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We present a notion of frame multiresolution analysis on the Heisenberg group, abbreviated
by FMRA, and study its properties. Using the irreducible representations of this group,
we shall define a sinc-type function which is our starting point for obtaining the scaling
function. Further, we shall give a concrete example of a wavelet FMRA on the Heisenberg
group which is analogous to the Shannon MRA on R.
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1. Introduction

Multiresolution analysis (MRA) is an important mathematical tool since it provides a natural framework for understanding
and constructing discrete wavelet systems (wavelet frames). The theory of a frame multiresolution analysis, for instance
on R, and some of its properties are studied in [1].

There are different approaches to construct wavelet frames on the Heisenberg group H (e.g. discretization of a continuous
wavelet [11]). In the present work, we shall define and present a frame multiresolution analysis FMRA on H, which will
imply the existence of a normalized tight wavelet frame (n.t. frame) on this group. More precisely, in Theorem 4.16 we shall
show that:

There exists a band-limited function ψ ∈ L2(H) and a lattice Γ in H such that the discrete wavelet system {L2− jγ D2− j ψ} j,γ forms

a n.t. frame of L2(H).

Accordingly, any function in L2(H) can be expanded in this wavelet frame with associated wavelet coefficients.
A standard way to construct a wavelet frame by the multiresolution analysis technique is by starting with a scaling func-

tion, i.e., a function which is refinable. In contrast to the standard approach, our starting point here is not a scaling function.
Rather, we first construct a sinc-type function on H which is band-limited, self-adjoint, and has additional properties as
in Theorem 4.5. The existence of a sinc-type function with the desired properties implies the existence of a scaling and
wavelet function on H.

A different notion of multiresolution analysis on stratified Lie groups was obtained by Lemarié [15]. There, in fact, the
left-translations of the scaling function under a discrete set constitute an unconditional basis for the central scaling space.
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As an example, he constructed a MRA, which arises from a generalized spline-surface space, and obtains a C N wavelet
orthonormal basis of spline wavelets on these groups. The wavelet orthonormal basis in this example is generated by
finitely many wavelets.

Continuous wavelets on nilpotent Lie groups have been studied by many authors (e.g., see [5,10] and references therein).
The existence of a Parseval frame on H, which is a system of dilates and left-translations of a single wavelet, is proved in [4].
The existence of a continuous wavelet in closed subspaces of L2(H) was studied in [16]. (For the definition of continuous
wavelet on H, see for instance [17].) The authors in [16] do not study the discretization of the wavelet to obtain a wavelet
frame or wavelet orthonormal basis.

The contributions of this work will be as follows: After the introduction and some notation and preliminaries in Section 2,
in Section 3 we shall give a brief review of the group Fourier analysis on the Heisenberg group. The main results of this
work are presented in Section 4. Here, we shall introduce the FMRA on H, i.e., the concept of orthonormal basis will be
replaced by frames. Then we present a concrete example of FMRA on H, Shannon MRA, and hence we prove the existence
of a scaling and wavelet function for the Heisenberg group.

Finally, we demonstrate the existence of a Shannon normalized tight frame on H, i.e., existence of a band-limited function
on H such that its translations under an appropriate lattice in H and its dilations with respect to the integer powers of a
suitable automorphism of H yields a normalized tight frame for L2(H).

Some words about MRA: There are three things in MRA that mainly concern us: the density of the union, the triviality
of the intersection of the nested sequence of closed subspaces, and the existence of refinable functions, i.e., functions which
have an expansion in their scaling. The triviality of the intersection is derived from the other conditions of MRA. To obtain
the density of the union, we have to generalize the concept of the support of the Fourier transform. The new concepts, such
as band-limited in L2(H), arise in this generalization. As to refinability, it depends very much on the individual function φ,
the so-called scaling function. An example of a scaling function is presented in this work.

Then, we create the Shannon-MRA, as a concrete example of a FMRA on the Heisenberg group, for which we prove the
existence of a wavelet function. This wavelet function is related to a certain lattice of H.

Although the central closed shift-invariant space in our multiresolution analysis is a Paley–Wiener space on the Heisen-
berg group, we do not study any sampling theorems here. For sampling theory in the general setting, see for instance [7,9,
18] and the references therein.

Observe that we do not obtain any smoothness conditions on our wavelets here. A class of Schwartz wavelets in the
general setting, i.e., stratified Lie groups, has already been constructed and studied in our earlier work [11]. Those wavelets
did not arise from an MRA, and are only “nearly tight” (if sufficiently fine lattices are used).

2. Preliminaries and notations

We use the abbreviation ONB for orthonormal basis and the word projection for self-adjoint projection operator on a
Hilbert space. We denote the space of Hilbert–Schmidt operators on L2(R) by HS(L2(R)). (For the facts we shall use about
Hilbert–Schmidt operators and trace-class operators, see [8, Appendix 2] and [19, Sections 2 and 3].)

In the following, we outline some notation and results concerning direct integrals. For further information on direct
integrals, we refer the reader to [8, Section 7.4].

A family {Hα}α∈A of nonzero separable Hilbert spaces indexed by A will be called a field of Hilbert spaces over A. We
assume A is a topological space with a Borel σ -algebra. A map f on A such that f (α) ∈Hα for each α ∈ A will be called a
vector field on A. We denote the inner product and norm on Hα by 〈 , 〉α and ‖ ·‖α . A measurable field of Hilbert space over
A is a field of Hilbert spaces {Hα}α∈A together with a countable family {e j}∞1 of vector fields with the following properties:

(a) the functions α �→ 〈e j(α), ek(α)〉α are measurable for all j,k,
(b) the linear span of {e j(α)}∞1 is dense in Hα , for each α.

Given a measurable field of Hilbert spaces {Hα}α∈A , {e j} on A, a vector field f on A will be called measurable if the
function α → 〈 f (α), e j(α)〉α is measurable function on A, for each j. Finally, we are ready to define direct integrals. Suppose
{Hα}α∈A , {e j}∞1 is a measurable field of Hilbert spaces over A, and suppose μ is a measure on A. The direct integral of the

spaces {Hα}α∈A with respect to μ is denoted by
∫ ⊕

A Hα dμ(α). This is the space of measurable vector fields f on A such
that

‖ f ‖2 =
∫
A

∥∥ f (α)
∥∥2
α

dμ(α) < ∞,

where two vector fields agreeing almost everywhere are identified. Then it easily follows that
∫ ⊕ Hα dμ(α) is a Hilbert

space with the inner product

〈 f , g〉 =
∫ 〈

f (α), g(α)
〉
α

dμ(α).
A
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In case of a constant field, that is, Hα = H for all α ∈ A,
∫ ⊕ Hα dμ(α) = L2(A,μ,H), all the measurable functions

f : A →H defined on the measure space (A,μ) with values in H such that

‖ f ‖2 =
∫
A

∥∥ f (α)
∥∥2

dμ(α) < ∞.

