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Abstract

A characterization of right (left) quasi-duo skew polynomial rings of endomorphism type and skew Laurent polynomial rings
are given. In particular, it is shown that (1) the polynomial ring R[x] is right quasi-duo iff R[x] is commutative modulo its Jacobson
radical iff R[x] is left quasi-duo, (2) the skew Laurent polynomial ring is right quasi-duo iff it is left quasi-duo. These extend some
known results concerning a description of quasi-duo polynomial rings and give a partial answer to the question posed by Lam and
Dugas whether right quasi-duo rings are left quasi-duo.
c© 2008 Published by Elsevier B.V.

MSC: 16S36; 16U80

0. Introduction

An associative ring R with unity is called right (left) quasi-duo if every maximal right (left) ideal of R is two-
sided or, equivalently, every right (left) primitive homomorphic image of R is a division ring. There are many open
problems in the area (cf. [5]). One of the most interesting is Problem 7.7 [5]: “does there exist a right quasi-duo ring
that is not left quasi-duo ?” If it were so, there would exist right quasi-duo non-division rings, which are left primitive.
Constructing such an example might be a quite challenging task, because it is difficult to construct only left but not
right primitive rings. The known examples of such sort are based on skew polynomial rings of endomorphism type. In
that context it is interesting to determine when such skew polynomial rings are right (left) quasi-duo. This problem is
not new and was studied by several authors. In [12] it was proved that if R is Jacobson semisimple and the polynomial
ring R[x] is right quasi-duo, then R is commutative and it was expected that the same holds when R[x] is Jacobson
semisimple.

In this article we obtain a complete description of right (left) quasi-duo skew polynomial rings of endomorphism
type (cf. Theorem 3.4) and skew Laurent polynomial rings (cf. Theorem 4.2). The descriptions are left–right
symmetric but do not imply that R[x; τ ] is right quasi-duo iff it is left quasi-duo in general. However the descriptions
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do imply that in order to get a skew polynomial ring which is quasi-duo on one side only, one has to begin with a
coefficient ring which already has this property. Thus skew polynomial rings of endomorphism type themselves do
not help to construct an example of a ring which is right but not left quasi-duo.

Theorem 3.4 implies that the ordinary polynomial ring R[x] is right (left) quasi-duo if and only if it is commutative
modulo its Jacobson radical. This, in particular, shows that R[x] is right quasi-duo if and only if it is left quasi-duo.
The same result holds also for skew Laurent polynomial rings.

The article is organized as follows. In the first section we show that the class of right quasi-duo rings is hereditary
on certain subrings and closed under passing to some over-rings. Most important for our further studies are the
results which say that the quasi-duo property is preserved when passing from Laurent skew polynomial rings to
skew polynomial rings and from a ring with an injective endomorphism to its Cohn–Jordan extension.

In Section 2 we obtain, based on a result of Bedi and Ram [1], a detailed description of the Jacobson radical of
right (left) quasi-duo skew polynomial rings of automorphism type, which will be needed later on.

The characterization of right (left) quasi-duo skew polynomial rings of endomorphism type is given in Section 3.
The last section contains applications and examples. In particular, a characterization of quasi-duo skew Laurent

polynomial rings and several examples delimiting the obtained results are presented.
All rings considered in this article are associative with unity.
We frequently consider the endomorphism and automorphism cases separately. Thus we will use different letters for

denoting those maps, namely σ and τ will stand for an automorphism and an endomorphism of a ring R, respectively.
We will say that a subset B of R is τ -stable if τ(B) ⊆ B and τ−1(B) ⊆ B, where τ−1(B) denotes the preimage of

B in R. Notice that if I is an ideal of R such that τ(I ) ⊆ I , then τ induces an endomorphism of the factor ring R/I
and I is τ -stable iff the induced endomorphism is injective. When τ = σ is an automorphism of R, then I is σ -stable
if σ(I ) = I .

The skew polynomial ring and skew Laurent polynomial ring are denoted by R[x; τ ] and R[x, x−1
; σ ],

respectively. The coefficients from R are written on the left of the indeterminate x .
The Jacobson radical of a ring R will be denoted by J (R). It is clear from the definition, that a ring R is right (left)

quasi-duo if and only if R/J (R) is right (left) quasi-duo and that R/J (R) is a reduced ring in case it is right (left)
quasi-duo. We will use these properties many times in the article.

1. Quasi-duo property of rings and their subrings

We start with the following simple observation.

Lemma 1.1. If R is a unital subring of a right quasi-duo ring T , then every maximal right ideal I of R such that
I T 6= T is two-sided.

Proof. If T 6= I T , then I T is contained in a maximal right ideal M of T which is a two-sided ideal, as T is a right
quasi-duo ring. Clearly I ⊆ M ∩ R and maximality of I yields that I = M ∩ R, as otherwise M ∩ R = R and M = T
would follow. �

A subring S of a ring T is called [4] a corner subring of T if S is a ring with unity, possibly different from that of
T , and if there exists an additive subgroup C of T such that T = S ⊕ C and SC, C S ⊆ C . The subgroup C is called
a complement of S. We say that S is a left corner of T if the complement C satisfies SC ⊆ C only.

