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Abstract 

In this paper we present an extensive study of many-to-many routing on trees under the 
matching routing model. Our study includes on-line and off-line algorithms. We present an 
asymptotically optimal on-line algorithm which routes k packets to their destination within 
d(k - 1) + d f dist routing steps, where d is the degree of tree T on which the routing takes 
place and dist is the maximum distance any packet has to travel. We also present an off-line 
algorithm that solves the same problem within 2(k - 1) + dist steps. The analysis of our al- 
gorithms is based on the establishment of a close relationship between the matching and the 
hot-potato routing models that allows us to apply tools which were previously used exclusively 
in the analysis of hot-potato routing. 

Keywords: Hot-potato routing; Matching routing model; Off-line routing; On-line routing; 
Packet routing 

1. Introduction 

In a packet routing problem on a connected undirected graph G we are given a 

collection of packets, each packet having an origin and a destination node, and we 
are asked to route them to their destinations as fast as possible. During the routing, 
the movement of the packets follows a set of rules. These rules specify the routing 
model. Routing models might differ on the way edges are treated (uni-directional, bi- 
directional), the number of packets each node can receive/transmit/hold in a single 
step, the number of packets that are allowed to queue in a node (queue-size), etc. 
Usually, routing models are described informally. 

Packet routing problems can be also classified based on the properties of the col- 
lection of packets that participate in the routing. When all packets are available at the 
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beginning of the routing, we have a static routing problem, while, when it is possible to 
generate packets during the course of the routing we have a dynamic routing problem. 
Routing problems can be further classified. When each node of the graph is the origin 
of at most ht packets and the destination of at most h2 packets, we have an (ht, hz)- 
routing (or many-to-many routing) problem. In the case where ht = 1 and h2 > 1 we 
have a many-to-one routing problem (many nodes send packets to one node); when 
ht > 1 and h2 = 1 we have a one-to-many routing problem (one node sends packets 
to many other nodes); when hl = h2 = 1 and the number of packets is (less than or) 
equal to the number of nodes of the graph we have a (partial) permutation. 

Another classification of the routing problem is based on whether the routing 
decisions/actions are being made in a centralised or a distributed manner. The routing 
is said to be on-line when the routing actions of each node at a given time are based 
only on knowledge obtained from the packets that entered the node in previous rout- 
ing steps. The routing is said to be ofS_line when a routing schedule is produced for 
each packet and then all packets are routed according to their produced schedules. The 
routing schedule of a packet consists of information which can be used to infer the 
node at which the packet resides at any time instance. 

The matching model was defined by Alon et al. [2,3] when they studied the routing 
of permutations. In the original matching model, each node initially holds exactly one 
packet and the only operation allowed during the routing is the exchange of the packets 
at the endpoints of an edge. The exchange of the packets at the endpoints of a set of 
disjoint edges (a matching of graph G on which the routing takes place) can occur 
in a single routing step. These edges are said to be active during the routing step. 
Under the original matching model, when a packet reaches its destination node it is 
not consumed. Instead, it continues to participate in the routing until the time all the 
packets in the graph simultaneously reach their destination nodes. At that time, the 
routing is completed. 

The importance of studying the routing using the matching routing model is twofold: 
Firstly, this routing problem can be considered as a formalisation of a mathematical 
problem related to the diameter of permutation groups. This becomes obvious if we 
consider an undirected graph G and a permutation rc on its node set and let rt(G, TC) 
denote the minimum number of permutations ci whose product is n, where each pi is 
a product of disjoint transpositions on pairs of connected nodes. The routing number 
rt(G) is the maximum value of rt(G, TC), where the maximum is taken over all permu- 
tations rc. Secondly, from a practical point of view the striking feature of the matching 
model is that in contrast to the traditional “store-and-forward” approach, it involves 
no queueing of incoming packets. Additionally, routing on product graphs, including 
hypercubes and meshes, can be implemented in this model [6, 16, 191. 

Most of the work available on the original matching model is devoted to off-line 
routing. Alon et al. [2,3] showed that any permutation on a tree of n nodes can be 
routed in at most 3n steps. Roberts et al. [20] reduced the number of steps to at most 
2.3n. Furthermore, for the special cases of bounded degree trees and complete d-ary 
trees of n nodes, they showed that routing terminates after 2n+o(n) and n+o(n) steps, 
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respectively. Zhang [21] subsequently reduced the number of steps required to route a 
permutation on an arbitrary tree to 2n. The only work related to on-line routing on trees 
consists of the study of sorting on linear arrays based on the odd-even transposition 
method [l l] (see also [l, 161). The odd-even transposition method sorts a permutation 
on a linear array of n elements in at most n steps. 

Not allowing for the consumption of packets before the end of the routing limits 
the application of the original matching model to the routing of permutations. In this 
paper, we consider the natural extension of the original model which allows for the 
consumption of packets. Given the fact that this modification of the model is min- 
imal, we continue to refer to the routing model as the matching model. (The term 
matching with consumption model was used in [18].) Since we allow for the con- 
sumption of packets at their destination, we have to assume that in the case where 
only one of the nodes at the endpoints of an edge holds a packet, a swap opera- 
tion on that edge results in moving the packet to the opposite endpoint. Krizanc and 
Zhang [ 151 independently considered many-to-one routing under the same model. For 
n-node trees, they showed that any many-to-one routing pattern can be routed in at 
most 9n steps and posed the question whether it is possible to complete the routing for 
that type of pattern in less than 4n steps. In this paper we answer their question to the 
affirmative. 

Consider any (hl - hZ)-routing problem which has to be routed under the matching 
model. Even though at most hl packets originate from any given node u, initially at 
most one of them participates in the routing. The remaining packets which originate 
at node v are injected into the routing at times where v holds no other packet, i.e., at 
times when either no packet entered v or the packet which did so was consumed at v. 
The above method of packet injection into the routing satisfies the explicit requirement 
of the matching model according to which at most one packet is present at any node 
at any time instance. In the context of dynamic routing, an injection can be considered 
as the generation of a new packet. In practice, packets can be generated at any time 
instance and then they wait to be injected into the routing. In this paper, for simplicity 
we assume that packets are generated only at time instances in which their injection 
into the routing is possible. 

Another commonly used routing model is the hot-potato (or dejection) routing 
model in which packets continuously move between nodes from the time they are 
injected into the graph until the time they are consumed at their destination. This 
implies that (i) at any time instance the number of packets present at any node is 
bounded by the out-degree of the node, and (ii) at any routing step each node must 
transmit the packets it received during the previous step (unless they were destined 
for it). Because packets always move, it is not possible to always route all packets 
to nodes closer to their destination. At any given routing step several packets might 
be derouted away from their destination. This makes the analysis extremely difficult. 
Consequently, even though hot-potato routing algorithms have been around for several 
years [4], no detailed and non-trivial analysis of their routing time was available until 
recently. 
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The work of Feige and Raghavan [IO] which provided analysis for hot-potato routing 
algorithms for the torus and the hypercube renewed the interest in hot-potato routing. 
As a result, several papers appeared with hot-potato routing as their main theme 
[5,7, 13, 14, 171. Borodin et al. [8] formalised the notion of the dejection sequence, 
a nice way to charge each deflection of an individual packet to distinct packets par- 
ticipating in the routing. Among other results, they show that routing k packets in a 
hot-potato manner can be completed within 2(k - 1) + dist steps for trees where dist 
is the initial maximum distance a packet has to travel. A similar result was proven 
earlier by Hajek [12] and Brassil and Cruz [9] for hypercubes. 

1.1. Our results 

In this paper, we present an extensive study of many-to-many packet routing on n- 
node trees under the matching routing model. We limit the investigation of the matching 
model to trees, however, the same results apply to undirected graphs since the routing 
can be performed on a spanning tree of the graph. Our study covers both on-line and 
off-line routing. More specifically: 

(i) We show that there exists a family of permutation problems on n-node trees of 
maximum degree d which require R(dn) steps for their routing by any on-line 
routing algorithm which considers the edges incident to any tree node in a fixed 
order. 

(ii) We provide an on-line algorithm which completes the routing of any many-to- 
many routing problem on an n node tree of maximum degree d in d(k- 1 )+a’. dist 
routing steps where, k is the number of packets which participate in the routing 
and dist is the maximum distance some packet has to travel. 

(iii) We provide an off-line algorithm which completes the routing of any many-to- 
many routing problem on an n node tree in 2(k - 1) + dist routing steps where k 
is the number of packets which participate in the routing and dist is the maximum 
distance some packet has to travel. The algorithm routes any many-to-one routing 
problem in at most 3n - 3 routing steps and it significantly improves upon the 
previous algorithm of Krizanc and Zhang [15] which routed any many-to-one 
problem in 9n steps. 