Here H is considered as a Borel space with the Borel σ -algebra of the norm topology. We will be taking H = L2(R).

2.1. Heisenberg group

The Heisenberg group H is a Lie group with underlying manifold R3. We denote points in H by (p,q, t) with p,q, t ∈ R,
and define the group operation by

(p1,q1, t1) ∗ (p2,q2, t2) =
(

p1 + p2,q1 + q2, t1 + t2 + 1

2
(p1q2 − q1 p2)

)
. (1)

It is straightforward to verify that this is a group operation, with the origin 0 = (0,0,0) as the identity element. Note that
the inverse of (p,q, t) is given by (−p,−q,−t). We can identify both H and its Lie algebra h with R3, with group operation
given by (1) and Lie bracket given by[

(p1,q1, t1), (p2,q2, t2)
] := (0,0, p1q2 − q1 p2).

The Haar measure on the Heisenberg group H = R3 is the usual Lebesgue measure. More precisely, the Lie algebra h of
the Heisenberg group H has a basis {X, Y , T }, which we may think of as left invariant differential operators on H; where
[X, Y ] = T and all other brackets are zero, and where the exponential function exp : h → H is the identity, i.e.,

exp(p X + qY + tT ) = (p,q, t).

We define the action of h on the space C∞(H) via left invariant differential operators.
For two functions f and g , each in L1(H) or L2(H), the convolution of f and g is the function f ∗ g defined by

f ∗ g(ω) =
∫
H

f (ν)g
(
ν−1ω

)
dν.

We note that, for any pair f , g ∈ L2(H), one has f ∗ g̃ ∈ Cb(H), where g̃(ω) = g(ω−1). For more details about convolution
of functions see for example [8, Proposition 2.39].

Definition 2.1. f ∈ L2(H) is called self-adjoint convolution idempotent if f = f̃ = f ∗ f .

The self-adjoint convolution idempotents and their support properties are studied in detail in [10, Section 2.5].
For properties of self-adjoint convolution idempotents in L2 we refer the reader to [10, Section 2.5].
Our definition of a continuous, or a discrete, wavelet on H, involves the one-parameter dilation group of H, i.e.,

H = (0,∞), where any a > 0 defines an automorphism of H, by

a(p,q, t) = (
ap,aq,a2t

) ∀(p,q, t) ∈ H. (2)

(In the construction of a discrete wavelet, one takes a discrete version of the one-parameter group. Usually a dyadic dis-
cretization is considered.) Adapting the notation of dilation and translation operators on L2(R), for each a > 0, we define
Da to be the unitary operator on L2(H) given by

Da f (p,q, t) = a2 f (a(p,q, t)) = a2 f
(
ap,aq,a2t

) ∀ f ∈ L2(H),

and for any υ ∈ H, the left translation operator, Lω is given by

Lω f (υ) = f
(
ω−1υ

) ∀υ ∈ H.

Using the dilation and translation operators, we can now define the quasiregular representation π of the semidirect product
G := H � (0,∞); it acts on L2(H) by(

π(ω,a) f
)
(υ) := Lω Da f (υ) = a−2 f

(
a−1(ω−1υ

))
,

for any f ∈ L2(H) and (ω,a) ∈ G and for all υ ∈ H.
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2.2. Frames

We conclude this section with the definition of frames and some related notions, which will be used in the context of
FMRA in this work. The concept of frames is a generalization of orthonormal bases, defined as follows:

Definition 2.2. A countable subset {en}n∈I of a Hilbert space H is said to be a frame of H if there exist two numbers
0 < a � b so that, for any f ∈H,

a‖ f ‖2 �
∑
n∈I

∣∣〈 f , en〉∣∣2 � b‖ f ‖2.

The positive numbers a and b are called frame bounds. Note that the frame bounds are not unique. The optimal lower frame
bound is the supremum over all lower frame bounds, and the optimal upper frame bound is the infimum over all upper
frame bounds. The optimal frame bounds are actually frame bounds. The frame is called a tight frame when one can take
a = b and a normalized tight frame when one can take a = b = 1.

Frames were introduced for the first time in [6]. See also [3] and [13] for more about frame theory.

3. Fourier analysis on the Heisenberg group

This section contains a brief review of Fourier analysis on the Heisenberg group H. In order to study the Fourier analysis
on this group, one has to study the irreducible representations of this group. The Heisenberg group is the best known
example of a non-commutative nilpotent Lie group. The representation theory of H is simple and well understood. Using
the fundamental theorem, due to Stone and von Neumann, we can give a complete classification of all the irreducible unitary
representation of H.

It is known that for the Heisenberg group there are two families of irreducible unitary representations, at least up
to unitary equivalence. One family, giving all infinite-dimensional irreducible unitary representations, is parametrized by
nonzero real numbers λ; the other family, giving all one-dimensional representations, is parametrized by (b, β) ∈ R × R.
We will see below that the one-dimensional representations give no contribution to the Plancherel formula and Fourier
inversion transform, i.e., they form a set of representations that has zero Plancherel measure. Hence we will focus on the
Schrödinger representation, defined next. For more about the representations of the Heisenberg group and the Plancherel
theorem, we refer the interested reader to [12].

The infinite-dimensional irreducible unitary representations of the Heisenberg group may be realized on L2(R); there
they are the called the Schrödinger representations. These are defined as follows. For each λ ∈ R∗(= R \ {0}) and for any
(p,q, t) ∈ H, the operator ρλ(p,q, t) acts on L2(R) by

ρλ(p,q, t)φ(x) = eiλteiλ(px+ 1
2 (pq))φ(x + q)

where φ ∈ L2(R). It is easy to see that ρλ(p,q, t) is a unitary operator satisfying the homomorphism property:

ρλ

(
(p1,q1, t1)(p2,q2, t2)

) = ρλ(p1,q1, t1)ρλ(p2,q2, t2).

Thus each ρλ is a strongly continuous unitary representation of H. A theorem of Stone and von Neumann [8] says that up
to unitary equivalence these are all the infinite-dimensional irreducible unitary representations of H.

Recall that the dilation operator given by a > 0 is defined on H as follows:

a : (p,q, t) → a(p,q, t) = (
ap,aq,a2t

) ∀(p,q, t) ∈ H.