The most classical example of a corner subring is a subring S of the form eT e, where e ∈ T is an idempotent.
Another example is the following: let H be a monoid with an identity e. If T =

⊕
g∈H Rg is a H -graded ring, then

Re is a corner of T .
A natural example of a left corner is the base ring R of a skew polynomial ring R[x; τ, δ], where τ and δ stand

for an endomorphism and a τ -derivation of R, respectively. Clearly R[x; τ, δ] = R ⊕ C , where C = R[x; τ, δ]x and
C R 6⊆ C if δ 6= 0.

Theorem 1.2. Let S be a left corner of a right quasi-duo ring T . Then S is also right quasi-duo.

Proof. Let us fix a complement C of S in T and define R = S+(1−e)Z ⊆ T , where e stands for the unity of S. Since
S is a homomorphic image of R, it is enough to show that R is right quasi-duo. Let I be a maximal right ideal of R. If
I T 6= T then, by Lemma 1.1, I is a two-sided ideal of R. Suppose I T = T . Notice that e is a central idempotent of R,
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eR = S and SC ⊆ C . Using the above we obtain e ∈ eI T ∩S = (I e(S⊕C))∩S ⊆ ((I ∩S)⊕SC)∩S ⊆ I , i.e. e ∈ I .
This yields that I is a two-sided ideal of R, as it is the preimage of an ideal of the commutative ring R/eR. �

In the case S is a corner of T , the above proposition was proved by Lam and Dugas ([5], Theorem 3.8)
by completely different arguments. From Theorem 1.2 one immediately obtains the following corollary. The first
statement was proved, using long arguments, in [6].

Corollary 1.3. 1. If R is a right quasi-duo ring, then eRe is also a right quasi-duo ring, for every nonzero idempotent
e of R.

2. Suppose H is a monoid with an identity e. If T =
⊕

g∈H Rg is a H-graded ring which is right quasi-duo, then
R = Re is a right quasi-duo ring.

3. Let τ be an endomorphism and δ a τ -derivation of a ring R. If the skew polynomial ring R[x; τ, δ] is right quasi-
duo, then R is right quasi-duo.

Let us observe that for every positive integer n, the rings S = R[x; τ ] and T = R[x, x−1
; σ ] are naturally graded

by the cyclic group G of order n with the e-components equal to S0 = R[xn
] ⊆ S and T0 = R[xn, x−n

] ⊆ T which
are isomorphic to R[x; τ n

] and R[x, x−1, σ n
], respectively. Hence Corollary 1.3 implies the following:

Corollary 1.4. 1. If R[x; τ ] is right quasi-duo, then R and R[x; τ n
] are right quasi-duo, for every n ≥ 1.

2. If R[x, x−1
; σ ] is right quasi-duo, then R and R[x, x−1

; σ n
] are right quasi-duo, for every n ≥ 1.

If R is an Ore domain with a division ring of factions Q, then Q is a quasi-duo ring though R need not be quasi-
duo. The following theorem gives necessary and sufficient conditions for a ring to be right quasi-duo in terms of its
localization with respect to a multiplicatively closed set generated by regular right normalizing elements. Recall that
such sets are always right denominator sets and that an element s ∈ R is right normalizing if Rs ⊆ s R, i.e. the right
ideal s R is two-sided.

Theorem 1.5. Let S be the multiplicatively closed set generated by the set X ⊆ R of regular right normalizing
elements of R such that the quotient ring RS−1 is right quasi-duo. Then the following conditions are equivalent:

1. R is a right quasi-duo ring;
2. R/x R is a right quasi-duo ring, for every x ∈ X.

Proof. The implication (1) ⇒ (2) is clear as the class of right quasi-duo rings is homomorphically closed.
(2) ⇒ (1) Suppose R/x R is right quasi-duo, for any x ∈ X . Let M be a maximal right ideal of R.
If M ∩ S = ∅, then M S−1 is a proper right ideal of RS−1 and Lemma 1.1 yields that M is a two-sided ideal of R

in this case.
Assume that M ∩ S 6= ∅. Then, there are k ≥ 1 and x1, . . . , xk ∈ X , such that the element y = x1 · · · · · xk ∈ M .

Since xi R, for any 1 ≤ i ≤ k, is a two-sided ideal of R, we obtain that the product of ideals x1 Rx2 R . . . xk R ⊆ y R is
contained in the annihilator P of the simple right R-module R/M , which is a primitive ideal. Therefore there exists
1 ≤ i ≤ k, such that x = xi ∈ P ⊆ M . This and the assumption imply that the canonical image of M in R/x R is a
two-sided maximal ideal of R/x R and so is M in R.

The above shows that every maximal right ideal of R is two-sided, i.e. statement (1) holds. �

In the following example we construct a domain R which is not right quasi-duo but its localization by a central
element is a duo ring.

