inferential anomaly is avoided using OR, with odds of progression (0.83) the reciprocal of that for no progression (1.21), and ARD of 4.1% in favor of Nataluzimab with progression or no progression. For direct comparisons ARD is shown to be consistently estimated with OR but change with framing of effects using RR wherever epidemiological risk differs from trial risk in the comparator arm. CONCLUSIONS: Odds ratios allow consistent estimation of absolute risk differences regardless of framing of effects in direct and indirect comparisons. This overcomes inferential anomalies that arise with use of relative risk in such comparisons whenever base risk differs in the jurisdiction of interest from that in trials, or base risk in the common arms differs in indirect comparisons. Consequently, odds ratios avoid selection biases in framing of effects inherent with risk ratios and are suggested as the preferred metric in estimating such risk differences.

THE IMPLICIT VALUE OF STATISTICAL LIFE: ESTIMATES DERIVED FROM PUBLIC INTERVENTIONS IMPLEMENTED IN THE NETHERLANDS
Goebbels AFG1, Ament AJHA1, Novák A2, Veraart CPWM3, Severens JL2
1Maastricht University, Maastricht, The Netherlands, 2Anovák-Services, Apeldoorn, The Netherlands, 3Roche Nederland BV, Woerden, The Netherlands, 4University Hospital Maastricht, Maastricht, The Netherlands

OBJECTIVES: The economic literature suggests the Value of Statistical Life (VSL) as a common measure of efficiency for life saving interventions throughout different societal sectors. Policy decisions in The Netherlands have not yet been explicitly based on this measure, however a trade off between wealth and mortality risk is made implicitly when deciding whether or not to implement a life saving intervention. This study aimed to gain insights into this trade off, referred to as Implicit Value of Statistical Life (IVSL), by means of a retrospective investment analysis of interventions implemented in The Netherlands.

METHODS: A literature search was conducted to find life saving intervention cases meeting the requirements for a uniform IVSL calculation and additional inclusion criteria. A sample of 10 cases was included in the study and concerned interventions implemented in the water control, consumer safety, transport and health care sector. Results: IVSL estimates derived from the cases ranged from €1 to almost €1 million. Differences were most extreme when comparing IVSL estimates of interventions implemented in different societal sectors. However, estimates also varied greatly between interventions in the same sector and even within the same intervention, when critical assumptions were varied greatly between interventions in the same sector and even most extreme when comparing IVSL estimates of interventions.

CONCLUSIONS: The specificity of reviewer one ranged from 94% to 98%; the specificity of reviewer two ranged from 92% to 99%. The specificity of reviewer one ranged from 94% to 98%; the specificity of reviewer two ranged from 92% to 99%. The pattern of results varied substantially between reviewers. In the breast cancer, hyperlipidemia, and anaesthesia reviews, the