Another innovation of our work is that we establish a closed relationship between 
the matching and the hot-potato routing models and we exploit it in the analysis 
of the algorithms presented in this paper. More specifically, we show how our al- 
gorithms on tree T can be simulated by hot-potato routing on a graph Gr that is 
obtained through a transformation of tree T. This allows us to use tools that were 
developed for the analysis of hot-potato routing in our analysis of the matching 
routing. 

The rest of the paper is organised as follows: In the next section we present termi- 
nology and preliminary results which are used in the paper. In Sections 3 and 4, we 
study on-line and off-line routing, respectively. We conclude in Section 5 with open 
problems. 
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2. Preliminaries 

A tree T = (V, E) is an undirected acyclic graph with node set V and edge set E. 
The nodes of V are supposed to be ordered according to some ordering criteria, i.e., 
nodes of V can be compared by the operator “ <“. Throughout the paper we assume 
n-node trees, i.e., ) VI = n. An undirected edge connecting nodes u and u is denoted 
by {u, u}, while a directed edge from node u to node v is denoted (u, v). The set of 
neighbours of node u is defined as Neighbours(u) = {v 1 {u, v} E E}. The degree of node 
u is defined as degree(u) = Il\reighbours(u)). In a similar way we define the in-degree 
and the out-degree of a directed graph. For a graph G = (V, E) and two nodes u, v E V, 
we denote by distc(u,v) the distance (i.e., the length of the shortest path) from u to 
v on G. 

A static routing problem 92 can be defined to be a tuple W = (G, S) where G is 
the graph on which the routing takes place and S is the set of packets to be routed. 
Each packet p E S can be described by the tuple p = (orig, dest) where orig and dest 
denote the origin and the destination of packet p, respectively. The notation orig(p) 
and dest(p) is also used to denote the origin and the destination of packet p. For 
simplicity, we assume that for every packet p E S it holds that orig(p) # dest(p). For 
dynamic routing problems, we have to augment the definition to incorporate the time 
at which a packet is generated. There are several ways to formalise the notion of the 
generation of a packet. For the purposes of this paper, in a dynamic routing problem, a 
packet p is considered to be a triple p = (orig, dest, birth), where birth denotes the time 
that packet p is generated (orig and dest again denote the origin and the destination 
of packet p, respectively). The notation birth(p) is also used to denote the time that 
p is generated. Note that, the time at which a packet is generated does not necessarily 
coincide with the time it is injected into the routing. A packet that is generated at 
time t, might be injected into the routing at a later time. We also allow set S to grow 
with time since, in general, it is not possible to specify before the start of the routing 
the number of packets that will be generated nor the specific times of the generation. 

Both the matching and the hot-potato models assume a synchronous mode of commu- 
nication. Thus, we can talk about the position of the packets at time t of the routing. 
At time t = 0 the packets are in their initial position in the graph. We assume that 
routing steps occur instantly. 

In the analysis of our algorithms for the matching model we are going to use the 
“charging argument” formulated by Borodin et al. [8] for the hot-potato routing model. 
Consider an arbitrary packet p which, at time t, is located at node v and, during the 
next routing step, moves away from its destination because all edges incident to node 
v which lead to nodes closer to the destination of p are used for the routing of other 
packets. In this case, we say that packet p suffers a defection at time t and that any 
of the packets which move closer to the destination of p is responsible for (or caused) 
that deflection. (In Section 4, the definition of a dejlection is extended). 

Borodin et al. [8] defined the notions of the dejection sequence and the de$ection 
path for a particular deflection as follows: Consider a deflection of a packet p at time 
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ti and let PI be the packet which caused the deflection. Follow packet p1 until time t2 
where it reaches its destination or it is deflected by packet ~2, whichever happens first. 
In the latter case, follow packet p2 until time t3 where it reaches its destination or it is 
deflected by packet p3, and so on. We continue in this manner until we follow a packet 
pl which reaches its destination at time tl+l. The sequence of packets pl, ~2,. . , pi 
is defined to be the dejection sequence corresponding to the deflection of packet p 
at time tl. The path (starting from the deflection node and ending at the destination 
of PI) which is defined by the deflection sequence is said to be the dejection puth 
corresponding to the deflection of packet p at time tl. 

Lemma 1 (Borodin et al. [S]). Suppose that for any dejection of packet p from node 
v to node u the shortest path from node u to the destination of pl (the last packet 
in the deflection sequence) is at least as long as the dejection path. Then, pl cannot 
be the last packet in any other dejection sequence of packet p. Consequently we can 
associate (or “charge”) the dejlection to packet pl. 

Lemma 1 is quite useful in the analysis of hot-potato algorithms. Consider for exam- 
ple the case where the routing takes place on an undirected graph and the hot-potato 
algorithm sends a packet away from its destination only if all edges which lead closer 
to its destination are used by other packets which advance closer to their destinations. 
Let p be an arbitrary packet which initially is dist steps away from its destination and 
assume that k packets participate in the routing (including p). According to Lemma 1, 
each deflection of p can be associated (or charged to) with a distinct packet which also 
participates in the routing. Therefore, given that the total number of packets is k, packet 
p can be deflected at most k - 1 times. So, in the worst case, packet p spends k - 1 
steps moving away from its destination, k- 1 steps negating the result of the deflections 
(recall that the graph in this example is undirected), and dist steps moving towards 
its destination. Thus, packet p reaches its destination within at most 2(k - 1) + dist 
routing steps. 

3. On-line routing 

In this section we consider on-line routing on n-node trees of maximum degree d. 
We prove a lower bound which applies to a natural class of algorithms and we provide 
an algorithm which matches it (asymptotically). The analysis of our algorithm is based 
on the simulation of the matching routing on tree T by hot-potato routing on a graph 
Gr which is derived from T. 

3.1. A lower bound 

In order to route a pattern under the matching model an on-line algorithm must on 
each step choose a matching. Once this matching has been chosen for a given step, the 
packets at the endpoints of each edge of the matching are compared and the decision 
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<d-l> 

Fig. 1. Worst case permutations for (a) an n-node star of degree d = n - 1, and (b) a tree of maximum 
degree d, for some constant d > 2. The numbers in the nodes are node labels, the numbers attached to edges 
denote the order in which edges are activated and the numbers between angle brackets denote packets with 
a given destination. 

to swap them is made depending on some rule. The on-line algorithms to which our 
bound applies are the ones in which the edges of each node are considered in a fixed 
order throughout the course of the routing. These algorithms repeatedly cycle through a 
fixed sequence of matchings making swapping decisions based on a deterministic rule. 
Observe that this is a natural class of algorithms for on-line routing. This is because it 
is not enough for a node in the graph to simply select the edge which will be active 
during the next step based on some criteria. The selections made by each node should 
also be compatible with the selections of other nodes, i.e., the set of active edges 
should form a matching. 

Consider the permutation shown in Fig. l(a) for a star of degree d (the number of 
nodes is 12 = d + 1). We assume that the edges become active in increasing order of the 
labels attached to the edges of the star. Consider an arbitrary packet which originates 
at a node other than the centre of the star. Observe that any such packet has to spend 
at least d - 1 steps at the centre of the star waiting for the edge that leads to its 
destination to become active. This is because the edge which leads to its destination is 
activated d - 1 steps after the time the edge through which the packet arrived at the 
centre of the star was active. So, each of the d = n - 1 packets occupies the centre of 
the star for at least d - 1 steps and thus, R(dn) steps are required for the routing of 
this permutation on the star of degree d. 

In the above routing problem the maximum degree of the tree is a function of the 
number of nodes in the tree. It is not difficult to construct a tree of constant degree 
d and a permutation for which the same bound applies. This is shown in Fig. l(b). 
Each subtree 7;, 0 < i <d - 1, has (n - 1 )/d nodes and the packets in subtree z have 
destinations in subtree Tci_ 1) md d, 0 d i <d - 1. By using exactly the same argument, 
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we conclude that R(dn) steps are required for the completion of the routing. Thus, 
there exists a tree of maximum degree d, and a permutation on its nodes that requires 
R(dn) steps for its routing by any on-line algorithm (from the class studied). 

3.2. The on-line algorithm 

In the description of the algorithm we assume that at the end of each routing step 
each node examines the packet it holds and if the packet was destined for that node (i.e., 
it reached its destination) it is consumed. Following, the consumption of the packet, 
if any, each node might inject a new packet into the routing. The packet injection has 
to be done after the consumption of packets that arrived at their destination, since we 
do not want a packet that will be consumed at the node it currently is to prevent the 
injection of a new packet at that step. In order to keep the description of our algorithm 
short and clear, we omit the code that deals with the consumption and injection of 
packets. 