One then easily calculates that

ρλ

(
a−1(p,q, t)

) = Da−1ρa−2λ(p,q, t)Da ∀(p,q, t) ∈ H, (3)

where Da−1 = D∗
a .

3.1. Fourier transform on the Heisenberg group

Here we present a brief introduction to the group Fourier transform for functions on H, (see [12]), and introduce the
inversion and Plancherel theorems for the Fourier transform.

If f ∈ L1(H), we define the Fourier transform of f to be the measurable field of operators over Ĥ given by the weak
operator integrals, as follows:

f̂ (λ) =
∫

f (ω)ρλ(ω)dω. (4)
H



A. Mayeli / J. Math. Anal. Appl. 348 (2008) 671–684 675
For simplicity, we write here f̂ (λ) instead of f̂ (ρλ). Note that the Fourier transform f̂ (λ) is an operator-valued function,
which for any φ,ψ ∈ L2(R) satisfies〈

f̂ (λ)φ,ψ
〉 = ∫

H

f (p,q, t)
〈
ρλ(p,q, t)φ,ψ

〉
dp dq dt,

by definition of the weak operator integral. The operator f̂ (λ) is bounded on L2(R) with the operator norm satisfy-
ing ‖ f̂ (λ)‖ � ‖ f ‖1. If f ∈ L1 ∩ L2(H), f̂ (λ) is actually a Hilbert–Schmidt operator and from the Plancherel theorem,
the Fourier transform can be extended to a unitary map from L2(H) onto L2(R∗, dμ(λ), L2(R) ⊗ L2(R)), the space of
functions on R∗ taking values in L2(R) ⊗ L2(R) which are square integrable with respect to the Plancherel measure
dμ(λ) = (2π)−2|λ|dλ. (We say a function g defined on R∗ is square integrable, when it is a measurable vector field on
R∗ and

∫
R∗ ‖g(λ)‖2

H .S dμ(λ) < ∞.) The proof of the Plancherel theorem for the Heisenberg group may be found in [12]. For
more general groups, see for example [8].

A simple computation shows that the basic properties of the Fourier transform remain valid for f , g ∈ (L1 ∩ L2)(H): More
precisely,

(i) ̂(af + bg)(λ) = a f̂ (λ) + bĝ(λ),

(ii) (̂ f ∗ g)(λ) = f̂ (λ)̂g(λ),

(iii) (̂Lω f )(λ) = ρλ(ω) f̂ (λ), for ω ∈ H,

(iv) (̂ f̃ )(λ) = f̂ (λ)∗. (The superscript ∗ denotes adjoint.)

We conclude this section with a computation of the Fourier transform of f (a·) for any f ∈ L2(H).

Lemma 3.1. For any f ∈ L2(H) is

f̂ (a·)(λ) = a−4 Da−1
̂f
(
a−2λ

)
Da.

Proof. From the definition of the Fourier transform (4), for λ �= 0 we have

f̂ (a·)(λ) =
∫
λ

f
(
a(p,q, t)

)
ρλ(p,q, t)dp dq dt

=
∫
λ

f
(
ap,aq,a2t

)
ρλ(p,q, t)dp dq dt

= a−4
∫
λ

f (p,q, t)ρλ

(
a−1 p,a−1q,a−2t

)
dp dq dt

= a−4
∫
λ

f (p,q, t)
(
ρλ

(
a−1(p,q, t)

))
dp dq dt,

Now inserting (3), we derive the following relation:

f̂ (a·)(λ) = a−4 Da−1

(∫
λ

f (p,q, t)ρa−2λ(p,q, t)dp dq dt

)
Da

= a−4 Da−1
̂f
(
a−2λ

)
Da, (5)

as desired. �
3.2. Wavelet frames

For our purpose, in this work we will consider the wavelet frames which are produced from one function, as the gen-
erator of the wavelet frame, using a countable family of dilation and left translation operators. The generator function is
usually called a “discrete wavelet.”

Below we will give a concrete example of wavelet frames with respect to a very special lattice as the discrete translation
set. Suppose Γ is a lattice in H and a > 0 refers to the automorphism a : ω → a.ω of H. Suppose also H is a subspace of
L2(H) and ψ is any function in H. Then the discrete system {La− jγ Da− j ψ} j∈Z,γ ∈Γ (assumed to be contained in H) is called
the discrete wavelet system generated by ψ , where {Da− j } j∈Z is the class of discrete unitary dilation operators with respect
to the positive number a obtained by a j : ω → a jω, and {Lγ }γ ∈Γ is the class of left translation operators with regard to the
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lattice Γ . The discrete wavelet system {La− jγ Da− j ψ} j∈Z,γ ∈Γ is called a (tight, normalized tight) wavelet frame of H if it forms
a (tight, normalized tight) frame for H. More precisely, it is a frame if there exist positive numbers 0 < A � B < ∞ such
that for any f ∈H we have

A‖ f ‖2
2 �

∑
j∈Z,γ ∈Γ

∣∣〈 f ,ψ j,γ 〉∣∣2 � B‖ f ‖2
2,

where ψ j,γ := La− jγ Da− j ψ .
Now, we are ready to present our main results concerning the multiresolution analysis.

4. Frame multiresolution analysis for L2(H)

Analogous to the situation on R, discrete wavelets in L2(H) are functions ψ with the property that their appropriate
translates and dilates defined with respect to the Lie structure of the Heisenberg group can be used to approximate any
L2-function on H. But here the special concept of multiresolution analysis needs to be appropriately adapted.

In this work we shall adapt the definition of MRA for L2(R) to one for L2(H), replacing the concept of orthonormal basis
by frames and calling it FMRA. Since the triviality of the intersection is a direct consequence of the other conditions of the
definition of an MRA, we prove this property immediately after we give the definition of an MRA.

We begin by properly interpreting the concept of MRA of L2(R). The shift-invariance of V 0, the central subspace in
the definition of a MRA, can be interpreted as an invariance property with respect to the action of the discrete lattice
subgroup Z of R. The scaling operator a can be viewed as the action of some group automorphism of R, with the property
aZ ⊂ Z.

With this in mind, it is not difficult to conjecture the correct generalization of MRA to the Heisenberg group:

• First, a discrete subgroup Γ of H will play the same role in H as Z in R. To say Γ is discrete means that the topology
on Γ induced from H is the discrete topology.

• Since our setting is a non-abelian group, there are two kinds of translations: left translation L := LH and right translation
R := RH . We choose left translation here.

As our starting point, we need the following definition:

Definition 4.1. Suppose Ω is a subset of H and H is a subspace of L2(H). We say H is left shift-invariant under Ω , if for
any ω ∈ Ω we have LωH ⊆H.