Example 1.6. Let p be an odd prime number, A ⊆ Q denote the localization of Z with respect to the maximal ideal
pZ and let H stand for the Hamilton quaternion algebra over Q and R = A[i, j, k] ⊆ H. Then R is not right quasi-
duo, as R can be homomorphically mapped onto 2 × 2 matrices over the field Zp. Let S = {pk

| k ≥ 1}. Then S is a
central multiplicatively closed set of R such that the localization RS−1

= H is a duo ring.

Notice that R[x, x−1
; σ ] can be considered both as a localization of R[x, σ ] and of R[x, σ−1

] with respect to the
multiplicatively closed set generated by x . Thus, applying Corollary 1.4(2) and Theorem 1.5 to one of the above
mentioned rings and X = {x} we get the following corollary.

Corollary 1.7. If R[x, x−1
; σ ] is a right quasi-duo ring, then so are R[x; σ ] and R[x; σ−1

].
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We will see in Example 4.5 that the reverse implication in the above corollary does not hold in general. However it
will turn out that the polynomial ring R[x] is right quasi-duo if and only if R[x, x−1

] is right quasi-duo.
It is known (cf. [2]) that if the endomorphism τ of the ring R is injective, then there exists a universal over-ring

A(R, τ ) of R, called the τ -Cohn–Jordan extension of R, such that τ extends to an automorphism of A(R, τ ) and
A(R, τ ) =

⋃
∞

i=0 τ−i (R).
The following proposition will enable us to replace an injective endomorphism by an automorphism in some of our

considerations.

Proposition 1.8. Let τ be an injective endomorphism of R. Then:

1. If R is right (left) quasi-duo, then so is A(R, τ ).
2. If R[x; τ ] is right (left) quasi-duo, then so is A(R, τ )[x; τ ].

Proof. (1) We present the proof for right quasi-duo property. Recall (cf. [5]) that a ring R is right quasi-duo if and
only if Ra + Rb = R implies a R + bR = R, for any a, b ∈ R. We will use this characterization in the proof.

Let a, b ∈ A(R, τ ) = A be such that Aa + Ab = A. Then, 1 = za + wb for some z, w ∈ A and, by definition of
A, one can pick n ∈ N such that 1 = τ n(z)τ n(a)+ τ n(w)τ n(b) is an equality in R. Hence, as R is right quasi-duo, we
obtain τ n(a)R + τ n(b)R = R. Then also τ n(a)A + τ n(b)A = A and a A + bA = A follows as τ is an automorphism
of A. This proves (1).

(2) The injective endomorphism τ of R can be extended to an endomorphism of R[x; τ ] by setting τ(x) = x . Then
one can check that A(R[x; τ ], τ ) = A(R, τ )[x; τ ]. Therefore, applying statement (1) to the ring R[x; τ ] we obtain
(2). �

The following example shows that the converse of statement (1) in the above lemma does not hold in general.
However, we will see later, as a consequence of Theorem 3.4, that the converse implication in Proposition 1.8(2)
holds.

Example 1.9. Let H denote the Hamilton quaternion algebra over the field Q of rationals and A = H(xi | i ∈ Z) =

H ⊗Q K , where K = Q(xi | i ∈ Z) is the field of rational functions in the set {xi | i ∈ Z} of indeterminates. Let
σ denote the Q-automorphism of A determined by conditions: σ |H = idH and σ(xi ) = xi+1, for all i ∈ Z. Define
R = H(xi | i ≥ 1)[x0] ⊆ A. Then σ induces an endomorphism, also denoted by σ , of R such that A =

⋃
∞

i=0 σ−i (R).
This means that A = A(R, σ ). Clearly A is a division ring, so it is a quasi-duo ring and R is not right (left) quasi-duo,
as it is a polynomial ring over a noncommutative division ring.

2. The Jacobson radical of quasi-duo skew polynomial rings of automorphism type

In this short section we get a precise description of the Jacobson radical of a skew polynomial ring of automorphism
type R[x; σ ], in the case R[x; σ ] is right quasi-duo. For that we will need the following definition and result by Bedi
and Ram.

An element a ∈ R is called σ -nilpotent if for every m ≥ 1 there exists n ≥ 1 such that aσm(a) · · · σmn(a) = 0
and a subset B of R is called σ -nil if every element of A is σ -nilpotent.

Theorem 2.1 ([1], Theorem 3.1). If σ is an automorphism of a ring R, then there exist σ -nil ideals K ⊆ J (R) and I
of R such that J (R[x; σ ]) = (I ∩ J (R)) + I [x; σ ]x and J (R[x, x−1

; σ ]) = K [x, x−1
; σ ].

Lemma 2.2. Suppose that R[x; σ ] is right quasi-duo. Let M be a maximal ideal of R[x; σ ] and M0 = M ∩ R. Then
precisely one of the following conditions holds:

1. If there exist n ≥ 1 such that xn
∈ M, then x ∈ M, M0 is a maximal ideal of R and M = M0 + R[x; σ ]x;

2. If for every n ≥ 1, xn
6∈ M, then M and M0 are σ -stable, M0 = {r ∈ R | ∃m≥0 r xm

∈ M} = {r ∈ R | r x ∈ M}

and A = R/M0 is a domain such that A[x; σ ] is right quasi-duo.