Let T be an n-node tree of maximum degree d. The many-to-many on-line algorithm 
is as follows: 

Algorithm On-Line-Tree-Routing(T,M) 
I* A4 is the set of packets to be routed on tree T = (V,E) *I 

(i) 

(ii) 
(iii) 

(iv) 

[Preprocessing] For each node v E V label the edges incident on v with labels in 

(0,. . ., d - l}, so that no two edges incident on v have the same label. 
t=o 
For each node v E V select a packet p E A4 (if any) with orig( p) = v and inject 
it into the routing. 
While there are packets that haven’t reached their destination do 
(a) For each edge {u, v} with a label I = t mod d 

do Update( u, v) 
(b) Consume packets that reached their destination. 
(c) Inject new packets (if there are any to be injected). 
(d) t=t+l 

Procedure Update(u, v) performs a swap of the packets at the endpoints of edge {u, v} 
if and only if both packets will move closer to their destinations. 3 In the description 
of the procedure, we assume that one packet is present at each endpoint. The procedure 
can be trivially extended to cover the case where none or only one packet is present 
at the endpoints of edge {u, v}. Consider any node v E V at time t. Then, by packet(v) 
we denote the packet p EM (if any) which resides in node v at time t. 

3 The swap of the packets at the endpoints of an edge is executed in an on-line fashion. Each endpoint of 
the edge sends the packet it holds to the other endpoint while it keeps a copy of its packet. Then, both 
nodes execute the test in procedure Update, they both make consistent decisions on which packet to hold, 
and they discard the other. 
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Procedure Updute(u, v) 
(i) 24’ = destr(packet(u)) 

(ii) 27’ = destr(packet(u)) 
(iii) if &st~(u, u’) + distr(u, u’) < distr(u, u’) + dist~(u, u’) then 

swap the packets at the endpoints of {~,a} 

3.3. Analysis of algorithm “On-Line-Tree-Routing” 

The analysis of our on-line algorithm is based on reducing matching routing to 
hot-potato routing and then applying a general charging scheme that is used for the 
analysis of hot-potato routing algorithms. Consider the routing problem 9%’ = (T,M) 
which is routed by algorithm On-Line-Tree-Routing. Based on W =(T,M) and al- 
gorithm On-Line-Tree-Routing, we define a routing problem 9’ = (Gr, H) and the 
hot-potato Algorithm On-Line-Simulation such that, the number of steps required for 
the routing of problem W= (T,M) by algorithm On-Line-Tree-Routing is a function 
of the number of steps required for the routing of problem W’ = (Gr, H) by Algorithm 
On-Line-Simulation. 

Consider a tree T of maximum degree d and let each edge in T be labelled with 
an integer i E (0, . . . , d - 1 }, so that no two edges incident to the same node have the 
same label. We use T and the labels of its edges to construct a directed graph Gr as 
follows: For each node u of T, we create d nodes Uj, j E (0,. . . ,d - l}, in Gr, and 
we say that these nodes of Gr correspond to node u of T. For each edge {u,u} of T 
we create a node {u, u}~ in G r, where i is the label of {u,u} in T. We say that this 
node of Gr corresponds to edge {u, u} of T. 4 For each edge {u, u} in T with label 
i, we add the following four directed edges in Gr: (ui, {u,u}~), ({u,u}~,u(~+~)~~~~), 

(vi7 {Ut D}i)~ ((4 u}it I,++,) modd). Note that, if a node u in T has degree d’ < d, not 
all labels in (0,. . . , d - 1) appear at the edges incident to it. Consider such a node u 
and let I be a label that does not appear in an edge incident to u. Then we create a 
node {u}’ in in Gr and we add the directed edges (01, {a}‘), ({u}‘, ~(l+t)~~d). For 
an example of the construction of a graph Gr corresponding to a labelled tree T, see 
Fig. 2. 

Lemma 2. Let x and y be two nodes of graph G T. Then there exists a unique shortest 
path in Gr which connects nodes x and y. 

Proof. Follows from the construction of graph Gr (based on tree T) and the fact 
that there exists a unique shortest path between any pair of nodes of an undirected 
tree. 0 

4 Since tree T is undirected, {u, u} and {u, U} denote the same edge. So, in GT only one new node is 
introduced, that is, in GT {u,u}’ and {u,u}’ denote the same node. 
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GT: 

0 

Fig. 2. Tree T and the corresponding graph Gr used in the analysis of Algorithm On-Line-Tree-Routing. 

Lemma 3. Let u and v be two neighbouring nodes in T. Then distC,(ui,Ui)=2d for 
all iE{O,...,d- 1). 

Proof. Let I be the label of edge {u, U} of T. For an arbitrary i E (0,. . . , d - l}, 
the shortest path from ui to vi in Gr is made up of the paths IIt = (ui -+ . . . + 
ul + {u,v}‘) and I52 = ({u,u}’ -+ t~(/+r)~~dd --) . --) Vi). Every second node of 171 
(starting from ui) corresponds to node u of T, while every second node of ZZ2 (starting 
from ~(l+t),,,~dd) corresponds to node v of T. To see that the length of the combined 
path is equal to 2d, observe that the subscripts of every second node of the combined 
path form the sequence (i, (i + 1) mod d, (i + 2) mod d, . . . , (i - 1) mod d, i). 0 

Lemma 4. Let u, v be two distinct nodes in T. Then distGT(ui, Vi) <2d. distr(u, V) for 
all iE{O,...,d- l}. 

Proof. We prove the lemma by induction on distT(u,v). Lemma 3 forms the basis of 
the induction. Let 6 > 1 be the diameter of tree T (the case where 6 = 1 is covered by 
the basis of the induction). For the induction hypothesis assume that the lemma is true 
for any pair u, v of nodes which satisfy distr(u, v) < p, where 1 6~66. Consider any 
pair U, w of nodes with distr(u, w) = p and let the shortest path from u to w in T be 

(u + . . . L v 2 w) (I and m are the labels of the edges incident to v in the path). Then, 
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for all i E (0,. . . ,d - l}, we have that distor(ui, vi) <2d . distr(u, V) (by the induction 
hypothesis) and distc+(u,, IV;) = 2d (by Lemma 3). Thus, for all i E (0,. . . , d - l}, we 
conclude that distc,(ui, wi) < 2d(distr(u, V) + 1) = 2d distr(u, w). 

Note that the path (Ui *. . . + Vi +. . . + wi) on which we based the proof of this 
lemma might not be a simple path. The path (ut~+i) mod d -+ . . . + v, --f {v, w}~) is 
a sub-path of the shortest path from Ui to wi in Gr. If this sub-path does not go 
through vi, then distGr(ut, Wi) <2d .distr(u, V) + 2d. This is how the “<” operator was 
introduced in the lemma. 0 

3.3.1. Many-to-one routing 
For simplicity, we first analyse Algorithm On-Line-Tree-Routing for many-to-one 

routing problems. In the next section, we extend the analysis to many-to-many routing. 
So, assume that problem B = (T,M) is a many-to-one routing problem, that is, IM\ <n 
and for every pair of distinct packets p and q E A4 it holds that orig(p) # orig(q). 

We complete the construction of routing problem 98 = (Gr, H) by describing how 
to construct the set of packets H based on the packets of set M. For each packet 
pm EM, we create a packet ph in H and we set its origin and destination nodes as 
follows: Let u = origin(p,), v = dest(p,) and 1 be the label of the edge that is last in 
the shortest path from u to v in T (recall that orig(p,) # dest(p,)). Then, for packet 
ph we set origin(ph)=uo and deSt(p/,)=v(~+ljmodd. 

Algorithm On-Line-Simulation is the hot-potato algorithm which we use for the 
routing of problem B’ = (Gr, H). It specifies the rules that each of the nodes of graph 
Gr uses when it decides which packet to forward (if any) to each of its outgoing 
edges. 

Algorithm On-Line-Simulation 

Rules for nodes of Gr that correspond to nodes of T 
Note that all the nodes in this class are of the form Ui (where i E (0. . . d - 1) and u is 
a node of T) and have in-degree and out-degree equal to 1. 

[On-line-node-l] If the packet received in the previous step reached its destination 
it is consumed; otherwise, it is forwarded through the only out-going edge. 

Rules for nodes of Gr that correspond to unused labels around nodes of T 
Note that all the nodes in this class are of the form ui (where i E (0. . . d - l} is not 
the label of any edge incident to node u of T) and have in-degree and out-degree equal 
to 1. Moreover, no packet in H is destined for a node in this class. 

[On-line-label-I] The packet received in the previous step is forwarded through the 
only out-going edge. 

Rules for nodes of Gr that correspond to edges of T 
Note that all the nodes in this class are of the form {u, v}~ (where i E (0. . d - 1) is 
the label of edge {u, u} of T) and have in-degree and out-degree equal to 2. 
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[On-line-edge-l] If there is only one packet at the node, the packet is forwarded to 
the edge that brings it closer to its destination. 

