this
example using our improved projection operator reduced the number of polynomials in
the last projection by a factor of 8.9, the number of cells to construct by a factor of 120,
and the total time by a factor of 15.

Solving Systems of Strict Polynomial Inequalities 479

Table 1. Comparison of projections.

Algorithm p4 d4 p3 d3 p2 d2 p1 d1 call cout pB t

MGCAD 1 4 5 8 19 16 142 96 6967 29 82 540
GCAD 1 4 2 8 4 16 16 72 53 29 10 36

Table 2. Systems of strict inequalities.

Inequalities CAD #c GCAD #c #p

B1 ∧B2 3.92 1 0.17 1 0
B1 ∧B4 0.67 0 0.08 0 0

B1 ∧B2 ∧B3 73.05 2 1.32 2 3
B1 ∧B2 ∧B4 30.45 0 0.59 0 0
B1 ∧ C1 17.62 1 0.65 1 1
B1 ∧ C2 31.62 0 0.92 0 0
T ∧ C1 774.8 17 5.55 9 8
T ∧B2 3000+ ? 1.1 1 2

HB1 ∧HB2 ∧HB3 415 0 3.76 0 0
HT ∧HB2 ∧HB3 3000+ ? 6.99 0 0

T ∧ C1 ∧B2 3000+ ? 30.79 28 31
HT ∧ C1 ∧HB2 3000+ ? 19.74 0 0

Example 4.4. We have implemented a variant of the cylindrical algebraic decomposition
algorithm which gives exact solution sets of arbitrary systems of polynomial equations
and inequalities in terms of, not necessarily open, cells represented using our represen-
tation of real algebraic functions. Let us call this algorithm CAD. It uses the improved
projection operator from McCallum (1988) and McCallum (1998), with further improve-
ments for equations based on Collins (1998). In case of not well-oriented systems it uses
the projection operator from Hong (1990). The sample point construction phase uses
ideas from Collins and Hong (1991). In the following we compare timings of CAD and
GCAD on systems of strict polynomial inequalities. The examples come from McCallum
(1993). Both algorithms were implemented in the C kernel of Mathematica. The exam-
ples were run on a Pentium Pro, 233 MHz computer with 64 MB of RAM. The timings
in seconds are given in the CAD and GCAD columns. The #c columns give the total
number of cells produced by each algorithm (answer false counts as no cells). The #p
column gives the number of polynomials describing the error set B given by the GCAD
algorithm. The variables are ordered (x, y, z). Following the notation of McCallum (1993)
let us put

B1 = x2 + y2 + z2 < 1
B2 = (x− 1)2 + (y − 1)2 + (z − 1)2 < 1

B3 = (x− 1)2 + (y − 1)2 +
(
z +

1
2

)2

< 1

B4 =
(
x− 3

2

)2

+ (y − 2)2 + z2 < 1

480 A. Strzeboński

C1 = x2 + y2 + z2 + 2yz − 4y − 4z + 3 < 0
∧y − 1 < z ∧ z < y + 1

C2 = x2 + y2 + z2 + 2yz − 4y − 4z + 3 < 0
∧y + 1 < z ∧ z < y + 2

T = z4 + (2y2 + 2x2 + 6)z2 + y4 + 2x2y2

−10y2 + x4 − 10x2 + 9 < 0
HB1 = B1 ∧ x+ y + z < 0
HB2 = B2 ∧ x+ y + z > 3

HB3 = B3 ∧ x+ y + z <
3
2

HT = T ∧ x+ y < 0.

We can see that using GCAD instead of CAD gives large speed-ups, and the relative
speed-ups are larger for more complicated problems. This is because GCAD, which uses
rational sample points only, avoids the complexity growth coming from the need for doing
computations with algebraic numbers which are roots of polynomials of increasingly high
degrees.

References

Caviness, B., Johnson, J., eds (1998). Quantifier Elimination and Cylindrical Algebraic Decomposition,
Wien, Springer-Verlag.

Collins, G. E. (1975). Quantifier elimination for the elementary theory of real closed fields by cylindrical
algebraic decomposition. In LNCS 33, pp. 134–183.

Collins, G. E. (1998). Quantifier elimination by cylindrical algebraic decomposition—twenty years of
progress. In Caviness, B., Johnson, J. eds, Quantifier Elimination and Cylindrical Algebraic Decom-
position, pp. 8–23. Springer-Verlag.

Collins, G. E., Hong, H. (1991). Partial cylindrical algebraic decomposition for quantifier elimination. J.
Symb. Comput., 12, 299–328.

Hong, H. (1990). An improvement of the projection operator in cylindrical algebraic decomposition. In
Proceedings of ISSAC, pp. 261–264. ACM Press.

 Lojasiewicz, S. Ensembles semi-analytiques, I.H.E.S. in Lojasiewicz, 1964.
McCallum, S. (1988). An improved projection for cylindrical algebraic decomposition of three dimen-

sional space. J. Symb. Comput., 5, 141–161.
McCallum, S. (1993). Solving polynomial strict inequalities using cylindrical algebraic decomposition.

Comput. J., 36, 432–438.
McCallum, S. (1998). An improved projection for cylindrical algebraic decomposition. In Caviness,

B., Johnson, J. eds, Quantifier Elimination and Cylindrical Algebraic Decomposition, pp. 242–268.
Springer-Verlag.

Strzeboński, A. (1994). An algorithm for systems of strong polynomial inequalities. Math. J., 4, 74–77.
Strzeboński, A. (1996). Algebraic numbers in mathematica 3.0. Math. J., 6, 74–80.
Strzeboński, A. (1997). Computing in the field of complex algebraic numbers. J. Symb. Comput., 24,

647–656.

Originally Received 15 July 1999
Accepted 29 November 1999

	Introduction
	Representation of Algebraic Functions and Open Cells
	The Algorithm
	Examples and Experimental Results
	Fig. 1
	Table 1
	Table 2

	References