Proof. The nth power (x)n of the ideal generated by x is equal to R[x; σ ]xn . Thus if xn
∈ M , then x ∈ M and clearly

M = M0 + R[x; σ ]x , i.e. (1) holds.
Suppose x 6∈ M and let m ∈ M . Then xm = σ(m)x and mx = xσ−1(m) belong to M . Since M is a prime ideal

and x is a normalizing element, we obtain σ(m), σ−1(m) ∈ M , for m ∈ M , i.e. M is σ -stable. A similar argument
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leads to M0 = {r ∈ R | ∃m≥0 r xm
∈ M}. Now A = R/M0 embeds canonically into R[x; σ ]/M which is a division

ring (as R[x; σ ] is right quasi-duo), so A is a domain and A[x; σ ] is right quasi-duo as a homomorphic image of
R[x; σ ]. Hence (2) holds. �

Let us remark that the ideal M0 from Lemma 2.2(1) need not be maximal in R. For example, if K is a field, then
the ideal M = (t x − 1) of K [[t]][x] is maximal and M0 = 0 is not maximal in the base ring K [[t]].

Although only automorphisms are considered in this section, we will formulate the following definition in a more
general setting. For a ring R with an endomorphism τ we set

N (R) = {a ∈ R | ∃n≥1 aτ(a) . . . τ n(a) = 0}.

The definition of N (R) depends on the choice of the endomorphism τ , we hope that the proper choice of τ will be
clear from the context. Notice that the set N (R) is τ -stable.

Proposition 2.3. Let σ be an automorphism of R and R[x; σ ] be right (left) quasi-duo ring. Then:

1. N (R) is a two-sided, σ -stable ideal of R such that J (R[x; σ ]) = (N (R)∩ J (R))+N (R)[x; σ ]x, the ring R/N (R)

does not contain nonzero σ -nilpotent elements and the ring R/(N ∩ J (R)) is reduced. In particular, every nilpotent
element of R is σ -nilpotent.

2. Let A denote the set of all maximal ideals M of R[x; σ ] such that x 6∈ M and B the set of remaining maximal
ideals of R[x; σ ]. Then:
(a)

⋂
M∈B M = J (R) + R[x; σ ]x;

(b) N (R) =
⋂

M∈A M0, where M0 = M ∩ R and
⋂

M∈A M = N (R)[x; σ ];

Proof. (1) Let I be the ideal of R described in Theorem 2.1. Clearly I ⊆ N (R), as I is σ -nil. Since
R[x; σ ]/J (R[x; σ ]) is a semiprimitive one-sided quasi-duo ring, it is reduced. If a ∈ N (R), then ax ∈ R[x; σ ]

is a nilpotent element and N (R) ⊆ I follows, i.e. I = N (R). Now it is easy to complete the proof of (1) using
Theorem 2.1 and the fact that R[x; σ ]/J (R[x; σ ]) is a reduced ring.

(2)(a) If M0 is a maximal ideal of R, then M0 + R[x; σ ]x ∈ B. This implies, as R is a right quasi-duo, that⋂
M∈B M = J (R) + R[x; σ ]x , i.e. (2)(a) holds.
(b) Using Lemma 2.2 and the statement (a) we obtain

N (R) = {a ∈ R | ax ∈ J (R[x; σ ])} =

⋂
M∈A∪B

{a ∈ R | ax ∈ M}

=

⋂
M∈A

{a ∈ R | ax ∈ M} =

⋂
M∈A

M0.

This shows that the first equation from (b) holds. The second one is a consequence of (1) and (a) above. �

The above proposition offers precise description of J (R[x; σ ]) provided R[x; σ ] is right (left) quasi-duo. Later on,
as a side effect of the main Theorem 3.4, we will obtain a similar characterization of the Jacobson radical of a right
(left) quasi-duo skew polynomial ring R[x; τ ] of endomorphism type.

3. Main results

In this section we characterize skew polynomial rings which are right (left) quasi-duo. When τ is an automorphism,
then the opposite ring to R[x; τ ] is also a skew polynomial ring of automorphism type. This means that the
characterizations of right and left quasi-duo properties of skew polynomial rings are left–right symmetric, in this
case. We show in Theorem 3.4 that we also have such symmetry for arbitrary endomorphisms. This will be achieved
by reducing the general case to the case of skew polynomial rings of automorphism type.

Recall that a ring R with an automorphism σ is called σ -prime if the product I J of nonzero σ -stable ideals I, J of
R is always nonzero and a σ -stable ideal P of R is σ -prime if the ring R/P is σ -prime. By Pσ (R) we will denote the
σ -pseudoradical of R, that is Pσ (R) is the intersection of all nonzero σ -prime ideals of R (by definition, the empty
intersection is equal to R).