[On-line-edge-21 In the case that there are two packets in the node, the decision is 
made as follows: Let {u, u}‘, i E (0. d - l}, be the node under consideration. Let 
ph be the packet that arrived from ui and qh be the packet that arrived from ui. 
Moreover, let u’ and uf be the nodes of T which correspond to dest(ph) and deSt(gh), 
respectively. If distr(u, 0’) + distr(v, u’) <distr(u, u’) + distT(v, u’) then we forward 

Ph to u(i+ 1) mod d and qh to U(i+l) mod d; Otherwise, ph is forwarded to U(i+i 1 mod d and 
qh is forwarded to U(i+l) mod d. (Note that the test on which node {u, u}~ based its 
decision is identical to the test performed by Procedure Update. Even the distances 
are taken on tree T instead on Gr.) 

Lemma 5. Let the many-to-one routing problem .%=(T,M) be routed by Algo- 
rithm “On-Line-Tree-Routing” and the many-to-one routing problem B’ = (GT,H) 
by Algorithm “On-Line-Simulation”. Consider an arbitrary packet pm EM and let 
packet ph E H be the packet which corresponds to it. Then, 

(i) packet pm is consumed at time c if and only if packet ph is consumed at time 2c, 
and 
(ii) at time t packet pm is at node u if and only if at time 2t packet ph is at 
node urmodd, t <C. 

Proof. We prove statement (ii) by induction on t. Statement (i) then follows from 
statement (ii). 

The basis (t =0) of statement (ii) is obviously correct. To see that, realise that at 
time t = 2t = 0 both packets pm and ph are located at their origin nodes in T and Gr, 
respectively. Let u = orig(p,). Then, by the construction of routing problem g’, packet 
ph originates at node Ug = 24 mod d. 

For the inductive step of statement (ii), we consider the routing steps before the 
consumption of packets pm (for the “only if” part) and ph (for the “if” part). For one 
step of Algorithm On-Line-Tree-Routing we follow two steps of Algorithm On-Line- 
Simulation. 

By the induction hypothesis, at time t <c (packet pm is consumed at time c) of the 
matching routing, packet pm is at node u if and only if at time 2t of the hot-potato 
routing, packet Ph is at node ut mod d. 

(+) First consider the case where there does not exist an edge incident to node u 
of T with label t mod d. Then, at time t + 1 packet pm is still at node U. Thus, in this 
case, we have to show that at time 2(t + 1) = 2t + 2 packet ph is at node z++i) mod d 
of Gr. By the induction hypothesis, at time 2t packet ph is at node uI m,,dd. Node 
ut mod d has out-degree 1, and by rule On-line-node-l, at step 2t + 1 packet ph is located 
at node {u}’ mod d. This is also a node of out-degree 1 and (by the construction of 
graph Gr ) the out-going edge leads to node uct+ 1) mod d. Thus, by rule On-line-label-l, 
at step 2t f 2 packet ph is located at node z++ 1) mod d of Gr. 
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Consider now the case where there exists an edge incident to node u with label 
(t mod d), say edge {u, v}. Let qm E A4 be the packet in node v of T at time t and 
let qh E H be its corresponding packet which participates in the hot-potato routing (the 
case where at time t no packet is at node v is simpler and can be handled similarly). 

By the induction hypothesis, at time t packets ph and qh are in nodes ut modd and 
vtmodd, respectively. Both of these nodes have out-degree 1 and their out-going edges 
lead to node {u, v} f mod d. According to rule On-line-node-l, both packets advance to 
that node and thus, at time 2t + 1 packets ph and qh are at node {u, v}’ mod d. This node 
has out-degree 2 and thus, the nodes at which packets ph and qh reside at time 2t + 2 
are determined based on rule On-line-edge-2. 

Let us return now to the matching routing of packets pm and qm which, at time t, 
are at nodes u and v, respectively. Let u’=dest(p,) and v’= dest(q,). Algorithm On- 
Line-Tree-Routing calls procedure Update(u, v). There are two cases to consider based 
on whether procedure Update(u,v) swapped packet pm with packet q,,,. 

Case 1: A swap took place. As a result of the swap, at time t + 1 packet pm is 
at node v. Since the swap took place, it must hold that distr(u, v’) + distr(v,u’) < 
distr(u, u’) + distr(v, v’) (see procedure Update). Consider now the hot-potato routing. 
Node {u, v}* mod d decides which node to forward packet ph to based on the result of 
exactly the same comparison. In the case where distr(u, v’)+distr(v, u’) <distr(u, u’)+ 
distr(v, v’) packet ph is forwarded to node ~(~+i)~~dd. Thus, if at time t + 1 packet 
pm is at node v then, at time 2t + 2 = 2(t + 1) packet Ph is at node qt+i J mod d. 

Case 2: A swap did not take place. As a result, at time t + 1 packet pm is still at 
node U. Because the swap did not take place, it must hold that distr(u, v’) + distr(v, u’) 
>distr(u, u’) + distr(v, v’). In this case, node {u, v} f mod d (based on rule On-line-edge- 
1) forwards packet ph to node qt+i j mod d. Thus, if at time t + 1 packet pm is at node u 
then, at time 2t + 2 = 2(t + 1) packet ph is at node z++ij mod d. 

(+) The “if” part of the proof is also based on the fact that rule On-line-edge-2 
performs exactly the same comparison with that performed by procedure Update. Since 
it is symmetric to the “only if” part, it is omitted. 

Statement (i), that is, packet pm is consumed at time c if and only if packet ph is 
consumed at time 2c, now follows from Statement (ii) and the fact that both Algorithm 
On-Line-Tree-Routing and Algorithm On-Line-Simulation consume packets as soon as 
they enter their destination node. 0 

Theorem 6. Algorithm “On-Line-Tree-Routing” routes any many-to-one routing 
problem 9 = (T,M) in at most d(k - 1) + d. dist routing steps, where d is the max- 
imum degree of tree T, k = IM[ is the number of packets to be routed, and dist is 
the maximum distance that any packet in M has to travel in order to reach its 
destination. 

Proof. We consider the routing of problem 9?‘= (Gr,H) by Algorithm On-Line- 
Simulation. From the construction of Gr (Lemma 4), it follows that the maximum 
distance that some packet of H has to travel in Gr is at most 2d. dist. Concentrate 
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on an arbitrary packet pm E A4 and its corresponding packet ph E H. We prove the 
theorem by showing that ph is consumed by time 2(d(k - 1) + d. dist). This implies 
(by Lemma 5) that packet pm is consumed by time d(k - 1) + d dist. 

The number of packets in the constructed hot-potato routing problem 9’ is k, that is, 
equal to the number of packets of the matching routing problem 9. We show that each 
packet that participates in the hot-potato routing might be deflected at most k - 1 times. 
The proof is directly based on Lemma 1, developed by Borodin et al. [8]. Thus, we 
have to specify how to construct the deflection sequence for each deflection of some 
packet ph E H. 

Firstly observe that a deflection can take place only at nodes of Gr which correspond 
to edges of T, that is, nodes of the form {u, v}~, where {u, u} is an edge of T with 
label i. This is because only these nodes have in-degree (and out-degree) equal to 2. 

Consider the deflection of packet ph which was deflected from node {u, v}~ to node 
U(i+i) mo~ d at time t by packet ph. ’ For the construction of the deflection sequence, 
we follow the packet that caused the deflection, i.e., packet pi, until it reaches its 
destination or, until the first time that it is deflected by another packet, say pi. We 
then follow pi, and so on. The deflection sequence ends with a packet pi that reaches 
its destination, i.e, it reaches node dest(pi). 

In order to be able to apply Lemma 1, we have to show that the shortest path from 
node r(i+i) mod d to dest(pk) is at least as long as the deflection path. 

This can be established by observing that the unique shortest path in Gr (Lemma 2) 
between nodes U(i+i)mod d and dest(pi) passes through node {u, u}~. More specifi- 
cally, the unique shortest path in Gr from u(i+l) mod d to dest(pi) consists of the 

path n1=(21(i+l)modd~.‘.~21imodrl + {u, u}~) (in which every second node, stat- 

ing from u(i+l) mod d, corresponds to node v of T) followed by the unique shortest 
path II2 = ({u, u}~ + . . + dest(pi)). Since path ITI is non-empty (by construction, 
it has length 2d - 1 >O) and path II2 is the deflection path, the shortest path from 
node U(i+i) mod d to node dest(pL) is actually longer than the deflection path. 

Now, based on Lemma 1 we conclude that each packet of H is deflected at most 
k - 1 times, i.e., as many times as the number of all other packets participating in the 
routing. Note that the cost of a deflection is 2d, that is, a packet which is at node 
{u, v}l and is deflected to node D(i+l) mod d has to traverse all the edges of the circuit 
27, = ({U, V}i + “(i+ I ) mod d j . ’ ’ i z’i mod d + {u, u}') in order to return to node {u, u}~ 
(the circuit has length 2d). 

