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Matrix Grammars with a Leftmost Restriction 
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The  family of languages generated by matrix grammars with context-free 
(context-free A-free) core productions and with a leftmost restriction on 
derivations equals the family of recursively enumerable (context-sensitive) 
languages. 

INTRODUCTION 

Matrix grammars introduced by Nbrah~tm (1965) have proved to be a very 
fruitful generalization of context-free grammars: simple in principle, easy to 
deal with and yet very powerful [cf. Brainerd (1968), Ibarra (1970) and 
Siromoney (1969)]. They fall into the category of grammars with restricted 
use of productions, and possess the same generative capacity as programmed 
grammars, periodically time-variant grammars and grammars with a regular 
control language [cf. Salomaa (1970)]. 

In this paper, we consider matrix grammars, where the core productions 
in the matrices have the context-free form X--~ P, X being a nonterminal. 
It is known [cf. Rosenkrantz (1969) and Salomaa (1970)] that if the core 
productions are also A-free, i.e., the right side P is always distinct from the 
empty word A, then the family of languages generated by such matrix gram- 
mars is properly included in the family of context-sensitive languages. On the 
other hand, if a is allowed on the right side and, furthermore, an appearance- 
checking interpretation in the application of productions is considered, then 
the family of generated languages coincides with the family of recursively 
enumerable languages [Rosenkrantz (1969) and Salomaa (1970)]. (In this 
interpretation, a production X--~ P may be applied by (i) noticing that X 
does not occur in the word under scan, and (ii) moving on to the next produc- 
tion.) It is an open problem how large the family of generated languages will 
be if A is allowed on the right side of productions but the appearance- 
checking interpretation is not considered. For instance, it is not known 
whether nonregular languages over one letter belong to this family [cf. 
Salomaa (1970) and (1970a)]. 
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In  this paper we introduce a restriction on the application of matrices: 
before applying a matrix m to a word Q such that the application of m begins 
with rewriting the i-th letter of Q, one has to make sure that no matrix m' is 
applicable to Q such that the application of m' begins with rewriting the 
j - th  letter of Q, where j < i. This "leftmost restriction" concerns only the 
first productions in the matrices. 

I t  turns out that the family of generated languages equals the family of 
context-sensitive languages or the family of recursively enumerable languages, 
depending on whether or not the core productions are assumed to be A-free. 
This establishes the interconnection between matrix grammars and the basic 
Chomsky hierarchy of language families, and gives another characterization 
of two of the families in this hierarchy. 

1. DEFINITIONS AND RESULTS 

A matrix grammar is an ordered quadruple 

G ----(V~r, V r , X o , M ) ,  

where V N and V T are disjoint alphabets (nonterminal and terminal alphabet), 
X o e V~v (initial letter), and M is a finite set of finite sequences whose elements 
are ordered pairs (X, P)  such that X e VN and P is a word over the alphabet 
V = VN U VT. The ordered pairs (X, P)  are called productions and written 
X - +  P. Thus, the elements m of M are finite sequences of productions. They  
are written 

m=[X~P~,...,Xe-+Pe], r>~l, (1) 

and referred to as matrices. 
A binary relation ~ on the set W(V) of all words over V is defined as 

follows. Q => R holds iff there exist an integer r ~ 1, words 

Q1 ,..., Qr+I , P1 .... , Re, R1 ..... Re, R1, ..., Re (2) 

over V and letters X1,..., X e of g N such that (i) Q1 = Q and Qe+I = R, 
(ii) the matrix (1) is in M, and (iii) Q~ = R,X,R  ~ and Q~+I = R,P~ R~, for 
every i = 1 .... , r. I f  (i)-(iii) are satisfied, we also say that O ~ R holds with 
specifications (m, R1). 

The length of a word P is denoted by lg(P). By definition, lg(A) = 0. 
A binary relation ~left on the set W(V) is defined as follows. Q ~left R 
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holds iff (i) For some m and R1, Q ~ R holds with specifications (m, R1), 
and (ii) For no m', R' and R 1' such that lg(Rl' ) < lg(Rt) , Q ~ R' holds with 
specifications (m', RI'). Let ~ a m  be the reflexive transitive closure of the 
relation =~;eft. The language generated by the matrix grammar G under 
leftmost restriction on derivations is defined by 

Lleft(G) = {P e W(Vr) ] X o ~>lef* P}. 

THEOREM 1. A language L is recursively enumerable i f f  there exists a matrix 
grammar G such that L = Lle~t(G). 