The commutator ab − ba of elements a and b from a ring R will be denoted by [a, b].
In what follows we will need the following two lemmas, the first one is a special case of Lemma 3.2(1) from [9].
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Lemma 3.1. Let R be a domain. Suppose that R[x; σ ] contains a maximal ideal M such that M ∩ R = 0. Then
Pσ (R) 6= 0.

Lemma 3.2. Let τ be an endomorphism of a ring R and U ⊆ V be ideals of R. If τ(V ) ⊆ V , then U + V [x; τ ]x
is a two-sided ideal of R[x; τ ] and the ring R[x; τ ]/(U + V [x; τ ]x) is right (left) quasi-duo if and only if R/U and
R[x; τ ]/V [x; τ ] ' (R/V )[x; τ ] are right (left) quasi-duo rings.

Proof. It is clear that U + V [x; τ ]x is a two-sided ideal of R[x; τ ] and that τ induces an endomorphism, also denoted
by τ , of the ring R/V . Notice that (U + R[x; τ ]x)∩ V [x; τ ] = U + V [x; τ ]x . This implies that R[x; τ ] is a subdirect
product of rings R/U and (R/V )[x; τ ]. Now it is easy to complete the proof with the help of Corollary 3.6(2) [5],
which states that a finite subdirect product of right (left) quasi-duo rings is also such. �

The following theorem is the key ingredient for our description of one-sided quasi-duo skew polynomial rings.

Theorem 3.3. Let R be a domain with an automorphism σ . If R[x; σ ] is right quasi-duo, then R is commutative and
σ = idR .

Proof. Suppose that R[x; σ ] is right quasi-duo. Let A denote the set of all maximal ideals M of R[x; σ ] such that
x 6∈ M . Since R is a domain and R[x; σ ] is right quasi-duo, Proposition 2.3 implies that:
(i) 0 = J (R[x; σ ]) =

⋂
M∈A M , i.e. R[x; σ ] is a subdirect product of division rings R[x; σ ]/M , where M ranges

over A.
(ii) M0 = M ∩ R is a σ -stable ideal of R, for any M ∈ A.

Let M ∈ A and π : R[x; σ ] → R[x; σ ]/M = D be an epimorphism onto a division ring D. We claim that D
is commutative. Since M0 is a σ -stable ideal of R, π induces an epimorphism f : (R/M0)[x; σ ] → D such that
ker f ∩ (R/M0) = 0. Moreover x 6∈ ker f , as x 6∈ M . Since D is a division ring, the above yields that R/M0 is a
domain, ker f is a maximal ideal of (R/M0)[x; σ ] not containing x . Thus, eventually replacing R by R/M0 we may
assume that M ∈ A has zero intersection with the base ring R. Then, Lemma 3.1, shows that Pσ (R) 6= 0.

Take 0 6= a ∈ Pσ (R) and consider a maximal right ideal W of R[x; σ ] containing ax + 1. By assumption, W is a
two-sided ideal. Clearly x 6∈ W and, by Lemma 2.2, W0 = W ∩ R is a (completely) prime, σ -stable ideal of R. Thus,
if W0 were nonzero it would contain Pσ (R) and W = R[x; σ ] would follow. Therefore W0 = 0.

Observe that [a, ax + 1] = (a2
− aσ(a))x ∈ W , as W is a two-sided ideal of R[x; σ ]. Since x is a normalizing

element of R[x; σ ] and W is a prime ideal, we obtain a(a − σ(a)) ∈ W ∩ R = 0. This proves that a(a − σ(a)) = 0,
for any a ∈ Pσ (R) and the fact that R is a domain implies that σ is identity on Pσ (R). Then for arbitrary r ∈ R, we
have ar ∈ Pσ (R) and 0 = σ(ar) − ar = a(σ (r) − r) and σ = idR follows.

Let b ∈ R. Then, as σ = idR , we have [b, a]x = [b, ax +1] ∈ W and, similarly as above, we get [b, a] = 0, for all
b ∈ R. This means that 0 = [b, ar ] = a[b, r ], for all b, r ∈ R, and yields commutativity of the domain R. This shows
that D is commutative as a homomorphic image of a commutative ring R[x; σ ] = R[x] and completes the proof of
the theorem. �

For the endomorphism τ of a ring R let us set K =
⋃

∞

i=1 ker τ i . Then, as K is τ -stable, τ induces an injective
endomorphism, also denoted by τ , of the ring R̄ = R/K. In particular, we can consider the τ -Cohn–Jordan extension
A(R̄, τ ) of R̄.

Keeping the above notations we can formulate the following theorem which characterizes one-sided quasi-duo
skew polynomial rings of endomorphism type.