Since the cost of each deflection is 2d steps and the maximum distance that some 
packet has to travel on Gr is 2d. dist (Lemma 4) we conclude that Algorithm On- 
Line-Simulation finishes the routing of problem .%’ = (Gr, H) after at most 2(d(k - 
1) + d . dist) steps. Then, the theorem follows from Lemma 5. 0 

3.3.2. Many-to-many routing 
Consider a many-to-many routing problem d = (T,M) which is routed by algorithm 

On-Line-Tree-Routing. Based on the routing of .% = (T,M) by Algorithm On-Line- 
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Tree-Routing, we define a dynamic routing problem .c%?’ =(GT,H) which is again 
routed by Algorithm On-Line-Simulation. 

The construction is similar to the one used for the analysis of the many-to-one 
routing. The only difference is that we do have to specify for each packet in H 
the time at which it is generated. We first route problem 92 = (T,M) by Algorithm 
On-Line-Tree-Routing and we observe for each individual packet the time at which it 
is injected into the routing. When the routing of &? = (T,M) terminates, we are ready 
to fully specify problem 9’ = (Gr, H). For each packet pm E M which was injected 
into the matching routing at time t, we create a packet ph in H with birth(ph) =2t. 
The origin and the destination nodes of ph are set as in the analysis of the many-to-one 
routing. 

The following lemma establishes that each packet of H can be injected into the 
hot-potato routing at the time it is generated. 

Lemma 7. Consider the many-to-many routing problem B = (T,M) which is routed 
by Algorithm “On-Line-Tree-Routing” and the constructed dynamic routing problem 
93’ = (Gr,H) which is routed by Algorithm “On-Line-Simulation”. Let pm be an 
arbitrary packet in M and let ph be its corresponding packet in H. If Algorithm “On- 
Line-Tree-Routing” injects packet pm at time t then Algorithm “On-Line-Simulation” 
can inject packet ph at time 2t. 

Proof. We prove the lemma by induction on t. The lemma is trivially true for t = 0. 
This case corresponds to the many-to-one static routing problem. 

Assume that the lemma holds for every time instance t’ <t. Lemma 5 which was 
proved for the case of many-to-one routing, can be extended to cover all packets of 
the matching routing generated at time instances smaller or equal to t’. (The proof is 
identical and thus omitted.) We now consider the only two cases in which, at time t, 
Algorithm On-Line-Tree-Routing injects a new packet at node u: 

Case 1: At time t, no packet which was generated at a time instance smaller that 
t is present at node u. 

In this case, at time 2t no packet which participates in the hot-potato routing is at 
node ut,dd and thus, the creation of a new packet is possible. 

Case 2: At time t, a packet pm, which was generated at a time t’< t is consumed 
at node u. 

By the induction hypothesis, the corresponding packet ph which participates in the 
hot-potato routing was generated at time 2’ <2t. In this case, packet ph is consumed 
at time 2t at node ut modd. This is because Lemma 5 (in its extended version) holds. 
Thus, after packet Ph is consumed, the generation of a new packet is possible. 0 

Theorem 8. Algorithm “On-Line-Tree-Routing” routes any many-to-many routing 
problem W = (T,M) in at most d(k - 1) + d . dist routing steps, where d is the max- 
imum degree of tree T, k = IM[ is the number of packets to be routed, and dist is 
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the maximum distance that any packet in A4 has to travel in order to reach its 
destination. 

Proof. Based on the extension of Lemma 5 to many-to-many routing and on Lemma 7 
it is possible to handle the consumption and, more importantly the generation of new 
packets. We then apply the same argument (based on the deflection sequences) as in 
the proof of Theorem 6. The only difference is that now k is the number of packets 
that participated in the many-to-many routing. 0 

4. Off-line Routing 

In the case where each node of the tree is the origin of at most one packet, i.e., in 
many-to-one problems, the output of an off-line algorithm can be considered to be a se- 
quence of matchings (not necessarily maximal) on tree T. Each matching corresponds 
to the set of edges which swap the packets at their endpoints during the corresponding 
routing step. 

In the case of many-to-many routing, each node of the tree might contain initially 
more than one packet. In our off-line algorithm, we assume that one of the packets 
at each node (if there are any) initially participates in the routing and the remaining 
packets are injected whenever possible. We assume no particular order when injecting 
the packets of the same node, however, it is trivial to generate the packets (of the 
same node) according to some ordering criteria. The output of the off-line algorithm 
is augmented to contain for each packet the time that it is injected into the routing. 

4.1. The ofS-line algorithm 

Consider an edge that has one packet at each endpoint and assume that both packets 
have to cross the edge in order to reach their destinations. The algorithm identifies 
all the edges of the tree that belong in this category and swaps the packets at their 
endpoints. Consider also a node of the tree that does not hold a packet and has some 
neighbours holding packets that have to enter it in order to reach their destinations. The 
algorithm also identifies all the nodes in this category and for each of them chooses 
arbitrarily one of the neighbours to forward the packet to it through the common edge. 

In the formal description of our off-line routing algorithms we use some special 
forms of directed graphs whose underlying undirected structure is that of a tree. More 
specifically, by in-tree we refer to the directed graph that satisfies the following prop- 
erties: (i) its undirected version is a tree, (ii) there is a single node of out-degree 0 
that is designated as the root of the in-tree, (iii) all other nodes have out-degree 1. 
By l-loop in-tree we refer to the directed graph that satisfies the following properties: 
(i) its undirected version is a tree, (ii) all nodes have out-degree 1, (iii) there is a pair 
of adjacent nodes the outgoing edges of which form a loop, referred as the l-loop 
of the tree. Finally, a node with no incoming and no outgoing edges is referred to 
as an isolated node. Graph G(T, t) in Fig. 3 consists of two in-trees rooted at nodes 
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T: 

<h> 

Fig. 3. Tree T at step t and the corresponding auxiliary graph G( r, t) 

e and f, respectively, one l-loop in-tree with nodes a and b forming the l-loop, and 
one isolated node i.e., node g. 

Consider tree T at time t of the matching routing. Each node of the tree contains 
at most 1 packet which currently participates in the routing. We construct an auxiliary 
directed graph G(T, t) = (V,E’) which is used by our off-line algorithm to determine 
the set of edges that swap the packets at their endpoints during the next routing step. 
The directed edge (u, v) is in E’ if and only if at time t there is a packet p at node u 
and u is the first node in the shortest path from u to deest(p) (of course, u and v are 
neighbours in T). Fig. 3 shows the auxiliary graph obtained from tree T at time t, 
assuming that the location of each packet is as described in the figure. The out-degree 
of each node in graph G(T, t) is at most 1 and thus G(T, t) is a collection of isolated 
nodes, in-trees, and l-loop in-trees. 

Algorithm OfS-Line-Tree-Routing(T,M) 
/* A4 is the set of packets to be routed on tree T = (V, E) *I 

(i) t=O 
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(ii) For each node v E V select a packet p EM (if any) with orig(p)= v and inject 
it into the routing. 

(iii) While there are packets that haven’t reached their destination do 
(a) Construct the auxiliary graph G(T,t). 
(b) Denote by Y be the set of tree edges which swap the packets at their endpoints 

during the next routing step. Insert into set Y: 
- One edge for each l-loop in-tree. The edge is the one that corresponds to 

the 1 -loop. 
- One edge for each in-tree. Out of the edges which enter the root of the 

in-tree, select the one which is emanating from the node of lowest order. 
The tree edge that is inserted in Y is the one which corresponds to the 
selected edge of the in-tree. 

(c) Swap the packets at the endpoints of edges in Y. 
(d) Consume packets that have reached their destination. 
(e) Inject new packets whenever possible (if any are still to be injected into the 

routing). 
(f) t=t+l 

For example, based on the tree G( T, t) of Fig. 3 and assuming that the nodes of T are 
ordered lexicographically, the active edges which swap the packets at their endpoints 

are {a,b}, {e,j}, and {f, 1). 
Note that Algorithm OfS-Line-Tree-Routing builds the routing schedules for the 

packets in M step by step. It is classified as an off-line algorithm because the de- 
cision on how to move a given packet at time t is based on information collected from 
all nodes of tree T. This information is represented by graph G( T, t). 

4.2. Analysis of algorithm “Off-Line-Tree-Routing” 

For the analysis of Algorithm Of-Line-Tree-Routing we again employ elements 
of hot-potato routing. Consider the routing problem 3 = (T,M) which is routed by 
algorithm Off-Line-Tree-Routing. Based on 9 = (T,M) and algorithm Off-Line-Tree- 
Routing, we define a routing problem 9’ = (Gr, H) and a hot-potato Algorithm Of- 
Line-Simulation such that, the number of steps required for the routing of prob- 
lem 9=(T,M) by algorithm OfS-Line-Tree-Routing is a function of the number 
of steps required for the routing of problem 9’ = (GT,H) by Algorithm OfS-Line- 
Simulation. 