After this preparation, we can give a definition of FMRA for L2(H) related to an automorphism of H given by a > 0
(see (2)) and a lattice Γ in H.

Definition 4.2. We say that a sequence of closed subspaces {V j} j∈Z of L2(H) forms a FMRA of L2(H), associated to an
automorphism a ∈ Aut(H) and a lattice Γ in H, if the following conditions are satisfied:

(1) V j ⊆ V j+1 ∀ j ∈ Z,

(2)
⋃

V j = L2(H),
(3)

⋂
V j = {0},

(4) f ∈ V j ⇔ f (a·) ∈ V j+1,

(5) V 0 is left shift-invariant under Γ , and consequently V j is left shift-invariant under a− jΓ , and,
(6) there exists a function φ ∈ V 0, called the scaling function, or generator of the FMRA, such that the set LΓ (φ) constitutes

a normalized tight frame for V 0.

Remark 4.3.

(a) Observe that property (4) in Definition 4.2 implies that

f ∈ V j ⇔ f
(
a− j ·) ∈ V 0. (6)

It follows that an MRA is essentially completely determined by the closed subspace V 0. But from property (6), V 0 is the
closure of the linear span of the Γ -translations of the scaling function φ. Thus the starting point of the construction
of MRA is the existence of the scaling function φ. Therefore, it is especially important to give some conditions under
which an initial function φ generates an MRA.

(b) Eq. (6) implies that if f ∈ V j , then f (γ −1(a jω)) ∈ V 0 for all γ ∈ Γ . Finally property (6) in Definition 4.2 and
Eq. (6) imply that the system {La− jγ Da− j φ}γ ∈Γ is a normalized tight frame V j for all j ∈ Z, where ∀γ ∈ Γ , ∀ω ∈ H,

La− jγ Da− j φ(ω) = a j/2φ(γ −1(a jω)).
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(c) Here, for the scaling function we do not impose any regularity or decay condition on φ. In our case to make the
argument simple and general, we require only that φ ∈ L2(H).

(d) In analogy with L2(R), we say V 0 is refinable if Da−1 (V 0) ⊆ V 0. Thus condition (1) in Definition 4.2 is equivalent to
saying that V 0 is refinable. Thus, the basic question concerning a FMRA is whether the scaling function exists. We shall
see in Theorem 4.12 that such scaling functions do exist. We will enter into details later for a very special case.

(e) To have a sequence of nested closed subspaces, we must find a refinable function like φ in V 0. It is already known by
Boor, DeVore and Ron in [2] for the real case that the refinability of φ is not enough to generate an M R A. Hence we
need other requirements. We will consider this in detail later.

(f) The basic property of multiresolution analysis is that whenever a collection of closed subspaces satisfies properties
(1)–(6) in Definition 4.2, then there exists a basis {La− jγ Da− j ψ; j ∈ Z, γ ∈ Γ } of L2(H), such that for all f ∈ L2(H)

P j+1 f = P j f +
∑
γ ∈Γ

〈 f , La− jγ Da− j ψ〉La− jγ Da− j ψ,

where P j is the orthogonal projection of L2(H) onto V j .

The approach via the solution of the scaling equation, with methods of Lawton [14], leads to difficult analytical problems.
Therefore we follow a new approach, which is based on the point of view of Shannon multiresolution analysis. This will allow
us to derive the existence of a Shannon wavelet in L2(H).

In the setting of the real line, the canonical construction of wavelet bases starts with a multiresolution analysis {V j} j .
In L2(R) one proves the existence of a wavelet ψ ∈ W0, such that {Lkψ, k ∈ Z} is an orthonormal basis for W0. (Lk is the
translation operator.)

Consequently the set {L2− jk D2 j ψ}k∈Z , the set of dyadic dilations and translations of ψ , constitutes an orthonormal basis
for W j . (Dyadic refers here to the dilation D2.) By the orthogonal decomposition L2(R) = ⊕

j∈Z
W j , the wavelet system

{L2− jk D2 j ψ} j,k∈Z is an orthonormal basis for L2(R).
In our setting, we shall construct on H a Shannon-MRA as an example of a FMRA. In contrast of the case of R, the

construction of the scaling function is not our starting point for obtaining a FMRA, but rather, first we intend to construct a
special function which implies the existence of the scaling function in some closed subspace of L2(H). Furthermore, for the
construction, we shall consider the automorphism a = 2 of H which is given by:

a(p,q, t) = (
2p,2q,22t

) ∀(p,q, t) ∈ H.

4.1. An example: Shannon MRA for L2(H)

As remarked before, we shall construct a generator function in some closed and shift-invariant subspace of L2(H), such
that its translations and dilations yields a normalized tight frame of L2(H). For this reason, first we choose the dilation
operator Da = D2 and try to associate a space V 0 which has similar properties as the Paley–Wiener space on R. With this
aim in mind, we start with the definition of a band-limited function on H:

Definition 4.4. Suppose I is some bounded subset of R∗ and S is a function in L2(H). We say S is I-band-limited if
Ŝ(λ) = 0 for all λ �∈ I .

In the next theorem we shall construct sinc-type function on the Heisenberg group which is our starting point for
obtaining the scaling function:

Theorem 4.5. Let d be any positive integer. There exists a self-adjoint convolution idempotent function S in L2(H) which is I-band-

limited for I = [− π
2d , π

2d ] \ {0}. Define S j = 24 j S(2 j ·) for j ∈ Z. Then S j is I j -band-limited for I j = [− 22 jπ
2d , 22 jπ

2d ] \ {0} and the
following consequences hold:

(a) S ∗ S j = S ∀ j > 0 and S j ∗ S = S j ∀ j < 0,
(b) f ∗ S j → 0 in L2-norm as j → −∞ ∀ f ∈ L2(H),
(c) f ∗ S j → f in L2-norm as j → ∞ ∀ f ∈ L2(H), and,
(d) S j = S̃ j = S j ∗ S j .

Proof. Take I0 := I . We intend to show that there exists a function S which is I0-band-limited and satisfies the assertion
of our theorem. We start from the Fourier transform side, i.e., by constructing Hilbert–Schmidt operators Ŝ(λ) associated to
λ ∈ R∗ . For this purpose we choose an orthonormal basis {ei}i∈N0 in L2(R). For any λ �= 0 define eλ

i = D |λ|−1/2 ei . Observe

that for any λ, {eλ
i }i is an ONB of L2(R) since the dilation operators D |λ|−1/2 are unitary. Therefore {{eλ

i }i}λ is a measurable

family of orthonormal bases in L2(R).
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Let λ �= 0 be such that λ ∈ I0. For I0 = ⋃
k Ik

0 where Ik
0 = [− π

22k+1d
,− π

22k+3d
) ∪ ( π

22k+3d
, π

22k+1d
], define the operator Ŝ(λ) as

follows:

Ŝ(λ) =
{∑22k

i=0

(
e

λ
2π
i ⊗ e

λ
2π
i

)
if λ ∈ Ik

0, for some k ∈ N0,

0 otherwise.