Theorem 3.4. For a ring R with an endomorphism τ , the following conditions are equivalent:

1. R[x; τ ] is a right (left) quasi-duo ring;
2. R and R̄[x; τ ] are right (left) quasi-duo rings;
3. R and A(R̄, τ )[x; τ ] are right (left) quasi-duo rings;
4. The following conditions hold:

(a) R is right (left) quasi-duo and J (R[x; τ ]) = (J (R) ∩ N (R)) + N (R)[x; τ ];
(b) N (R) is a τ -stable ideal of R, the factor ring R/N (R) is commutative and the endomorphism τ induces

identity on R/N (R).
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Proof. It is clear that (1) implies (2), as the rings in (2) are homomorphic images of R[x; τ ].
The implication (2) ⇒ (3) is given by Proposition 1.8(2) applied to the ring R̄.
(3) ⇒ (4) Case 1, when τ = σ is an automorphism of R, i.e. R = R̄ = A(R, τ ). Suppose that R and R[x; σ ] are

right quasi-duo. Proposition 2.3 shows that the statement (4)(a) holds, in this case.
LetA denote the set of all maximal ideals of R[x; σ ] such that x 6∈ M . Proposition 2.3 together with Lemma 2.2(2)

yield that N (R) is a σ -stable ideal of R and the ring (R/N (R))[x; σ ] ' R[x; σ ]/(N (R)[x; σ ]) is a subdirect product
of domains (R/M0)[x, σ ] ' R[x; σ ]/(M[x; σ ]), where M ranges over A and M0 = M ∩ R. Now the statement
(4)(b) is a consequence of Theorem 3.3. Therefore Case 1 holds for right quasi-duo property of R[x; σ ]. Notice that
we also have proved that the ring R/N (R) is reduced.

Making use of the isomorphism (R[x; σ ])op
' Rop

[x; σ−1
], where T op denotes the ring opposite to a ring T , one

can easily get the left version of Case 1.
Case 2, when τ is an arbitrary endomorphism of R. Recall that for a ring B with an endomorphism τ ,

N (B) = {b ∈ B | ∃n≥1bτ(b) . . . τ n(b) = 0}. Let A = A(R̄, τ ), where R̄ = R/K. It is easy to check that
K ⊆ N (R), N (R̄) = N (A) ∩ R̄ and N (R̄) = N (R)/K. This implies that N (R) is the kernel of the composition
of natural homomorphisms R → R̄ → R̄/N (R̄) ↪→ A/N (A). The above and Case 1 applied to the ring A
imply that N (R) is a τ -stable ideal of R, R/N (R) is a commutative reduced ring as A/N (A) is such and τ induces
identity on R/N (R), as τ induces identity on A/N (A). This means that the statement (4)(b) holds and also proves
that J (R[x; τ ]) ⊆ N (R)[x; τ ], since the factor ring R[x; τ ]/(N (R)[x; τ ]) ' (R/N (R))[x] is semiprimitive as
R/N (R) is reduced. In fact, the last inclusion together with the fact that J (R[x; τ ]) ∩ R ⊆ J (R) imply that
J (R[x; τ ]) ⊆ (J (R) ∩ N (R)) + N (R)[x; τ ]x .

For every r̄ ∈ N (R̄), r̄ x is a nilpotent element of R̄[x; τ ] = (R/K)[x; τ ]. Hence, since A[x; τ ] is a right (left)
quasi-duo ring, N (R̄)[x; τ ]x ⊆ J (A[x; τ ]). Thus for every f (x) ∈ N (R̄)[x; τ ]x there exists g(x) ∈ A[x; τ ] such that
(1− f (x))(1+g(x)) = 1. On the other hand (1− f (x))(1+ f (x)+( f (x))2

+· · ·) = 1 in the power series ring A[[x; τ ]].
Consequently g(x) = f (x) + ( f (x))2

+ · · · ∈ N (R̄)[x; τ ], so (N (R̄)[x; τ ]x) ⊆ J (R̄[x; τ ]). Therefore, as K[x; τ ]x
is a nil ideal of R[x; τ ] and N (R̄) = N (R)/K, we get that N (R)[x; τ ]x ⊆ J (R[x; τ ]). Now, with the help of this
inclusion, one can check that every element of the ideal J = (J (R)∩N (R))+N (R)[x; τ ]x is quasi-regular in R[x; τ ].
This together with the above proved inclusion J (R[x; τ ]) ⊆ J show that J (R[x; τ ]) = (J (R)∩ N (R))+ N (R)[x; τ ]

and completes the proof of the implication (3) ⇒ (4).
The implication (4) ⇒ (1) is a direct consequence of Lemma 3.2 with U = J (R) ∩ N (R) and V = N (R). �

Remark 3.5. 1. Statements (2) and (3) of the above theorem are of rather technical nature, but are important steps
for obtaining the equivalence of (1) and (4). When τ is an automorphism of R, then both (2) and (3) boil down to the
statement (1), as A(R̄; τ) = R = R̄ in this case.
2. Note that R[x; τ ] is a commutative ring if and only if R is commutative and τ = idR . Thus condition (4)(b)
can be equivalently stated as “N (R) is a τ -stable ideal and the ring R[x; τ ]/(N (R)[x; τ ]) ' (R/N (R))[x; τ ] is
commutative”. One can reformulate some other results in the article in a similar way.
3. Observe that it is shown in the proof of Theorem 3.4 that if R[x; τ ] is right (left) quasi-duo, then the commutative
ring R/N (R) has to be reduced.
4. Theorem 3.4 shows that the use of skew polynomial rings of endomorphism type cannot be effective in constructing
a ring which is quasi-duo only on one side, as for that aim it would be necessary to construct the base ring with the
same properties first.