Given tree T = (V, E), we construct the bipartite graph Gr = (A, B, ET) as follows: 

A={vA IVE V}, B={vBIvEV} 

Fig. 4 shows a tree T and its corresponding graph Gr. For clarity, a single edge with 
direction arrows at both of its endpoints is used instead of a pair of anti-parallel edges. 
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Fig. 4. Tree T and the corresponding graph GT used in the analysis of Algorithm Off-Line-Tree-Routing. 

Let u and w be two distinct nodes of tree T and let IZr = (u = u” + . . --t vi +. . . --t 
VP = w), p> 1, be the unique shortest path from node u to node w (i.e., edges {ui, ai+‘}, 
0 d i <p belong in T). By primitive(u, w) we denote the path ITo, = (UA = I&’ + vi -+ 
. , . --f v; + VA + . . -v;=wA) of Gr. 

A path Il of Gr is called a primitive path if and only if there exist two distinct 
nodes u and w of T such that Zl =primitive(u, w). 

For example, consider graph Gr in Fig. 4. The paths IZr = (ZIA -+XB -+ XA) and 
z72 = (UA + UB -+ VA + ZB + z,z,) are primitive paths. The paths n3 = (VB + VA + XB + XA)) 

zi’~ = (UA * UB +XA), and ns = (UA + vB + 0.4 --) XB + XA + UB + VA) are not primitive 
paths. This is because IZ3 starts from a node in B, in I74 node VB is not followed by 
node VA, and II=, is not a simple path. 

Lemma 9. Let uA, WA E A be two distinct nodes of graph GT. Then, there is a unique 
primitive path from node uA to node WA. Moreover, the primitive path from node uA 
to node WA is of length 2distT(u,w) 

Proof. Follows from the construction of graph Gr (based on tree T), the definition of 
a primitive path, and the fact that there exists a unique shortest path between any pair 
of nodes of an undirected tree. 0 
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4.2.1. Many-to-one routing 
For simplicity, we first analyse Algorithm Of-Line-Tree-Routing for many-to-one 

routing problems. In the next section, we extend the analysis to many-to-many routing. 
Assume that problem W= (T,M) is a many-to-one routing problem, that is, IMJ <n 
and for every pair of distinct packets p and q E M it holds that orig(p) # orig(q). 
We complete the construction of routing problem 9’ = (Gr,H) by describing how to 
construct the set of packets H based on the packets of set M. 

For each packet p EM with u = orig(p) and v = dest(p) we create two packets p’ 
and p2 in H (these two packets correspond to p). Packet p’ is referred as the twin 
packet of packet p2, and vice versa. For p’ and p2 we set: orig(p’) = orig(p2) = uA 
and dest( p’ ) = dest(p2) = VA. So, all packets that participate in the hot-potato routing 
are generated in, and are destined for, nodes in the set A. For simplicity, we refer to 
all packets of the form p’ and p2 as packets of type-l and type-2, respectively, where 
p is their corresponding packet in the tree routing. 

Algorithm OfiLine-Simulation is the hot-potato algorithm which we use in our 
simulation. It specifies the rules that the nodes of graph Gr use when they decide 
which packet to forward (if any) to each of their outgoing edges. 

Algorithm Off-Line-Simulation 

Rules for nodes in A 
[Of-line-A-l] A packet of type-l, currently at node UA and destined for node WA, 
is always sent to node VB where node v is the first node in the shortest path from 
u to w in tree T (Fig. 5). 

[Of-line-A-21 A packet of type-z, currently at node UA, is always sent to node us 
(Fig. 5). 

Fig. 5. Forwarding packets according to rules Off-line-A-l and Qfllline-A-2. Packets p, q, r, and s of the 
matching routing are all destined for node w of 7’. 
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Fig. 6. At time t packets p’, q’ and Y’ are assigned to outgoing edges of node 0~ according to rule 
Off-line-B-l. Assuming that node UA is of lower order than XA and ra, packet q’ was forwarded to node VA 
while packets p’ and Y’ were assigned to edges which lead to the nodes they arrived from, that is nodes 
ZA and xa, respectively. Packets q*, p2, and r* are assigned to edges according to rule Of/Xne-B-3. 

Rules for nodes in B 
We first assign outgoing edges based on rules OjXne-B-l and OfSine-B-2 to all 

packets for which it is possible to do so. We then assign outgoing edges to packets by 
applying repeatedly rules Of-line-B-3 and Off-line-B-4 in that order (recall that this is 
an off-line algorithm). 

[O#Xne-B-l] If node us contains only packets of type-l, then it forwards to node VA 
the packet which arrived from the node of lowest order, and it returns each of the 
remaining packets to the node it arrived from (Fig. 6). 

[OfSine-B-21 Consider a node us containing a packet p2 which arrived 
from node U.4 and a packet q’ which arrived from node VA. If node vg contains 
packets p’ and q2 (the twin packets of p2 and q’, respectively) then q’ and q* 

are forwarded to node MA while packets p’ and p2 are forwarded to node VA. 
Any other packet at nodes ug and t& is forwarded to the node it arrived from 
(Fig. 7). 
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Timct lime t+1 

Fig. 7. At time t packets p’, p2, q’, and q2 are assigned to outgoing edges of nodes v~ and us according 
to rule Off-line-B-2. Packet Y’ is also assign to an outgoing edge according to rule OfS-line-B-2. Packet r2 is 
assigned to an outgoing edge according to rule OjtXne-B-3. 

[Off-line-B-31 A packet p2 currently at node va with its twin packet p’ at node UB, 
is forwarded to node UA if packet p’ moves to node UA, or to node aA if packet p’ 
moves to node VA. 

[OfSine-B-l] A packet p’ currently at node va, which arrived at VB from node UA, 
returns to node UA (note that rules OfSine-B-I or Of-line-B-2 did not apply). 

The idea behind this simulation of the matching routing is the following: Consider 
packet p E A4 which is at node u of T and wants to move to node v in order to reach 
its destination along the unique shortest path on T. In the matching routing p has to 
move through a swap from u to v. However, if this is achieved, any other packet that 
wants to enter u from an edge different than {u, v} is not allowed to do so since only 
one edge incident to a node can be active at the same step. The simulation uses packet 
p’ to indicate the desire of packet p to move from u to v. It uses packet p2 in order 
to block other packets from advancing to node U. The following lemma formalises the 
properties of the simulation. 
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Lemma 10. Let the many-to-one routing problem %Y = (T,M) be routed by Algorithm 
“Of-Line-Tree-Routing” and the routing problem 9” = (Gr, H) by Algorithm “Of- 
Line-Simulation”. Consider an arbitrary packet p EM and let p’, p2 E H be the 
packets which correspond to it. Then, 

(i) packet p is consumed at time c if and only if packets p1 and p2 are consumed 
at time 2c, and 
(ii) at time t packet p is at node u if and only if at time 2t packets p’ and p2 are 
at node u.4. 

Proof. We prove statement (ii) by induction on t. Statement (i) then follows from 
statement (ii). 

The basis (t = 0) of statement (ii) follows from the construction of routing problem 
93? = (Gr, H). For the inductive step of statement (ii) we consider the routing steps 
before the consumption of packet p (for the “only if” part) and of packets p’ and p2 
(for the “if” part). We follow one step of Algorithm OfS-Line-Tree-Routing for every 
two steps of Algorithm Off-Line-Simulation. 

(=x) By the induction hypothesis, at time t < c packet p is at node u of T if and 
only if at time 2t packets p’ and p2 are at node UA. Let (u--f v + . . . + dest(p)) be 
the unique shortest path from node u to node dest(p). Edge (u, v) belongs in G(T, t) 
(by the construction of G( T, t)) and thus, nodes u and v belong in the same in-tree or 
1 -loop in-tree. 

Case 1: Nodes u and v belong to an in-tree of G(T, t), say T’,“. Note that u cannot 
be the root of the in-tree. We consider two sub-cases based on whether v is the root 
of the in-tree Tutu. 

Case 1.1: Node v is the root of the in-tree T”,“. By the induction hypothesis, at time 
2t packets p’ and p2 are at node UA. According to rules Off-line-A-l and Off-line-A-2, 
at time 2t + 1 packets p’ and p2 are located at nodes us and us, respectively. Since 
at time t of the matching routing on T no packet was located at node v (v is the 
root of an in-tree of G(T, t)), at time 2t no packet is located at node VA and thus, 
by rule OfSine-A-2, at time 2t + 1 no type-2 packet is located at node VS. Thus, 
at time 2t + 1 node us contains only packets of type-l, among which is packet p’. 
Let &n = min{x 1 (x, v) E in-tree T’,‘} (according to the order of nodes of T). We 
consider two cases: 

Case 1.1.1: xmin = u. In this case, the edge {u, v} of T is selected to swap the packets 
at its endpoints, and thus, at time t + 1 of the matching routing, packet p is at node v. 