Consider state grammars introduced by Kasai (1970). Modify this notion 
by allowing the empty word A to appear in state productions. (This means 
that, in the definition of a state grammar in Kasai (1970), V+ is replaced by 
V*.) I t  is a consequence of Theorem 1 that state languages thus defined 
coincide with recursively enumerable languages. 

A matrix grammar G is termed A-free iff all words Pi in every matrix (1) 
are distinct from the empty word A. 

THEOREM 2. A language L is context-sensitive iff there exists a A-free 
matrix grammar G such that L = Lleft(G). 

2. PROOFS 

We will first prove Theorem 1. It  is obvious that, for any matrix grammar 
G, the languageLleft(G) is recursively enumerable. The converse follows from 
Theorem 2 and the fact that every recursively enumerable language is 
obtained from a context-sensitive language by erasing some letters. How- 
ever, we will give also a proof which does not use these facts. 

Let G be a matrix grammar with the set of productions F and let F 1 be a 
subset ofF .  A binary relation ~ on the set W(V) is defined as follows (V 
has the same meaning as in Section 1): Q ~e  R holds iff there exist an integer 
r / >  1, words (2) over V and letters X 1 .... , X,  of Kz¢ such that (i) Q1 = Q 
and Q~+I = R, (ii)the matrix (1) is a matrix of G, and (iii)for each 
i = 1,..., r, either Qi = R i X i R  i and Qi+I = RiPi Ri, or else X i ~ P i  belongs 
to F1, Oi = Q~+I and X i  does not appear in Q~. Let N0 be the reflexive 
transitive closure of the relation ~ c -  (Note that this is the appearance- 
checking interpretation in the application of productions mentioned in the 
Introduction.) 

Let L be a recursively enumerable language. By Lemma 2 in Salomaa 
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(1970), there is a matrix grammar G 1 and a subset F 1 of the production set 
of G 1 such that 

L = {P ~ W(VT) I Xoso ~ P}, 

where X o and s o are nonterminals, and V r the terminal alphabet of G 1 . 
Moreover, the matrices of G 1 are of the form 

[f, s ~ s'], (3) 

where f is a context-free production and s' is a single nonterminal or ;~. 
Furthermore, none of the nonterminals s and s' appearing in the second 
productions of (3) appears in the first productions f ,  and F 1 is a subset of the 
set of the first productions f. 

We will define a matrix grammar G2 such that 

L = Liar(G2). (4) 

Let VN(S ) be the set of those nonterminals of G 1 which appear in the first 
(second) productions of the matrices (3). Define 

VN' = ( Y '  I Y ~ VN}, VTv = {Y"I Y e VN}. 

Let V 1 be the set consisting of the nonterminals U, U", Z o , Z 1 , Z 2 and Z~, 
where f ranges over F 1 . These nonterminals are assumed to be distinct from 
the ones previously introduced. For a word P over V~¢ U V r ,  we denote by 
P" the word obtained from P by replacing the rightmost nonterminal Y 
with Y" and the other nonterminals Y with Y'. I f  P is a word over VT, 
then P" is defined to be the word PU". 

The nonterminal alphabet of G 2 is the union 

v~.~u s u  vN'u v ~ u  v1, 

Z 0 being the initial letter and V T the terminal alphabet. We now define the 
matrices of G 2 . Consider an arbitrary matrix (3) of G1, and assume that f 
stands for the production 

X--~ P, X e V~ , P e W ( V n  U VT). 

For each such matrix, G 2 contains all of the following matrices: 

[ y - ~  Y', z l  ~ zl]  for each Y ~ VN, 

[X--~ P", Z l - ~  Z~, s--~ s'], 

[Y'--~ Y, Z2--+ Z2] for each Y ~ VN , 

[Y"--~ Y, Z~---~ Z1] for each Y E V~¢ , 

[ u " ~  ~, z ~ z , ] .  
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I f f  belongs to the set F1,  G2 contains the additional matrices 

[z, - .  z s ,  s ~ d ,  IX- - .  u,  zs  --. zA ,  [ x ' ~  u, z~ ~ zs], [z~ - .  zd. (5) 

Furthermore, Gz contains the matrices 

[z0  ~ XoZ~So], [z~ --. s]. 