Therefore for any λ ∈ Ik
0, the operator Ŝ(λ) is a projection operator on the first 22k + 1 elements of the orthonormal basis

{e
λ

2π
i }i∈N0 , where e

λ
2π
i = D | λ

2π |−1/2 ei . The definition of Ŝ entails the following consequences:

(i) For k � 0 and λ ∈ Ik
0, ‖̂S(λ)‖2

H .S = 22k + 1,

(ii)
∫

|λ|� π
2d

∥∥̂S(λ)
∥∥2

H .S dμ(λ) =
∑
k=0

∫
Ik
0

(
22k + 1

)
dμ(λ) < ∞,

where dμ(λ) = (2π)−2|λ|dλ, and

(iii) Ŝ(λ) = Ŝ(λ)∗ = Ŝ(λ) ◦ Ŝ(λ) ∀λ �= 0.

Observe that (ii) implies that the vector field {̂S(λ)}λ on R∗ is contained in
∫ ⊕

R∗ L2(R) ⊗ L2(R)dμ(λ) and hence, by the
surjectivity part of the Plancherel theorem, Ŝ has a preimage S in L2(R) with Fourier transform Ŝ , given as above. Property
(iii) shows that S is a self-adjoint convolution, idempotent by the convolution theorem.

Suppose j ∈ Z and S j := 24 j S(2 j .). Using the equivalence of the representations ρλ and ρ2−2 jλ , the relation (5) and the
fact that D∗

2 j = D2− j we obtain

Ŝ j(λ) = D2− j Ŝ
(
2−2 jλ

)
D2 j . (7)

(7) implies Ŝ j(λ) = 0 for any |λ| > 22 jπ
2d , and hence the function S j is I j -band-limited, where I j = [− 22 jπ

2d ,0)∪ (0, 22 jπ
2d ]. As

a consequence of (iii), the relation (7) shows that S j is a self-adjoint and convolution idempotent, which proves (d).
To prove (a), suppose j > 0 and λ ∈ I j . Then 2−2 jλ ∈ I0. Hence there exists a non-negative integer k j such that

π

2(2k j+3)d
<

∣∣2−2 jλ
∣∣ � π

2(k j+1)d
,

or equivalently λ ∈ I
k j

0 .

For the case k j < j, observe that Ŝ(λ) = 0. For the case k j � j, from the definition of Ŝ we have the following:

Ŝ(λ) =
22(k j− j)∑

i=0

e
λ

2π
i ⊗ e

λ
2π
i and

Ŝ(2−2 jλ) =
22k j∑
i=0

e
λ

22 j+1π
i ⊗ e

λ

22 j+1π
i . (8)

Recall that, from the definition of the family of orthonormal bases {eλ
i }i , e

λ

22 j+1π
i can be read as below:

e
λ

22 j+1π
i = D | 2−2 jλ

2π |−1/2 ei = D2 j (D | λ
2π |−1/2 ei) = D2 j e

λ
2π
i . (9)

Plugging (9) into (8), we get

Ŝ
(
2−2 jλ

) =
22k j∑
i=0

(
D2 j e

λ
2π
i

) ⊗ (
D2 j e

λ
2π
i

)
,

and hence

Ŝ j(λ) = D2− j Ŝ
(
2−2 jλ

)
D2 j =

22k j∑
i=0

e
λ

2π
i ⊗ e

λ
2π
i . (10)

Observe that for any λ ∈ I j , the operator Ŝ(λ) is a projection on the first 22(k j− j) + 1 elements of the orthonormal basis

{e
λ

2π
i } for some suitable k j � j, whereas Ŝ j(λ) is a projection on the first 22k j + 1 elements of the same orthonormal basis.

Hence we get

Ŝ(λ) ◦ Ŝ j(λ) = Ŝ j(λ) ◦ Ŝ(λ) =
22(k j− j)∑

e
λ

2π
i ⊗ e

λ
2π
i = Ŝ(λ), (11)
i=0
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which is a projection on the first 22(k j− j) +1 elements of the orthonormal basis {e
λ

2π
i }. For fixed j > 0 since the relation (11)

holds for any λ ∈ I j , so by applying the convolution and the Plancherel theorem respectively we obtain S ∗ S j = S , which
proves the first hypothesis of (a).

Likewise for j < 0, suppose λ ∈ I j . Then for some k j ∈ N0, π

22k j+3d
< |2−2 jλ| � π

22k j+1d
. Analogous to the previous case,

the operator Ŝ(λ) is a projection on the first 22(k j− j) + 1 elements of the orthonormal basis {e
λ

2π
i } and Ŝ j(λ) is a projection

on the first 22k j + 1 elements of the same orthonormal basis. Thus

Ŝ(λ) ◦ Ŝ j(λ) = Ŝ j(λ) ◦ Ŝ(λ) =
22k j∑
i=0

e
λ

2π
i ⊗ e

λ
2π
i = Ŝ j(λ). (12)

Once again, applying the convolution and Plancherel theorems in the relation (12) yields S ∗ S j = S j , and hence (a) is
completely proved.

To prove (b), suppose j ∈ Z and f ∈ L2(H). Then f ∗ S j ∈ L2(H) by the structure and properties of the function S . Before
we start to give a proof for this part, observe that, for any λ �= 0, since each Ŝ(λ) is a projection, the operator Ŝ(λ) is
bounded and has operator norm less than or equal to 1. Hence for any j ∈ Z and λ �= 0 we have∥∥ Ŝ j(λ)

∥∥∞ = ∥∥D2− j Ŝ
(
2−2 jλ

)
D2 j

∥∥∞ � 1.