Consider the packets at node us at time 2t+ 1. These packets are assigned to outgoing 
edges according to rule OfS-line-B-l. Thus, at time 2t + 2 packet p’ is forwarded to VA 
while each of the other packets is forwarded to the node it arrived from. By rule Ofs- 
line-B-3, packet p2 is forwarded from node UB to node 0~. Thus, at time 2t+2 = 2(t+ 1) 
both packets p’ and p2 are at node VA. 

Case 1.1.2: xmin # u. In this case, the edge {u, v} of T is not selected to swap the 
packets at its endpoints and thus, at time t + 1 packet p is at node u of T. Consider 
the packets at node VB at time 2t + 1. These packets are assigned to outgoing edges 
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according to rule Off-line-B-l. Packet p’ is not selected to be forwarded to node VA. 
Thus, by the same rule, it is forwarded to the node it arrived from, that is, node UA. By 
rule OfSine-B-3, packet p2 which is located at time 2t + 1 at node ug, is forwarded 
to node UA. Thus, at time 2t + 2 = 2(t + 1) both packets p’ and p2 are at node UA. 

Case 1.2: Node v is not the root of the in-tree T’,“. In this case, according to 
Algorithm Off-Line-Tree-Routing, edge {u, v} is not selected to swap the packets at 
its endpoints and thus, at time t + 1 packet p is at node u. Moreover, since node v is 
a node of the in-tree TU,“, at time t it does hold a packet, say packet q. 

Assume that node v is adjacent to the root, say node Y, of the in-tree Tq”, that is, 
(u 4 v+ Y) is a path from u to the root r of T”,“. By the induction hypothesis, at 
time 2t packets p’ and p2 are at node UA while packets q’ and q2 are at node VA. 
According to rules Off-line-A-l and Off-line-A-2, at time 2t + 1 packet p2 is at node 
UB, packets p’ and q2 are at node ug, and packet q1 is at node ?-B (possibly together 
with other packets of type-l ). 

In the case where node v is the node of lowest order which is adjacent to the root 
r of T“,“, packets q’ and q2 are forwarded to node ?“A (by rules OfSine-B-l and Off- 
line-B-3, respectively). By rule OfSine-B-4, packet p’ is forwarded to UA and then, 
due to rule OfSine-B-3, packet p2 is also forwarded to node MA. Thus, at time 2t + 2 
both packets p’ and p2 are located at node UA. 

In the case where v is not the node of lowest order which is adjacent to the root r 
of T’,‘, the application of the same rules results in having packets p’ and p2 located 
at node UA at time 2t + 2 (and packets q’ and q2 at node VA). Thus, in any case, at 
time 2t + 2 = 2(t + 1) packets p’ and p2 are at node UA. 

In the proof of Case 1.2, we assumed that node v is adjacent to the root, say node r, 
of the in-tree T’,‘. If this is not the case, an induction on the distance of node v from 
r in TU,v is required to establish that at time 2t + 2 both packets p’ and p2 are located 
at node UA. 

Case 2: Nodes u and v belong to an l-loop in-tree of G(T, t), say T’,‘. The proof 
of this case is similar to that of the case where nodes u and v belong to an in-tree 
of G(T, t). The only difference is that rule OfSine-B-2 is applied (instead of rule Ofs- 
line-B-I) to assign the packets at the nodes of the I -loop to outgoing edges. In order 
to avoid repetition, we omit the proof of this case. The reader who is interested in 
constructing a detailed proof, should consider the following two sub-cases: 

Case 2.1: Edge (u, v) is one of the edges forming the l-loop of the l-loop in-tree 
Tu, 1’ 

Case 2.2: Edge (u, v) is not one of the edges forming the l-loop of the l-loop in-tree 
TU9v. 

(-+) The “if” part of the proof is also based on the fact the rules OfSine-B-I and 
Off-line-B-2 of Algorithm Off-Line-Simulation assign packets to outgoing edges in a 
way which mirrors the selection of the matching on T by Algorithm Off-Line-Tree- 
Routing. Since it is symmetric to the “only if” part, it is omitted. 

Statement (i), that is, packet p is consumed at time c if and only if packets p’ 
and p2 are consumed at time 2c, follows from Statement (ii) and the fact that both 
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Algorithms Of-Line-Tree-Routing and Of-Line-Simulation consume packets as soon 
as they enter their destination node. 0 

Corollary 11. Let the routing problem 6% = (T,M) be routed by Algorithm “Ofs- 
Line-Tree-Routing” and the routing problem 2’ = (Gr, H) by Algorithm “Off-Line- 
Simulation” and consider the case where 1 A4 I= 1. Let p be the only packet in M 
and let pl,p2 E H be the packets which correspond to it. Then, packet p’ is routed 
on Gr along path primitive(u, v) where u = orig( p) and v = dest( p). 

We analyse Algorithm Off-Line-Simulation by considering “deflections” of type-l 
packets. However, the notion of deflection which we use is slightly different from the 
one which is traditionally used in the literature (and which was also introduced in 
Section 2). Traditionally, a deflection is considered to be a move of a packet which 
does not take it closer to its destination. A deflection is caused because all edges 
which lead closer to the destination of the packet are assigned to other packets. This 
definition assumes that each packet always tries to move along a shortest path from 
the node it resides in to its destination. The definition is accurate for all greedy hot- 
potato algorithms but it fails to serve algorithms which might try to route packets along 
non-minimal paths. 

Consider a hot-potato algorithm which is used to do the routing on a graph G. 
Assume that packet p is at node v of G at time t and let A(p, v, t) be the set of paths 
from node v to dest(p) which packet p is allowed to follow in order to reach its 
destination. Set A(p, v, t) might be a non-finite set since the paths are not restricted 
to be simple paths. Let A’(p, v, t) C A(p, v, t) be the set of paths of minimum length 
among the paths of A(p,v, t). Then, a dejection of packet p at node v at time t is 
defined to be the event where packet p fails to move along a path in set A’(p, v, t) due 
to the rules of the routing. In this paper, we assume that another packet also present 
in node v at time t (which influences the routing decisions with its presence ) causes 
the deflection of packet p. In the rest of this section, we use this broader definition 
for deflections. 

For example, consider Algorithm OfS-Line-Simulation and the routing of problem 
2’ = (Gr, H). Assume that packet p’ E H which is destined for node WA is, at time t, 
located at node UA of Fig. 4. Then, the set A(p’,uA, t) includes the primitive path 
(UA i vg --+ VA + x~ + XA + ws --+ WA) and, among others, the non-simple path (UA --f 
V~~UA~VB--~VA~X~~XA~W~~WA). The paths (uA-+VB+XA+W~-+WA) and 
(UA + z)B + aA -3 XB + WA) do not belong in A(p’, uA, t) since no packets which is 
routed by Algorithm OfS-Line-Simulation moves along them. Set A’(p’, uA, t) includes 
only the primitive path (u,j +VB+VA+XB+XA-+W~-+WA). 

We analyse the performance of Algorithm OfS-Line-Simulation when it is used to 
route problem 9’ = (Gr, H) which was obtained from problem 3 = (T, M). We con- 
centrate only on deflections of packets of type-l. Lemma 10 allows us to ignore in 
our analysis packets of type-2 since they are consumed at their destination at the same 
time that their twin packets are. 
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Consider packet p’ E H which at time t - 1 is located at node UA and it corresponds 
to p EM, and let w= dest(p). Let (!,!A, 0~) be the first edge of the unique primitive 
path from UA to WA. According to Algorithm Off-Line-simulation, packet p’ can move 
only along paths which emanate from UA and all have edge (UA, VB) as their first edge. 
Thus, packet p’ is never deflected at a node of set A. At time t, packet p’ is located 
at node vg. It might only move along paths (to its destination) which start with edge 
(v~,uA) or edge (~&VA). Among the paths of these two classes, the path of minimum 
length starts with edge (US, VA). It is possible that the routing rules dictate that packet 
p’ is forwarded along edge (ag, UA ) due to the presence of some other packet q* (the 
notation q* is used to denote either the type-l packet q’ or the type-2 packet q2) in 
node VB at time t. In this case, we say that the packet is deflected at time t by packet q*. 
Note that packets of type-l can be only deflected at nodes of B. 