It  can now be verified that (4) is true. Derivations according to G~ begin 
from the word XoZlSo, and simulate the derivations according to G 1 . At 
first, nonterminals are marked with primes, until a suitable occurrence of X 
is found. Then  the rewriting according to f, as well as the corresponding 
change between the s's, are performed, after which all primes are removed. 
The  nonterminal marked with a double prime is the rightmost nonterminal 
carrying primes and, hence, all primes have been removed when the double 
prime is removed. I f  no occurrence of X is found, then the change between 
the s's is performed by (5), after which the primes are removed. Finally, 
Z 1 may be removed. This proves the inclusion L-CLlert(G~). The reverse 
inclusion follows because the Z's rule out the possibility of other derivations 
leading to terminal words. This completes the proof of Theorem 1. 

To prove Theorem 2, we assume first that G is a A-free matrix grammar. 
To avoid tedious (and straightforward) constructions, we only give an 
informal description of a context-sensitive grammar G I generating the 
language Llef~(G). We note first that each matrix (1) of G determines a 
unique minimal set T of nonterminals which have to be present in a word 
Q in order for (1) to be applicable to ~. For instance, for the matrix 

[x~ -~ x l x2a ,  & ~ x~x~  , x2  --. ab], 

we have T = {X 1 , X3}. For each such T obtained from the matrices of 
G, G 1 contains the nonterminal y r .  Before an intended application of a 
matrix (1) to a word Q, beginning with a particular occurrence of X \ ,  a 
marker Y is placed in front of that occurrence of X 1 . The  nonterminals y r  
travel across the word Q, checking that the leftmost restriction is satisfied. 
The  actual application of (1) can clearly be carried out using context-sensitive 
productions. Instead of the grammar G 1 , one may introduce a linear bounded 
automaton. 

Conversely, assume that L is a context-sensitive language. (We 
assume that L does not contain the empty word A.) It  is well known 
[e.g., cf. Salomaa (1969), Theorem IV.6.5] that L is generated by a grammar 
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G 1 = ( V n ,  Vr,  X0, F), where all productions in F are of the three forms 

X - ~  YZ, X, Y, Z e VN , (6) 

f : XU-+ YZ, X, U, Y, Z e VN , (7) 

X - ~  a, XeV~,  a e Vr  . (8) 

Let V~' and V~ be defined as above, and let V1 consist of the nonterminals 
Ao, A1, A~, A s , Aa, As,  where f ranges over the productions (7) in F. 
Consider the matrix grammar 

G 2 -= (VNW I@'U V;vU lq ,  VTW{#} ,Ao ,M) ,  

where M consists of the matrices 

[Ao --+ XoAd, 
[Y-+ Y', Ax-* A~] 

IX ~ Y'Z", A1 ~ Ad 
[X-+ Y', Ax--> A:] 

[U--~ Z", A:---~ A2] 
[B --+ A~,  As-+ All 

[Y' -~ Y, A~-~ A~] 

[Y"---~ Y, A~---~ A~ 

I X - +  a, AI'+ As] 

[X ~ a, As -~" As] 

[X---~ a, A3--+ #] 

[x-,-a, &-~#] 

It is now easy to verify that 

for each Y e Vs,, 

for each production (6) in F, 

for each production (7) in F, 

for each production (7) in F, 
for each production (7) in F 

and each B :# U, B e VN , 

for each Y ~ V~, 

for each Y ~ V~v, 

for each production (8) in F, 

for each production (8) in F, 

for each production (8) in T', 

for each production (8) in F. 

Lie~t(Gu) = L{#}. (9) 

(Note that A~ can never be eliminated. I t  will be introduced if one tries to 
simulate an application of (7) to an occurrence of U which is not the next 
letter to the right of an occurrence of X.) 

Thus, we have shown that, for every context-sensitive language L, there 
is a matrix grammar G 2 such that (9) is satisfied. In (9) the letter # may be 
replaced by any fixed terminal letter, and our result still holds. This additional 
letter can be eliminated as follows. Every context-sensitive language (in fact, 
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every language not containing the empty word) over the alphabet  V T can be 
expressed in the  form 

where 

L1 : U L~){a)  W L~ , (10) 
aE V T 

L~ '~) = {P [ Pa  e L  x and P =/: A}, 

and L 2 consists of all letters a which are in L 1 . Since L 1 is context-sensitive, 
each of the languages L~ a~ is context-sensitive. Using the result established 
above for L, we see that  each member  of the union (10) is of the form 
Lleft(G), where G is a matr ix grammar.  Since languages of this form are 
obviously closed under  union, L 1 itself is of this form, which completes the  
proof  of Theorem 2. 
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