Using the inequality and applying the Plancherel and convolution theorems respectively we get the following:

‖ f ∗ S j‖2
2 = ∥∥ ̂( f ∗ S j)

∥∥2
H .S =

∫
R∗

∥∥ ̂( f ∗ S j)(λ)
∥∥2

2 dμ(λ) (13)

=
∫

0<|4− jλ|� π
2d

∥∥ f̂ (λ) ◦ Ŝ j(λ)
∥∥2

H .S dμ(λ)

�
∫

0<|4− jλ|� π
2d

∥∥ f̂ (λ)
∥∥2

H .S

∥∥ Ŝ j(λ)
∥∥2

∞ dμ(λ)

�
∫

0<|4− jλ|� π
2d

∥∥ f̂ (λ)
∥∥2

H .S dμ(λ)

=
∫
R∗

∥∥ f̂ (λ)
∥∥2

H .SχI j
(λ)dμ(λ), (14)

where χ denotes the characteristic function and dμ(λ) = (2π)−2|λ|dλ. If we take the limit of the right-hand side in (14),
since

∫
λ
‖ f̂ (λ)‖2

H .Sdμ(λ) < ∞, then by the dominated convergence theorem may pass the limit into the integral and hence

lim
j→−∞

∫
R∗

∥∥ f̂ (λ)
∥∥2

H .SχI j
dμ(λ) = 0.

The latter implies that the limit of the left-hand side in the relation (13) is also zero as j → −∞, i.e., lim j→−∞ ‖ f ∗ S j‖2 = 0,
which proves (b).

In order to prove (c), suppose f is in L2(H). Recall that {e
λ

2π
i }∞i=0 constitutes an orthonormal basis for L2(R) for any

fixed λ. Therefore the identity operator I on L2(R) can be read as I = ∑∞
i=0 e

λ
2π
i ⊗ e

λ
2π
i , and hence the operator f̂ (λ) can be

represented as

f̂ (λ) =
∞∑

i=0

(
f̂ (λ)e

λ
2π
i

) ⊗ e
λ

2π
i . (15)

Therefore for any j ∈ Z, according to the representation of f̂ (λ) in (15) and the representation of the operator
D2− j Ŝ(2−2 jλ)D2 j in (10), for some k j � j we obtain the following:

∥∥[
f̂ (λ) ◦ D2− j Ŝ

(
2−2 jλ

)
D2 j

] − f̂ (λ)
∥∥2

H .S =
∥∥∥∥∥

∞∑
i=22k j +1

(
f̂ (λ)e

λ
2π
i

) ⊗ e
λ

2π
i

∥∥∥∥∥
2

H .S

=
∞∑
2k j

∥∥ f̂ (λ)e
λ

2π
i

∥∥2
2. (16)
i=2 +1
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Letting j → ∞ (hence k j → ∞), the right-hand side of (16) goes to zero. From the other side using the Plancherel theorem
we have

‖ f ∗ S j − f ‖2
2 =

∫
R∗

∥∥[
f̂ (λ) ◦ D2− j Ŝ

(
4− jλ

)
D2 j

] − f̂ (λ)
∥∥2

H .S dμ(λ)

=
∫
R∗

∞∑
i=22k j +1

∥∥ f̂ (λ)e
λ

2π
i

∥∥2
2 dμ(λ). (17)

As in the proof of (b), using the dominated convergence theorem in the relation (17) one gets:

lim
j→∞

‖ f ∗ S j − f ‖2
2 =

∫
R∗

lim
j→∞

∞∑
i=22(k j+ j)+1

∥∥ f̂ (λ)e
λ

2π
i

∥∥2
2 dμ(λ) = 0,

as desired, which completes the proof of the theorem. �
Remark 4.6. In the previous theorem, one could for instance take the orthonormal basis of {φn}n∈N0 in L2(R), where φn are

Hermite functions, and for any λ �= 0, φλ
n are given by φλ

n (x) = D |λ|−1/2φn = |λ| 1
4 φn(

√|λ|x) for all x ∈ R.

Now that we have constructed a function S as in above theorem, with the listed properties, the next step in the con-
struction of an MRA via the function S will be the definition of a closed left invariant subspace of L2(H), V 0. Define
V 0 = L2(H) ∗ S , as the central subspace of an MRA. It is obvious that V 0 is closed and possesses the following additional
properties:

1. V 0 is contained in the set of all bounded and continuous functions in L2(H). Hence V 0 is a proper subspace of L2(H).
The boundedness of elements in V 0 is easy to see by the definition of convolution operator and Cauchy–Schwartz
inequality:∣∣g ∗ S(x)

∣∣ � ‖ f ‖2‖S‖2 ∀x ∈ H g ∈ L2(R).

2. Since S is convolution idempotent then S behaves as an identity element in V 0 with respect to group convolution.
More precisely, f ∗ S = f for any f ∈ V 0.

3. Suppose Γ is any lattice in H. Then Lγ (g ∗ S) = Lγ g ∗ S which shows V 0 is left shift-invariant under Γ .
4. An easy computation shows that D2 j (g ∗ S) = D2 j g ∗ D2 j S for any g ∈ L2(H) and j ∈ Z.

Remark 4.7. Observe that not every space L2(H) ∗ S with S = S̃ = S ∗ S gives rise to a normalized tight frame of the form
{Lγ φ}γ for some φ ∈ L2(H) ∗ S . As shall be seen later, this depends heavily on the multiplicity function associated to S , see
Definition 4.10 and Theorem 4.11.

Recall that L2− jγ D2− j S(ω) = 2 j/2 S(γ −1(2 jω)) ∀ j ∈ Z, γ ∈ Γ , ω ∈ H. Next define V 1 = L2(H) ∗ (24 S(2·)). V 1 is left-

invariant under 2−1Γ and is a closed subspace of L2(H) as well. The functions in V 1 are continuous bounded functions,
and from (7) are I1-band-limited. With regard to the consequence (a) of Theorem 4.5, for any f ∈ V 0 we have

f = f ∗ S = f ∗ (
S ∗ 24 S(2·)) = ( f ∗ S) ∗ (

24 S(2·)).
The latter shows that the conclusion V 0 ⊆ V 1 holds. By continuing in this manner, we define V 2 = L2(H) ∗ (28 S(22·)) to be
the closed subspace of functions which are I2-band-limited. Obviously, with a similar argument as above, one can easily
prove that V 1 ⊆ V 2.

Similarly, one can define subspaces V 3 ⊆ V 4 ⊆ · · · . On the other hand one may define negatively indexed subspaces. For
example, we define

V−1 = L2(H) ∗ 2−4 S
(
2−1·).

This space contains the functions which are I−1-band-limited and obviously V−1 ⊆ V 0. Again, one may continue in this
way to construct the sequence of closed and left (2− jΓ )-shift-invariant subspaces of L2(H):

{0} ⊆ · · · ⊆ V−2 ⊆ V−1 ⊆ V 0 ⊆ V 1 ⊆ L2(H), (18)

which are scaled versions of the central space V 0. Our next aim is to show that, in the sense of Definition 4.2, the sequence
of closed subspaces {V j} forms a FMRA of L2(H). For this reason we must show that the all properties (1)–(6) in Defini-
tion 4.2 hold for the sequence {V j}. But (18) proves the nested property of V j ’s. The density and trivial intersection of V j ’s
are given in the next theorem:
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Theorem 4.8. {V j} j∈Z is dense in L2(H) and has trivial intersection.