4. Applications and examples

It is known (cf. [11,1]) that if either R is one-sided noetherian or the automorphism σ is of locally finite order,
i.e. when for any a ∈ R there is n ≥ 1 such that σ n(a) = a, then J (R[x; σ ]) = I [x; σ ], for some nil ideal I of
R. Since the Jacobson radical of quasi-duo rings contains all nilpotent elements, Theorem 3.4 gives immediately the
following theorem.

Theorem 4.1. Suppose that σ is an automorphism of R and either R is one-sided noetherian or σ is of locally finite
order. Then R[x; σ ] is right quasi-duo if and only if J (R[x; σ ]) = N (R)[x; σ ], where N (R) is the nil radical of R,
R/N (R) is commutative and the automorphism of R/N (R) induced by σ is equal to idR/N (R).
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The following theorem characterizes quasi-duo skew Laurent polynomial ring.

Theorem 4.2. The skew Laurent polynomial ring R[x, x−1
; σ ] is right (left) quasi-duo if and only if

J (R[x, x−1
; σ ]) = N (R)[x, x−1

; σ ], R/N (R) is commutative and the automorphism of R/N (R) induced by σ

is equal to idR/N (R) if and only if R[x, x−1
; σ ]/J (R[x, x−1

; σ ]) is commutative.

Proof. Let T = R[x, x−1
; σ ]. We will prove the only nontrivial implication, that is, we will show that if T is one-

sided quasi-duo, then J (T ), N (R) and σ satisfy conditions described in the theorem. To this end suppose T is right
quasi-duo. By Theorem 2.1, J (R[x, x−1

; σ ]) = K [x, x−1
; σ ] for a suitable σ -nil ideal K of R. Clearly K ⊆ N (R).

Since N (R)x consists of nilpotent elements and T/J (T ) is reduced, N (R) ⊆ J (T ) and J (T ) = N (R)[x, x−1
; σ ]

follows, in this case. By Corollary 1.7, R[x; σ ] is right quasi-duo and Theorem 3.4 shows that R/N (R) is commutative
and the automorphism of R/N (R) induced by σ is equal to idR/N (R). �

It is known [3] that for every ring R, J (R[x, x−1
]) ∩ R[x] = J (R[x]). Thus, Theorems 4.1 and 4.2 give the

following:

Corollary 4.3. R[x] is right (left) quasi-duo if and only if R[x, x−1
] is right (left) quasi-duo if and only if J (R[x]) =

N (R)[x] and the factor ring R/N (R) is commutative, where N (R) denote the nil radical of R.

Remark 4.4. If the polynomial ring R[x, y] in two commuting indeterminates x, y is right quasi-duo, then R[x] is
also right quasi-duo as a homomorphic image of R[x, y]. However the converse does not hold. Indeed, in [10] a
nil ring C was constructed such that C[x] is Jacobson radical but not nil. Let R be the ring obtained from C by
adjoining unity by the ring Z of integers. Then J (R[x]) = C[x] and R[x]/J (R[x]) ' Z[x], so R[x] is quasi-duo.
However R[x]/N (R[x]) is not commutative as otherwise C would be contained in N (R[x]), which is impossible.
Hence Corollary 4.3 shows that the ring R[x, y] ' R[x][y] is not right (left) quasi-duo.

The aim of the following example is two-fold. Firstly, it shows that there exists a ring R with an automorphism σ such
that both R[x; σ ] and R[x; σ−1

] are right quasi-duo but R[x, x−1
; σ ] is not, i.e. the converse of Corollary 1.7 does

not hold. Secondly, contrary to the cases of polynomial and skew Laurent polynomial rings, there exist right quasi-duo
skew polynomial ring R[x; σ ] such that R[x; σ ]/J (R[x; σ ]) is not commutative.

Example 4.5. Let ∆ be a right quasi-duo ring which is Jacobson semisimple (for example one can take ∆ to be a
division ring) and P =

∏
i∈Z∆i be the direct product of ∆i = ∆. We can identify the center F of ∆ with the subring

of P consisting of constant sequences ( f )i∈Z, f ∈ F . Let R = F + I ⊆ P , where I =
⊕

i∈Z∆i . Let σ be the right
shifting automorphism of R given by σ((ai )i∈Z) = (ai+1)i∈Z.

One can easily check R is right quasi-duo. Observe also that I [x; σ ]x and I [x; σ−1
]x are nil ideals of R[x; σ ]

and R[x; σ−1
], respectively, and the factor rings R[x; σ ]/(I [x; σ ]) and R[x; σ−1

]/I [x; σ−1
] are isomorphic to

the commutative polynomial ring F[x]. Now Lemma 3.2 yields that both R[x; σ ] and R[x; σ−1
] are right quasi-

duo. Notice that N (R) = I and, as J (∆) = 0, the ring R is Jacobson semisimple. Thus, by Theorem 2.1,
J (R[x, x−1

; σ ]) = 0 and J (R[x; σ ]) = I [x; σ ]x . Now, Theorem 4.2 implies that R[x, x−1
; σ ] is not right quasi-duo.