Consider the deflection of packet p’ from node rB to node UA at time t which was 
caused by packet q; (q; is either q: or 4:). Packet q; is forwarded along edge (vg,vA) 
to node aA or along edge (nB,xA ) to node XA, where x is the first node in the path from 
v to dest(q’) in T (the choice depends on whether packet q’ was selected for a swap 
in the tree routing). At time t + 1 packet q; and its twin packet are both at the same 
node (Lemma 10). We then follow packet qt along its primitive path until it reaches 
its destination or until it is deflected at some node WE, whichever happens first. If it 
was deflected first, let packet q; be the packet which caused the deflection. In a similar 
way, we follow packets q; for one step to a node in A and then we follow packet ql 
along its primitive path until it reaches its destination or until it is deflected, whichever 
happens first, and so on. This process finishes when the packet which we follow, say 
q;, reaches its destination. The dejlection path which corresponds to the dejection of 
packet p’ at time t, denoted dp(p’, t), is the path which we followed from node aB 
to the destination of packet q;, that is node dest(q;). The length of dp(p’, t) might 
be as large as 2n - 2. At time t’, where t < t’ < t + 2n - 2, the deflection path might 
be still “growing”. We use the notation endpoint t, t’) to denote the endpoint node 
of the deflection path developed up to time t’. (In the event where the deflection path 
was completely formed before time t’, endpoint(p’, t, t’) is undefined.) 

Lemma 12. Consider the routing of problem & = (GT, H) by Algorithm Off-Line- 
Simulation and let p’ E H be an arbitrary type-l packet. Then, at time t’ and for 
any node uA (of A) it holds: 

(i) At most 2 deflection paths for p’ have endpoint(p’, t’, t’) = endpoint(p’, t2, t’) 
= uA, and 

(ii) if there exist two dejection paths for p’ with endpoint(p’,t’,t’)= 
endpoint(p’, t2, t’)= uA, then there does not exist a dejection path dp(p’, t) with 
endpoint(p’, t, t’) = vA where u and v are neighbours in tree T. 

Proof (sketch). The lemma is formally proven by induction on the number of routing 
steps. Only part (i) of the lemma is used in the rest of the paper. Part (ii) is an 
invariant from which part (i) follows. 



G.E. Pantziou et al. I Theoretical Computer Science 185 (1997) 347-377 313 

,:’ 

“‘.. 

Fig. 8. The situation where two deflection paths due to deflections of the same packet have common endpoint 
nodes. 

We first demonstrate how it is possible to have two deflection paths with the same 
endpoint. This is illustrated in Fig. 8. Assume that the destination of all packets which 
appear in Fig. S(a) is node WA. At time t + 1 packets p’ and q’ meet at node ug and 
one of them is deflected by the other, say p’ is deflected by ql. This is illustrated in 
Fig. 8(c) with a +-sign to the left of q’, i.e., +q’, denoting that the node in which 
packet q’ resides is the endpoint of the deflection path dp(p’, t + 1). At time t + 3, p’ 
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and q2 meet at ug (Fig. 8(d)) and, according to the routing rules, p’ is again deflected, 
this time by q2. This is illustrated in Fig. 8(e) where, at time t $4, packet q2 (in node 
XA ) appears with a +-sign to its left, i.e., ‘q2, denoting that node X,j in which packet 
q* resides is the endpoint of the deflection path dp(p’, t + 3). Recall that the deflection 
paths are defined in such a way that when they leave a node in A they always follow 
the route of a type-l packet. This is depicted in Fig. 8(f) where, again at time t + 4, 
both deflection paths have as their endpoints the node occupied by packet q’, denoted 

++ I by 4. 
Observe now that advancing packets move slower than the endpoints of the deflection 

paths. For this reason, and due to the special structure of the bipartite graph, they cannot 
catch up with them after their distance at the underlying tree structure is greater than 1. 
So, we only have to consider the case where the endpoints of two deflection paths 
catch up with each other. This appears to be possible since deflection paths are not 
necessarily primitive paths. More specifically, at places where deflections take place, 
the path might reach a node in A not from its corresponding node in B. Such an 
example is the deflection path dp(p’, t + 3) for the scenario described in Fig. 8. The 
deflection path (ug + XA + wa + WA) starts at t?B and moves to XA (instead of VA which 
would be the case if it was a primitive path). 

The basis of the induction is easy to establish since at the first four steps of the hot- 
potato routing each packet might be deflected at most twice. The induction step is then 
proved by considering cases based on the next move of the packet at the endpoint of 
the deflection path. By using the routing rules it is easy (but tedious and thus omitted) 
to show that both parts of the lemma are correct. 0 

Theorem 13. Algorithm “OfS-Line-Tree-Routing” routes any many-to-one routing 
problem W=(T,M) in ut most 2(k - 1) + dist routing steps, where k =IMl is the 
number of packets to be routed, and dist is the muximum distance that any packet 
in A4 has to travel in order to reach its destination. 

Proof. We consider the routing of problem 2 = (Gr,H) by Algorithm Off-Line- 
Simulation. Concentrate on an arbitrary packet p E A4 and its corresponding packet 
p’ E H. We prove the theorem by showing that p’ is consumed by time 2(2(k - 1) + 
dist). This implies (by Lemma 10) that packet p is consumed by time 2(k - l)+dist. 

Packet p’ can be deflected at most 2(k - 1) times. This is because, the number of 
deflection paths for which p’ is responsible can be at most that large. To see that 
realize that by Lemma 12 each type-l packet at the time of its consumption is the 
endpoint of at most two deflection paths due to p’. 

The cost of each deflection is 2 steps, that is, if packet p’ is deflected from node 
US at time t, it returns to it at time t + 2 (rule Off-Z-line-A-1 ). Given that the dis- 
tance that packet p’ has to travel is 2distr(orig(p), dest(p)) <2dist, we conclude that 
the hot potato routing finishes by time 2(2(k - 1) + dist). By Lemma 10 we con- 
clude that the matching routing on T finishes after at most 2(k - 1) + dist routing 
steps. 0 
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Krizanc and Zhang [ 151 independently showed that any many-to-one problem on an 
n-node tree can be solved under the matching routing model in at most 9n steps and 
they posed the question whether it is possible to complete the routing of any many- 
to-one pattern in less than 4n steps. Algorithm Off-Line-Tree-Routing dramatically 
improves upon the result of Krizanc and Zhang and answers their question to the 
affirmative. 

4.2.2. Many-to-many routing 
Consider the many-to-many routing problem 92 = (T,M) which is routed by algo- 

rithm OfiLine-Tree-Routing. Based on the routing of a= (T,M) by Algorithm Ofs- 
Line-Tree-Routing, we define a dynamic routing problem @ = (Gr, H) which is again 
routed by Algorithm OfS-Line-Simulation. 

We first route problem W =(T,M) by Algorithm OfS-Line-Tree-Routing and we 
observe for each individual packet the time at which it is injected into the routing. 
When the routing of 93 = (T,M) terminates, we are ready to fully specify problem 
92’ = (Gr, H). For each packet p E A4 which was injected into the matching routing at 
time t, we create a pair of packets p’ and p2 in H with birth(p’ ) = birth(p2) = 2t. 
The origin and the destination nodes of p’ and p2 are set as in the analysis of the 
many-to-one routing. 

The following lemma establishes that each packet of H can be injected into the 
hot-potato routing at the time it is generated. 

Lemma 14. Consider the many-to-many routing problem &! = (T,M) which is routed 
by Algorithm “Off-Line-Tree-Routing” and the constructed dynamic routing prob- 
lem 9” = (Gr, H) which is routed by Algorithm “Ofl-Line-Simulation”. Let p be an 
arbitrary packet in M and let p’ and p2 be its corresponding packets in H. If 
Algorithm “Of-Line-Tree-Routing” injects packet p at time t then Algorithm “Off- 
Line-Simulation” can inject packets p’ and p2 at time 2t. 

Proof. Follows from Lemma 10 and a simple induction on time t. 0 

Lemma 14 makes it possible to simulate the injection of packet of the matching 
routing with the dynamic creation (even in an off-line fashion) of their corresponding 
packets into the hot-potato routing. The next theorem follows immediately. 

Theorem 15. Algorithm “Of-Line-Tree-Routing” routes any many-to-many routing 
problem BY = (T,M) in at most 2(k - 1) + dist routing steps, where k =IMI is the 
number of packets to be routed, and dist is the maximum distance that any packet 
in M has to travel in order to reach its destination. 

5. Conclusions 

In this paper, we presented an extensive study of the many-to-many routing problem 
on n-node trees under the matching routing model. We developed optimal on-line and 
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off-line algorithms which were analysed with the help of tools originally developed for 
hot-potato routing. The study of matching routing is a relatively new topic and several 
problems remain open. The following list states some of them. 

(i) What is the time complexity of the matching routing problem? Given a routing 
problem 99 = (T,M) and an integer t, can we answer the question “is it possible 
to route problem 99 = (T, M) in less than t steps?” in polynomial time? 

(ii) Derive an on-line algorithm which routes permutations on trees of maximum de- 
gree d under the original matching model (i.e., no consumptions are allowed) in 
O(dn) steps. During the course of our research, we have considered several on-line 
algorithms which perform well in simulations. However, we have not succeeded 
to get an analysis for any of them which matches the desired bound. 

(iii) There is a permutation on an n-node tree which requires [3(n - 1)/2] steps for its 
routing under the original routing model. Is it possible to route any permutation 
in at most 3n/2 steps? [3,2]. 
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