Proof. To show the density of {V j} j∈Z in L2(H), i.e.,
⋃

j∈Z
V j = L2(H), suppose P j denotes the projection operator of L2(H)

onto V j . Then P j is given by

P j : f → f ∗ 24 j S
(
2 j ·). (19)

Therefore the density of {V j} j∈Z in L2(H) is equivalent to saying that for any f in L2(H) with P j f = 0 ∀ j ∈ Z, we have
f = 0. Theorem 4.5 (c) demonstrates this. More precisely

0 = P j f = f ∗ S j → f as j → ∞
which implies f = 0.

For the triviality of the intersection, observe that f ∗ 24 j S(2 j ·) = f for any f ∈ V j . Therefore for any f ∈ ⋂
V j we have

f ∗ 24 j S(2 j ·) = f for all j. Therefore (b) in Theorem 4.5 implies that f = 0, as desired. �
The other significant properties of V j ’s are collected in the next remark:

Remark 4.9.

(1) Property (4) in Definition 4.2 is trivial from the construction of V j ’s. This property enables us to pass up and down
among the spaces V j by scaling

f ∈ V j ⇐⇒ f
(
2k− j ·) ∈ Vk.

(2) Generally, when V 0 is left shift-invariant under some lattice Γ , the spaces V j are shift-invariant under 2− jΓ . We will
return to this fact later and will show how one can choose an appropriate lattice Γ such that it allows the construction
of a wavelet frame on H.

(3) Observe that, by contrast to the multiresolution analysis on R, condition (6) in Definition 4.2 requires the existence of
some frame generator φ, not necessarily φ = S . This is due to the fact that we did not assume any other conditions for
the selection of the orthonormal basis {eλ

i }i for the construction of the Hilbert–Schmidt operators Ŝ(λ) (respectively S).
This is one difference between our defined MRA of L2(H) and the one defined for L2(R). In the case of R the sinc
function by which the subspaces V j ’s are defined, generates an ONB for V 0 and hence for all V j , under some other
suitable discrete subgroups of R. In our case on the Heisenberg group we shall show the existence of a function φ in
V 0 such that its left translations under a suitable Γ form a normalized tight frame for V 0 and hence for all V j under
2− jΓ .

As we briefly mentioned above, we shall show the existence of a function φ in V 0 such that property (6) in Definition 4.2
holds for V 0. We will observe below that this fact strongly depends on the structure of S and definition of V 0. To achieve
this goal, we recall the following definition here:

Definition 4.10. Suppose H be a left-invariant subspace of L2(H) and P be the projection operator of L2(H) onto H. There
exists a unique associated projection field ( P̂λ)λ satisfying P̂ ( f )(λ) = f̂ (λ) ◦ P̂λ ∀ f ∈ L2(H). The associated multiplicity
function mH is then defined by

mH : R∗ → N0 ∪ {∞}; mH(λ) = rank( P̂λ).

H is called band-limited if the support of its associated multiplicity function mH , Σ(H), is bounded in R∗ .

Following the notation of [10], the next theorem provides a characterization of closed left shift-invariant subspaces of
L2(H) which admit a tight frame. However, before we state this theorem we need to introduce two numbers associated to
a lattice Γ . The number d(Γ ) refers to a positive integer number d for which α(Γd) = Γ for some α ∈ Aut(H), where Γd is
a lattice in H and is defined by

Γd :=
{(

m,dk, l + 1

2
dmk

)
: m,k, l ∈ Z

}
.

It is easy to check that Γd forms a group under the group operation (1). Observe that due to Theorem 6.2 in [10], such a
strictly positive number d exists and is uniquely determined. As well, we define r(Γ ) be the unique positive real satisfying

Γ ∩ Z(H) = {(
0,0, r(Γ )k

)
: k ∈ Z

}
,

where Z(H) denotes the center of H, Z(H) = {0} × {0} × R ⊂ H. With the above notation we state the following theorem.
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Theorem 4.11. (See [10].) Suppose H is a left-invariant subspace of L2(H) and mH is its associated multiplicity function. Then there
exists a tight frame (hence normalized tight frame) of the form {Lγ φ}γ ∈Γ with an appropriate φ ∈H if and only if the inequality

mH(2πλ)|2πλ| + mH

(
2πλ − 1

r(Γ )

)∣∣∣∣2πλ − 1

r(Γ )

∣∣∣∣ � 1

d(Γ )r(Γ )
(20)

holds for mH almost everywhere.
From the inequality (20) it can be read off that H is band-limited. In fact, the support of mH is contained in the interval

[− 1
d(Γ )r(Γ )

, 1
d(Γ )r(Γ )

] up to a set of measure zero.

Note that Theorem 6.4 in [10] refers to a different realization of the Schrödinger representations, hence we have the
additional factor 2π in the relation (20).

Theorem 4.11 enables us to show the existence of a function φ in V 0 which provides a tight frame for V 0. Therefore as
a consequence we have our next main result in this section:

Theorem 4.12. There exists a normalized tight frame of the form {Lγ φ}γ ∈Γ for an appropriate φ ∈ V 0 and a suitable lattice Γ in H.

Proof. For our purpose we pick a lattice with r(Γ ) = 1
2π and d(Γ ) = d. (Observe that it is possible due to Theorem 6.2 in

[10] to select a lattice with the desired associated numbers r and d.) From the definition of V 0, {̂S(λ)}λ∈R∗ is the associated
projection field of V 0 with the multiplicity function mV 0 which is given by

mV 0(2πλ) = rank
(

Ŝ(2πλ)
) =

{
22k + 1 if 2πλ ∈ Ik

0 for some k ∈ N0,

0 elsewhere.

One can easily prove that the inequality in (20) holds for mV 0 . By the construction of S in Theorem 4.5, Ŝ(λ) = 0 for any
|λ| > π

2d which implies:

Σ(mV 0) ⊂
[
− π

2d
,
π

2d

]
⊂

[
−2π

d
,

2π

d

]
=

[
− 1

d(Γ )r(Γ )
,

1

d(Γ )r(Γ )

]
.

Therefore all the conditions of Theorem 4.11 hold for V 0. Hence there exists a function φ, so-called scaling function, such
that for our selected lattice Γ , LΓ φ forms a normalized tight frame for V 0. From this, property (6) of Definition 4.2 is
satisfied. �
Corollary 4.13. For any j ∈ Z, {L2− jγ D2− j φ}γ constitutes a normalized tight frame of V j .