Notice also that if ∆ is not commutative then R[x; σ ]/J (R[x; σ ]) is not commutative as well.

The following example shows that it is possible that R[x; σ ] is right quasi-duo whereas R[x; σ−1
] is not.

Example 4.6. Let K be a field, R = K 〈xi | i ∈ Z, xi x j = 0, for i < j〉 and I denote the ideal of R generated by all
products xk xl , where k, l ∈ Z and k > l. Let σ be the K -automorphism of R given by σ(xi ) = xi+1, for all i ∈ Z.

Note that R[x; σ ]/I [x; σ ] is isomorphic to P[x; σ ], where P =
∏

i∈Z∆i and ∆i = K [xi ], for i ∈ Z. The same
arguments as in Example 4.5 (with F replaced by

∏
i∈Z K ), show that this factor ring is right quasi-duo. Thus, for

proving that R[x; σ ] is right quasi-duo, it is enough to show that I [x; σ ] ⊆ J (R[x; σ ]). To this end, observe that for
any monomial m ∈ I we have m R[x; σ ]m = 0 in R[x; σ ]. This implies m R[x; σ ] ⊆ J (R[x; σ ]), for all monomials
m ∈ I and hence I ⊆ J (R[x; σ ]) follows.

Finally the ring R[x; σ−1
] is not right quasi-duo as otherwise, by Theorem 3.4, N would be an ideal of R and R/N

would be commutative, where N = N (R) is taken with respect to σ−1. However x1x2
0 . . . x2

−n+1x−n 6= 0, for any
n ≥ 1, i.e. x1x0 6∈ N and clearly 0 = x0x1 ∈ N .
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Corollary 1.7 shows that for the ring R from the above example the ring R[x, x−1
; σ ] is also not right quasi-duo.

Note that in Examples 4.5 and 4.6 the ring R contains maximal ideals with infinite orbits under the action of σ . We
close the article with a result showing that this is one of the reasons for which R[x, x−1

; σ ] is not quasi-duo.

Theorem 4.7. Let σ be an automorphism of R. For any maximal ideal M of R we have:

1. Suppose the ring R[x; σ ] is right quasi-duo. Then either σ(M) = M or M has infinite orbit under the action of
σ . Moreover, if σ(M) = M, then the ring R/M is a field and σ induces identity on R/M.

2. Suppose the ring R[x, x−1
; σ ] is right quasi-duo. Then σ(M) = M, the ring R/M is a field and σ induces identity

on R/M.

Proof. Let M be a maximal ideal of R. Notice that R/M is a division ring, as R[x; σ ] is right quasi-duo.
(1)(a) Suppose that M has finite orbit {M, σ (M), . . . , σ n(M)} under the action of σ and let I = M ∩σ(M)∩· · ·∩

σ n(M). Then, σ induces an automorphism of R̄ = R/I , which is also denoted by σ . Notice that R̄ is isomorphic to
the direct product of division rings R/σ k(M), 0 ≤ k ≤ n, and σ induces its isomorphism permuting the components.
It is clear that the set of σ -nilpotent elements of R̄ forms an ideal if and only if σ(M) = M , so the first part of (1) is a
consequence of Proposition 2.3.

Suppose now that σ(M) = M . Then σ induces an automorphism of the division ring R/M and R/M[x; σ ] is right
quasi-duo. Now the remaining part of (1) is a consequence of Theorem 3.3.

(2) Since R[x, x−1
; σ ] is right quasi-duo, there exists a maximal ideal of R[x, x−1

; σ ], say W , such that
M R[x, x−1

; σ ] ⊆ W . Notice that maximality of M implies that W ∩ R = M . We also have M +x Mx−1
= M +σ(M)

and M + σ−1(M) = M + x−1 Mx are contained in W ∩ R = M . This shows that σ(M) = M .
By Corollary 1.7, the ring R[x; σ ] is also right quasi-duo and, with the help of statement (1), one can easily

complete the proof of the theorem. �

Concluding, in this article we got a complete and, as it seems, quite satisfactory characterization of quasi-duo skew
polynomial rings of endomorphism type. Our results show that it is hard to expect that such rings might be helpful in
constructing right but not left quasi-duo rings. It seems that more appropriate for that aim could be skew polynomial
rings R[x; τ, δ], where δ denotes a skew τ -derivation of R. The situation reminds a bit the case of duo property of
rings (recall that a ring R is called right (left) duo if every right (left) ideal of R is two-sided). It is known (cf. [7])
that R[x; τ ] is right duo iff it is left duo, whereas there exists (cf. [8]) a skew polynomial ring R[x; τ, δ] such that it is
right but not left duo. Note however that the examples constructed in [8] are left and right quasi-duo. In that context it
would be interesting to characterize right and left quasi-duo property of skew polynomial rings R[x; τ, δ].
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