As already mentioned, we have constructed the MRA for L2(H), with the aim of finding an associated discrete wavelet
system in L2(H). More precisely, we want to construct a discrete wavelet system for L2(H) which is a normalized tight
frame. We will study this in detail in the next section by considering a “scaling function” φ in V 0.

4.2. Existence of normalized tight wavelet frame for the Heisenberg group

It is natural to try to obtain one normalized tight frame (n.t. frame) for L2(H) by combining all the n.t. frames
{L2− jγ D2− j φ}γ ∈Γ of V j ’s. But although V j ⊆ V j+1, the n.t. frame for V j is not necessarily contained in the n.t. frame
{L2−( j+1)γ D2−( j+1)φ}γ ∈Γ of V j+1. Therefore the union of all n.t. frames for V j ’s does not necessarily constitute a n.t. frame

for L2(H).
To find an n.t. frame for L2(H), we use the following standard approach. For every j ∈ Z, use W j to denote the orthogonal

complement of V j in V j+1, i.e., V j+1 = V j ⊕ W j , where the symbol ⊕ stands for direct sum of the subspaces. Suppose Q j

denotes the orthogonal projection of L2(H) onto W j . Then P j+1 = P j + Q j and evidently

V j =
⊕

k� j−1

Wk.

The most important thing remaining unchanged is that, the spaces W j , j ∈ Z, retain the scaling property from V j . More
precisely,

f ∈ W j ⇐⇒ f
(
2k− j .

) ∈ Wk. (21)

Consequently we obtain the following orthogonal decomposition:

L2(H) =
⊕

W j . (22)

j∈Z
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From this decomposition of L2(H), it follows that each f ∈ L2(H) has a representation f = ∑
j Q j f , where Q j f ⊥Q k f for

any pair of j,k, j �= k.
Our goal is reduced to finding a n.t. frame for W0. If we can find such a n.t. frame for W0, then by the scaling property

(21) and orthogonal decomposition of L2(H) into the W j ’s in (22), we can easily get a n.t. frame for space L2(H). We
explain this in detail, in the next lemma:

Lemma 4.14. Suppose ψ ∈ W0 and Γ is a lattice in H such that {Lγ ψ}γ ∈Γ constitutes a n.t. frame of W0 . Then the wavelet system
{L2− jγ D2− j ψ}γ , j is a n.t. frame of L2(H).

Proof. Observe that this lemma is a consequence of the orthogonal decomposition of L2(H) into the W j ’s. Suppose f ∈
L2(H). From (22), f can be written as f = ∑

j Q j( f ). Therefore to prove that the system {L2− jγ D2− j ψ}γ , j forms a n.t.

frame of L2(H), it is sufficient to show that for any j the system {L2− jγ D2− j ψ}γ is a n.t. frame of W j . From the scaling

property of the spaces W j in (21) we have Q j( f )(2− j .) ∈ W0. Take Q j( f ) = f j . From the hypothesis of the lemma one has∥∥ f j(2− j .)
∥∥2 =

∑
γ ∈Γ

∣∣〈 f j
(
2− j .

)
, Lγ ψ

〉∣∣2
.

Replacing 22 j D2 j f j(·) = f j(2− j ·) in the above we obtain

‖ f j‖2 = ‖D2 j f j‖2 =
∑
γ ∈Γ

∣∣〈D2 j f j, Lγ ψ〉∣∣2 =
∑
γ ∈Γ

∣∣〈 f j, L2− jγ D2− j ψ〉∣∣2
. (23)

Summing over j in (23) yields:

‖ f ‖2 =
∑
j∈Z

‖ f j‖2 =
∑
j,γ

∣∣〈 f j, L2− jγ D2− j ψ〉∣∣2 =
∑
j,γ

∣∣〈 f , L2− jγ D2− j ψ〉∣∣2
,

as desired. �
By Lemma 4.14 it remains to show that the space W0 contains a function ψ generating a normalized tight frame of W0.

Remark 4.15. By the definition of orthogonal projections P1, P0 in (19), for any f ∈ L2(H) we have

Q 0( f ) = P1( f ) − P0( f ) = f ∗ [(
24 S(2.)

) − S
]
,

which implies that

W0 = L2(H) ∗ [(
24 S(2.)

) − S
]
. (24)

Likewise for any j one can see that

W j = L2(H) ∗ [(
24 j S

(
2 j .

)) − (
24( j−1) S

(
2 j−1.

))]
and

Q j( f ) = f ∗ [(
24 j S

(
2 j .

)) − (
24( j−1) S

(
2 j−1))] ∀ f ∈ L2(H),

where Q j , as earlier mentioned, is the projection operator of L2(H) onto W j .

The representation of the space W0 in (24) suggests that we can get a n.t. frame for W0 by applying Theorem 4.11. We
obtain this in the proof of the next theorem, which is the last main result of this work:

Theorem 4.16. There exists a band-limited function ψ ∈ L2(H) and a lattice Γ in H such that the discrete wavelet system
{L2− jγ D2− j ψ} j,γ forms a n.t. frame of L2(H).

Proof. In order to prove the theorem, first we shall show that the space W0 is band-limited and contains a function such
that its left translations under a suitable lattice Γ forms a n.t. frame of W0. Hence, the assertion of the theorem will follow
from Lemma 4.14 and Theorem 4.16.

Due to the support of S , we have
∑[(24 S(2.))− S] ⊂ [−π

d , π
d ], where Σ stands for the support on the Fourier transform

side, and is applied for the function (24 S(2.)) − S . Hence W0 is band-limited. To prove that the space W0 contains a n.t.
frame, observe that by Corollary 4.13 the set {L2−1γ D2−1φ}γ ∈Γ is a n.t. frame of V 1 for a suitable Γ . On the other hand, the

projection of V 1 onto W0, Q 0, is left invariant and hence for any γ ∈ Γ , we have Q 0(L2−1γ D2−1φ) = L2−1γ

(
Q 0(D2−1φ)

)
.

Since the image of a n.t. frame under a left shift-invariant projection is again a n.t. frame of the image space, the set
{Q 0(L2−1γ D2−1φ)}γ = {L2−1γ (Q 0(D2−1φ)}γ constitutes a n.t. frame for W0, as desired. �
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We conclude our work with the following remark:

Remark 4.17. As mentioned earlier, in contrast to the case of R, in the present work it is not required that the wavelet
function ψ contained in W0 be constructed through the so-called scaling function φ in V 0.
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